Exercise 1

Prove that the 3-SAT problem is fixed parameter tractable when parameterized by the number of literals.

Exercise 2

Prove that a parameterized problem is fixed parameter tractable if and only if it admits a kernel and it is decidable.

Exercise 3

Let d be a fixed integer. Prove that deciding if a graph with maximum degree at most d has an independent set of size k is fixed parameter tractable when parameterized by k.

Exercise 4

An acyclic coloring of a graph is a proper coloring such that the graph induced by any two pairs of colors is acyclic.
We are interested in the problem of finding a 3-acyclic-coloring in triangle-free planar graphs.

- Build a triangle-free planar graph with two vertices u and v such that all of the following hold :
- u and v are on the same face
- u and v are not adjacent
- there is no acyclic 3-coloring of the graph in which u and v have the same color.
- Deduce that deciding if a triangle-free planar graph admits a 3-acyclic-coloring is NP-hard. You can reduce from 3-coloring in planar graphs.

