Exercise 1

Build a 5-degenerate graph that has all of its vertices but one of degree 5 and is not 5 -colorable.

Exercise 2

Build by induction for all integer k a tree T_{k}, together with an ordering of the vertices of T_{k}, such that applying the greedy algorithm on T_{k} with the vertices in this order gives a k-coloring of T_{k}.

Exercise 3

For each of the following statements, either prove it or give a counter-example.

1. For every graph G, one can find a $\chi(G)$-coloring of G with a greedy algorithm.
2. For every graph class \mathcal{C} and every integer k, the complexity of deciding if a graph $G \in \mathcal{C}$ is k-colorable is the same as the complexity of finding a k-coloring of G.

Exercise 4

Give a $O\left(n^{2}\right)$-algorithm to 3 -color an outerplanar graph.

Exercise 5

Show that the two definitions of the degeneracy of a graph seen in course are equivalent : there exists an ordering of the vertices such that every vertex is adjacent to at most k vertices that come after it if and only if every subgraph of G has a vertex of degree at most k.

