Exercise 1

Build a graph that has treewidth equal to 4, but is 3-degenerate. Is it chordal?

Exercise 2

What is the treewidth of the following graph? Justify your answer.

Exercise 3

Is it true that a graph is outerplanar if and only if it is planar and with treewidth at most 2 ? Justify your answer.

Exercise 4

If G is a graph and H a subgraph of G, prove that the treewidth of H is at most that of G.

Exercise 5

If G is a graph and H is obtained from G by deleting a single edge, is it possible that the treewidth of H and that of G differ by exactly 2 ? What about if you delete two edges instead of one? Justify your answers (in each case, either build such a pair of graphs (G, H) or prove it is impossible).

Exercise 6

Let k be a fixed integer. Give a polynomial algorithm to 3 -color graphs with treewidth at most k (you can assume that you are given a tree decomposition of the imput graph).

