We recall that $G \to H$ denotes that there exists a homomorphism from G to H.

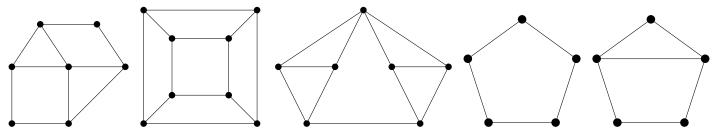
Exercise 1

Find a graph with as few vertices as possible that does not have a homomorphism to the cycle C_6 on six vertices. Justify your answer.

Exercise 2

Among the following graphs, find which ones are homomorphic to which other ones.

Find the cores of each of the graphs. Justify your answers.



Exercise 3

Build two graphs G and H such that there is no homomorphism from G to H nor from H to G.

Exercise 4

Build a graph H such that for every planar graph G with at least one edge, $H \to G$.

Build a graph H such that for every planar graph G with at least one edge, $G \to H$. Justify your answers.

Exercise 5

Show that if $G \to H$, then : $-\omega(G) \le \omega(H)$ $-\chi(G) \le \chi(H)$

Exercise 6

Show that a graph G is a core if and only if every endomorphism of G is an automorphism.

Exercise 7

The square of a cycle on k vertices, denoted C_k^2 , is defined as the graph with vertices $v_1, v_2 \dots v_k$ so that $v_i v_j \in E(G)$ if and only if |i - j| = 1[k] or |i - j| = 2[k]. That is, C_k^2 is exactly the cycle on k vertices where edges are added between vertices that share a neighbour.

For which values of i and j do we have $C_i^2 \to C_j^2$? Justify your answer. (hint : you may want to consider the values of k modulo 3).