
git: A Version Control System
(Anybody can make history, but only few can (re)write it)

Emmanuel Fleury
<emmanuel.fleury@u-bordeaux.fr>

Université de Bordeaux, France

January 21, 2025

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 1 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 2 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 3 / 86

Version Control Software (VCS)

A Version Control Software is a tool that:
Keeps a log of changes applied on source code.
Helps to merge your work with other developers.
Allows to navigate within history of source code versions.

Even when coding alone, a VCS is extremely useful to not be annoyed
by tracking different revisions of your software.

A few (famous) VCS:

sccs (1972)
rcs (1982)

cvs (1990)
svn (2000)

darcs (2003)
git (2005)

hg (2005)
. . .

Get used to VCS tools on long term projects !!!

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 4 / 86

Project History

The sequence of modifications bringing
you from the start of the project til now.

Two distinct type of approaches:

History cannot be rewritten
(cvs, svn, hg, . . .)
History represents the chronological order
of events, we cannot erase it. Thus, it
keeps track of all your mistakes.

History is a set of lies agreed upon
(git, darcs, . . .)
History tries to show the best logical path
from one point to another, we can modify
it to make it more understandable.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 5 / 86

Centralized vs. Distributed

Alice Bob Carol

Server
Repository

Working
Copy

Working
Copy

Working
Copy

co
mmit

up
da

te

co
m

m
itupdate

commit

update

Centralized Version Control

Alice Bob Carol

Server
Repository

Repository Repository Repository

Working
Copy

Working
Copy

Working
Copy

pu
sh

pu
ll pu

sh

pull

pushpull

co
m

m
it

checkout ch
ec

ko
ut

checkout co
m

m
it

checkout

Distributed Version Control

Repository
Hold the whole history of the project (as a data-base of code).

Working Copy
A snapshot of the code taken from the repository on which you can work.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 6 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 7 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 8 / 86

Command Syntax

#> git log --stat --after="yesterday" bugfix

command

options

arguments

Git main commands
add blame branch checkout clone commit config

diff init log merge pull push rebase reset
revert rm stash status switch tag ...

How to Get Help
#> git help <command>
#> git <command> --help
#> man git-<command>

Help Examples
#> git help log
#> git log --help
#> man git-log

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 9 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 10 / 86

Introduce Yourself to git

First of all, you need to set your identity in order to tag properly
your commits and get your usual tools (e.g. editor).
You have two options (’global’ or ’local’).

Global Configuration (’~/.gitconfig’ or ’~/.config/git/config’)
#> git config --global user.name "John Doe"
#> git config --global user.email john.doe@student.edu
#> git config --global core.editor emacs

Local Configuration (’project/.git/config’)
#> git config --local user.name "John Doe"
#> git config --local user.email john.doe@email.net
#> git config --local core.editor emacs

Where: Local > Global
Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 11 / 86

Playing with Configuration
Setting Config
#> git config section.key1 'value1'
#> git config section.key2 'value2'
#> git config section.subsection.key3 'value3'
#> git config --list

section.key1=value1
section.key2=value2
section.subsection.key3=value3

Config File Format
This is a comment
[section]

key1 = value1 # Another comment
key2 = value2

[section "subsection"]
key3 = value3

Sections and keys are case-sensitive!

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 12 / 86

Example of a .gitconfig
[user]

name = John Doe
email = john.doe@student.edu

[init]
Set name of default branch
defaultBranch = main

[pull]
Rebase unpushed work in case of 'pull'
rebase = true

[push]
default = simple

[core]
Default editor to write commit message
editor = emacs -nw

[color]
ui = auto

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 13 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 14 / 86

Files States

Working Tree
(working-copy)

Metadata
(.git/)

Network
(git server)

Untracked
Files

Unmodified
Files

Modified
Files

Staging
Area

Local
Repository

Remote
Repository

Working Tree
Untracked Files: Files that are not tracked by git in the working copy.
Unmodified Files: Tracked files that are not modified.
Modified Files: Tracked files that are modified and ready to get staged.

Metadata
Staging Area or Index (.git/index): Stores all the temporary modifications planned for commit.
Local Repository (.git/objects/): Hold the whole history of the project with all the modifications.

Network
Remote Repository: A place used to synchronize your repository with other developers.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 15 / 86

’git status’: Get Status Information
Gives the current status of all your files which are in the untracked files, the
working tree or the staging area.
Untracked Files
Untracked files:

(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)

Modified Files
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: README

no changes added to commit (use "git add" and/or "git commit -a")

Unmodified Files
nothing to commit, working tree clean

Staged Files
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: README

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 16 / 86

Commands: ’add’ and ’mv’

Untracked
Files

Unmodified
Files

Modified
Files

Staging
Area

Local
Repository

Remote
Repository

git add

git add

git mv

git mv

Command ’git add FILE’
Used to add an untracked file or a modification on a file to the staging area.
Note that moving an untrack file to staging is not the same than moving it from
modified files.

Command ’git mv FLIE FILE’
Used to rename or move a tracked file in the staging area.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 17 / 86

Example: ’add’ and ’mv’
#> echo "Hello World!" > REAMDE
#> git add REAMDE
#> git status
No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: REAMDE

#> git mv REAMDE README
#> git status
No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: README

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 18 / 86

Example: ’add --patch’
#> echo "Hello World!" > README
#> git add README
#> echo "Second line" >> README
#> git add --patch README
diff --git a/README b/README
index 980a0d5..307dca1 100644
--- a/README
+++ b/README
@@ -1 +1,2 @@
Hello World!

+Second line
Stage this hunk [y,n,q,a,d,e,?]? ?
y - stage this hunk
n - do not stage this hunk
q - quit; do not stage this hunk or any of the remaining ones
a - stage this hunk and all later hunks in the file
d - do not stage this hunk or any of the later hunks in the file
e - manually edit the current hunk
? - print help
@@ -1 +1,2 @@
Hello World!

+Second line
Stage this hunk [y,n,q,a,d,e,?]? y

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 19 / 86

Commands: ’rm’ and ’reset’

Untracked
Files

Unmodified
Files

Modified
Files

Staging
Area

Local
Repository

Remote
Repository

git rm

git rm --force

git rm
git reset

git reset --hard

Command ’git rm FILE’
Used to remove a file from the tracked files (unmodified, modified or staged).

’git rm -r DIR/’: Recursive removal of the content of a directory.
’git rm --cached FILE’: Do not delete the file which is removed from the tracked files;

Command ’git reset FILE’
Used to remove changes from the staging area to the working tree.

’git reset --hard’: Throw away all the pending changes (you can’t get it back!).

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 20 / 86

Example: ’rm’

#> echo "Hello World!" > README
#> git add README
#> git status
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: README

#> git rm README
error: the following file has changes staged in the index:

README
(use --cached to keep the file, or -f to force removal)
#> git rm --cached README
rm 'README'
#> git status
Untracked files:

(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 21 / 86

Example: ’reset’
#> echo "Hello World!" > README
#> git add README
#> git status
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: README

#> git reset
#> git status
No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)
#> git add README
#> git reset --hard
#> git status
On branch main

No commits yet

nothing to commit (create/copy files and use "git add" to track)

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 22 / 86

.gitignore: Ignoring Untracked Files. . .
Why Ignoring Files?

You do not want to see these files in ’git status’ to have a better understanding
of the modifications you did on the code.
Building the project and editing files produce a lot of intermediate files that are not
relevant to be cared upon. These files must be banned from the history because:

It blurs the ’status’ command a lot;
Versionning binary files is inefficient;
It breaks Makefile timestamps on files;
It breaks merge algorithm;
It eats disk space for nothing.

How to Ignore Files?
Ignore files: ’~/.config/git/ignore’ (global) or ’project/.gitignore’ (local)
Basic Ignore Format:
This is a comment
Ignore all files ended by '~'
*~
Ignore all file named 'core'
core
Ignore the directory 'images/' and its content
images/

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 23 / 86

Example: .gitignore

Bad!
#> git status
On branch main
Changes not staged for commit:

(use "git add <file>..."
to update what will be committed)

(use "git checkout -- <file>..."
to discard changes in working directory)

modified: src/project.c

Untracked files:
(use "git add <file>..."

to include in what will be committed)

project
src/module.o
src/project
src/project.o

no changes added to commit
(use "git add" and/or "git commit -a")

Good!
#> git status
On branch main
Changes not staged for commit:

(use "git add <file>..."
to update what will be committed)

(use "git checkout -- <file>..."
to discard changes in working directory)

modified: src/project.c

no changes added to commit
(use "git add" and/or "git commit -a")

.gitignore
*~
*.o
project
src/project

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 24 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 25 / 86

History Logs
#> git log
commit 848679e3dc10b6ef13e1d2ea2a5055 (HEAD->main)
Author: John Doe <john.doe@student.edu>
Date: Mon Nov 19 12:02:05 2018 +0100

Cleaning and fixing bugs

- Removed 'project' exec from tracked files
- Updated the 'clean' target in Makefile
- Fixing a missing include in 'project.c'

commit 9311eedbc1c00071055abfbd4228bd
Author: John Doe <john.doe@student.edu>
Date: Mon Nov 19 12:00:13 2018 +0100

Adding a .gitignore file

commit 9d2c88af92b23131b74bbe6fdcd3f8
Author: John Doe <john.doe@student.edu>
Date: Mon Nov 19 11:59:19 2018 +0100

Initial commit

#> git log --oneline
848679e (HEAD -> main) Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit

9d2c88a 9311eed 848679e

main

HEAD

Initial
commit

Adding
.gitignore

Cleaning and
fixing bugs

Current position
of working tree

Default branch

Commit
Commit #id

HEAD: Convention to name current position of
working tree in history and where:

HEAD~1 (HEAD~): First ancestor of HEAD.
HEAD~2 (HEAD~~): Second ancestor of HEAD.
HEAD~n: n-th ancestor of HEAD.

9d2c88a: Commit #id is obtained by
hashing the tree of changes as a Merkle tree
with SHA-1 (160-bit).

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 26 / 86

More Tricks about ’git log’
#> git log --oneline --stat
9311eed (HEAD -> main) Adding a .gitignore file
.gitignore | 3 +++
1 file changed, 3 insertions(+)

9d2c88a Initial commit
Makefile | 13 +++++++++++++
project | Bin 0 -> 1708464 bytes
project.c | 21 +++++++++++++++++++++
project.h | 8 ++++++++
4 files changed, 42 insertions(+)

#> git log --patch
commit 9311eedbc1c031fe09dbfd0071055abfbd4228bd (HEAD -> main)
Author: John Doe <john.doe@student.edu>
Date: Mon Nov 19 12:00:13 2018 +0100

Adding a .gitignore file

diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..b069126
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,3 @@
+*~
+*.o
+project

Displays the statistics
on changed lines in files

Displays all the diffs
of the commit

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 27 / 86

Writing Good Log Messages
Summarize changes in around 50 characters or less

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of the commit and the rest of the text as the body. The
blank line separating the summary from the body is critical (unless
you omit the body entirely); various commands like `log`, `shortlog`
and `rebase` can get confused if you run the two together.

Explain the problem that this commit is solving. Focus on why you
are making this change as opposed to how (the code explains that).
Are there side effects or other unintuitive consequences of this
change? Here's the place to explain them.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, preceded
by a single space, with blank lines in between.

If you use an issue tracker, put references at the bottom, like this:

Resolves: #123
See also: #456, #789

Explicit Title
Empty line

Optional body

For more, see: How to Write a Git Commit Message, by Chris Beams, 2014.
https://chris.beams.io/posts/git-commit/

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 28 / 86

https://chris.beams.io/posts/git-commit/

Writing Good Log Messages
Summarize changes in around 50 characters or less

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of the commit and the rest of the text as the body. The
blank line separating the summary from the body is critical (unless
you omit the body entirely); various commands like `log`, `shortlog`
and `rebase` can get confused if you run the two together.

Explain the problem that this commit is solving. Focus on why you
are making this change as opposed to how (the code explains that).
Are there side effects or other unintuitive consequences of this
change? Here's the place to explain them.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, preceded
by a single space, with blank lines in between.

If you use an issue tracker, put references at the bottom, like this:

Resolves: #123
See also: #456, #789

Explicit Title

Empty line

Optional body

For more, see: How to Write a Git Commit Message, by Chris Beams, 2014.
https://chris.beams.io/posts/git-commit/

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 28 / 86

https://chris.beams.io/posts/git-commit/

Writing Good Log Messages
Summarize changes in around 50 characters or less

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of the commit and the rest of the text as the body. The
blank line separating the summary from the body is critical (unless
you omit the body entirely); various commands like `log`, `shortlog`
and `rebase` can get confused if you run the two together.

Explain the problem that this commit is solving. Focus on why you
are making this change as opposed to how (the code explains that).
Are there side effects or other unintuitive consequences of this
change? Here's the place to explain them.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, preceded
by a single space, with blank lines in between.

If you use an issue tracker, put references at the bottom, like this:

Resolves: #123
See also: #456, #789

Explicit Title
Empty line

Optional body

For more, see: How to Write a Git Commit Message, by Chris Beams, 2014.
https://chris.beams.io/posts/git-commit/

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 28 / 86

https://chris.beams.io/posts/git-commit/

Writing Good Log Messages
Summarize changes in around 50 characters or less

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of the commit and the rest of the text as the body. The
blank line separating the summary from the body is critical (unless
you omit the body entirely); various commands like `log`, `shortlog`
and `rebase` can get confused if you run the two together.

Explain the problem that this commit is solving. Focus on why you
are making this change as opposed to how (the code explains that).
Are there side effects or other unintuitive consequences of this
change? Here's the place to explain them.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, preceded
by a single space, with blank lines in between.

If you use an issue tracker, put references at the bottom, like this:

Resolves: #123
See also: #456, #789

Explicit Title
Empty line

Optional body

For more, see: How to Write a Git Commit Message, by Chris Beams, 2014.
https://chris.beams.io/posts/git-commit/

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 28 / 86

https://chris.beams.io/posts/git-commit/

Commands: ’commit’ and ’checkout’
Untracked

Files
Unmodified

Files
Modified

Files
Staging

Area
Local

Repository
Remote

Repository

git commit

git commit --all

git checkout HEAD

git checkout

Command ’git commit’
Store the content of the staging area in local repository.

’git commit --message="My message"’: Send the commit with the given message.
’git commit --amend’: Merge the current commit with the last one.
(beware, use this only if you haven’t pushed to remote!)

Command ’git checkout’
Change current working tree to another state in history or reset staging area.

’git checkout HEAD~n’: Change the working tree to n commits in the past.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 29 / 86

Example: ’commit’ and ’checkout’
#> echo "Hello World!" > README
#> git add README
#> git commit -m "Adding a README file"
[main 52ee35a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git log --oneline
52ee35a (HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git checkout HEAD~2
Note: checking out 'HEAD~2'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 9311eed Adding a .gitignore file
#> git log --oneline
9311eed (HEAD) Adding a .gitignore file
9d2c88a Initial commit

9d2c88a 9311eed 848679e

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 30 / 86

Example: ’commit’ and ’checkout’
#> echo "Hello World!" > README
#> git add README
#> git commit -m "Adding a README file"
[main 52ee35a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git log --oneline
52ee35a (HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git checkout HEAD~2
Note: checking out 'HEAD~2'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 9311eed Adding a .gitignore file
#> git log --oneline
9311eed (HEAD) Adding a .gitignore file
9d2c88a Initial commit

9d2c88a 9311eed 848679e

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 30 / 86

Example: ’commit’ and ’checkout’
#> echo "Hello World!" > README
#> git add README
#> git commit -m "Adding a README file"
[main 52ee35a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git log --oneline
52ee35a (HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git checkout HEAD~2
Note: checking out 'HEAD~2'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 9311eed Adding a .gitignore file
#> git log --oneline
9311eed (HEAD) Adding a .gitignore file
9d2c88a Initial commit

9d2c88a 9311eed 848679e

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 30 / 86

Example: ’commit’ and ’checkout’
#> echo "Hello World!" > README
#> git add README
#> git commit -m "Adding a README file"
[main 52ee35a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git log --oneline
52ee35a (HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git checkout HEAD~2
Note: checking out 'HEAD~2'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 9311eed Adding a .gitignore file
#> git log --oneline
9311eed (HEAD) Adding a .gitignore file
9d2c88a Initial commit

9d2c88a 9311eed 848679e 52ee35a

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 30 / 86

Example: ’commit’ and ’checkout’
#> echo "Hello World!" > README
#> git add README
#> git commit -m "Adding a README file"
[main 52ee35a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git log --oneline
52ee35a (HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git checkout HEAD~2
Note: checking out 'HEAD~2'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 9311eed Adding a .gitignore file
#> git log --oneline
9311eed (HEAD) Adding a .gitignore file
9d2c88a Initial commit

9d2c88a 9311eed 848679e 52ee35a

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 30 / 86

Example: ’commit’ and ’checkout’
#> echo "Hello World!" > README
#> git add README
#> git commit -m "Adding a README file"
[main 52ee35a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git log --oneline
52ee35a (HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git checkout HEAD~2
Note: checking out 'HEAD~2'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 9311eed Adding a .gitignore file
#> git log --oneline
9311eed (HEAD) Adding a .gitignore file
9d2c88a Initial commit

9d2c88a 9311eed 848679e 52ee35a

mainHEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 30 / 86

Example: ’commit’ and ’checkout’
#> echo "Hello World!" > README
#> git add README
#> git commit -m "Adding a README file"
[main 52ee35a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git log --oneline
52ee35a (HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git checkout HEAD~2
Note: checking out 'HEAD~2'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 9311eed Adding a .gitignore file
#> git log --oneline
9311eed (HEAD) Adding a .gitignore file
9d2c88a Initial commit

9d2c88a 9311eed 848679e 52ee35a

mainHEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 30 / 86

Command: ’reset’ (One More Time)

Untracked
Files

Unmodified
Files

Modified
Files

Staging
Area

Local
Repository

Remote
Repository

git reset

git reset --hard

git reset --soft HEAD~

git reset --hard HEAD~

’git reset’: Move HEAD to a specified state in the history.
’git reset (--mixed)’ (default): Resets staging area but not working tree. So, it keeps
all the changes and they appear in the working tree as they were before ’git add’.
’git reset --soft’: Leave staging area and working tree untouched but move HEAD to the
given position. This option ensures that you keep all the changes you did since then, they
appear in the staging area (but uncommitted).
’git reset --hard’: Reset staging area and working tree to the new state. It throws away
all the pending changes (you can’t get it back!) and return to a clean working tree.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 31 / 86

Example: ’checkout’ vs. ’reset’ (1/2)

#> git log --oneline
52ee35a ((HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git checkout HEAD~
Note: checking out 'HEAD~'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 848679e Cleaning and fixing bugs
#> git switch main
Previous HEAD position was 848679e Cleaning and fixing bugs
Switched to branch 'main'

9d2c88a 9311eed 848679e 52ee35a

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 32 / 86

Example: ’checkout’ vs. ’reset’ (1/2)

#> git log --oneline
52ee35a ((HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git checkout HEAD~
Note: checking out 'HEAD~'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 848679e Cleaning and fixing bugs
#> git switch main
Previous HEAD position was 848679e Cleaning and fixing bugs
Switched to branch 'main'

9d2c88a 9311eed 848679e 52ee35a

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 32 / 86

Example: ’checkout’ vs. ’reset’ (1/2)

#> git log --oneline
52ee35a ((HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git checkout HEAD~
Note: checking out 'HEAD~'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 848679e Cleaning and fixing bugs
#> git switch main
Previous HEAD position was 848679e Cleaning and fixing bugs
Switched to branch 'main'

9d2c88a 9311eed 848679e 52ee35a

mainHEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 32 / 86

Example: ’checkout’ vs. ’reset’ (1/2)

#> git log --oneline
52ee35a ((HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git checkout HEAD~
Note: checking out 'HEAD~'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 848679e Cleaning and fixing bugs
#> git switch main
Previous HEAD position was 848679e Cleaning and fixing bugs
Switched to branch 'main'

9d2c88a 9311eed 848679e 52ee35a

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 32 / 86

Example: ’checkout’ vs. ’reset’ (2/2)
#> git log --oneline
52ee35a ((HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git reset HEAD~
#> git status
On branch main
Untracked files:

(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)
#> git checkout main
Already on 'main'
#> git add README
#> git commit -m "Adding a README file"
[main a89420a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git reset --hard HEAD~
HEAD is now at 848679e Cleaning and fixing bugs
#> git status
On branch main
nothing to commit, working tree clean

9d2c88a 9311eed 848679e 52ee35a

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 33 / 86

Example: ’checkout’ vs. ’reset’ (2/2)
#> git log --oneline
52ee35a ((HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git reset HEAD~
#> git status
On branch main
Untracked files:

(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)
#> git checkout main
Already on 'main'
#> git add README
#> git commit -m "Adding a README file"
[main a89420a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git reset --hard HEAD~
HEAD is now at 848679e Cleaning and fixing bugs
#> git status
On branch main
nothing to commit, working tree clean

9d2c88a 9311eed 848679e 52ee35a

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 33 / 86

Example: ’checkout’ vs. ’reset’ (2/2)
#> git log --oneline
52ee35a ((HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git reset HEAD~
#> git status
On branch main
Untracked files:

(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)
#> git checkout main
Already on 'main'
#> git add README
#> git commit -m "Adding a README file"
[main a89420a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git reset --hard HEAD~
HEAD is now at 848679e Cleaning and fixing bugs
#> git status
On branch main
nothing to commit, working tree clean

9d2c88a 9311eed 848679e 52ee35a

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 33 / 86

Example: ’checkout’ vs. ’reset’ (2/2)
#> git log --oneline
52ee35a ((HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git reset HEAD~
#> git status
On branch main
Untracked files:

(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)
#> git checkout main
Already on 'main'
#> git add README
#> git commit -m "Adding a README file"
[main a89420a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git reset --hard HEAD~
HEAD is now at 848679e Cleaning and fixing bugs
#> git status
On branch main
nothing to commit, working tree clean

9d2c88a 9311eed 848679e 52ee35a

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 33 / 86

Example: ’checkout’ vs. ’reset’ (2/2)
#> git log --oneline
52ee35a ((HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git reset HEAD~
#> git status
On branch main
Untracked files:

(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)
#> git checkout main
Already on 'main'
#> git add README
#> git commit -m "Adding a README file"
[main a89420a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git reset --hard HEAD~
HEAD is now at 848679e Cleaning and fixing bugs
#> git status
On branch main
nothing to commit, working tree clean

9d2c88a 9311eed 848679e 52ee35a

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 33 / 86

Example: ’checkout’ vs. ’reset’ (2/2)
#> git log --oneline
52ee35a ((HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git reset HEAD~
#> git status
On branch main
Untracked files:

(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)
#> git checkout main
Already on 'main'
#> git add README
#> git commit -m "Adding a README file"
[main a89420a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git reset --hard HEAD~
HEAD is now at 848679e Cleaning and fixing bugs
#> git status
On branch main
nothing to commit, working tree clean

9d2c88a 9311eed 848679e a89420a

52ee35a

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 33 / 86

Example: ’checkout’ vs. ’reset’ (2/2)
#> git log --oneline
52ee35a ((HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git reset HEAD~
#> git status
On branch main
Untracked files:

(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)
#> git checkout main
Already on 'main'
#> git add README
#> git commit -m "Adding a README file"
[main a89420a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git reset --hard HEAD~
HEAD is now at 848679e Cleaning and fixing bugs
#> git status
On branch main
nothing to commit, working tree clean

9d2c88a 9311eed 848679e a89420a

52ee35a

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 33 / 86

Example: ’checkout’ vs. ’reset’ (2/2)
#> git log --oneline
52ee35a ((HEAD -> main) Adding a README file
848679e Cleaning and fixing bugs
9311eed Adding a .gitignore file
9d2c88a Initial commit
#> git reset HEAD~
#> git status
On branch main
Untracked files:

(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)
#> git checkout main
Already on 'main'
#> git add README
#> git commit -m "Adding a README file"
[main a89420a] Adding a README file
1 file changed, 1 insertion(+)
create mode 100644 README

#> git reset --hard HEAD~
HEAD is now at 848679e Cleaning and fixing bugs
#> git status
On branch main
nothing to commit, working tree clean

9d2c88a 9311eed 848679e a89420a

52ee35a

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 33 / 86

Command: ’diff’
Untracked

Files
Unmodified

Files
Modified

Files
Staging

Area
Local

Repository
Remote

Repository

git diff git diff --cached

git diff HEAD

’git diff’: Show the differences between two states of the history.
’git diff’: Displays changes between the tracked modified files and the staging area.
’git diff --cached’: Displays changes between the staging area and current HEAD.
’git diff HEAD’: Displays changes between the tracked modified files and current HEAD.
’git diff HEAD HEAD~’: Displays changes between two states (HEAD and its ancestor).

#> git diff
diff --git a/README b/README
index 980a0d5..2c1251f 100644
--- a/README
+++ b/README
@@ -1 +1,2 @@
Hello World!

+Added to README■■

Names of the diffed files

Hashes of the diffed commits

Unnecessary trailing whitespaces are marked in red!

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 34 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 35 / 86

Branches & Tags

#> git log --oneline --graph --all
* e16ad2e (HEAD -> main) Adding a README file
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

Tag: A label on a commit that will
stay forever (except if you delete it).

Branch: Denoted by a label
marking the head of the branch.
The label will be pushed forward if a
new commit occurs on the branch.

9311eed e16ad2e

848679e

v1.0 main

bugfix

HEAD

Tag

Branch
Heads

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 36 / 86

Example: Managing Branches and Tags

#> git log --oneline
9311eed (HEAD -> main) Initial commit
#> git tag "v1.0"
#> git log --oneline
9311eed (HEAD -> main, tag: v1.0) Initial commit
#> git checkout -b bugfix
Switched to a new branch 'bugfix'
#> emacs project.c
... Cleaning and fixing bugs ...
#> git commit -a -m "Cleaning and fixing bugs"
[bugfix 848679e] Cleaning and fixing bugs
1 file changed, 7 insertion(+)

#> git switch main
Switched to branch 'main'
#> emacs README &
... Adding a README file ...
#> git add README
#> git commit -m "Adding a README file"
[main e16ad2e] Adding a README file
create mode 100644 README

#> git log --oneline --graph --all
* e16ad2e (HEAD -> main) Adding a README file
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 37 / 86

Example: Managing Branches and Tags

#> git log --oneline
9311eed (HEAD -> main) Initial commit
#> git tag "v1.0"
#> git log --oneline
9311eed (HEAD -> main, tag: v1.0) Initial commit
#> git checkout -b bugfix
Switched to a new branch 'bugfix'
#> emacs project.c
... Cleaning and fixing bugs ...
#> git commit -a -m "Cleaning and fixing bugs"
[bugfix 848679e] Cleaning and fixing bugs
1 file changed, 7 insertion(+)

#> git switch main
Switched to branch 'main'
#> emacs README &
... Adding a README file ...
#> git add README
#> git commit -m "Adding a README file"
[main e16ad2e] Adding a README file
create mode 100644 README

#> git log --oneline --graph --all
* e16ad2e (HEAD -> main) Adding a README file
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 37 / 86

Example: Managing Branches and Tags

#> git log --oneline
9311eed (HEAD -> main) Initial commit
#> git tag "v1.0"
#> git log --oneline
9311eed (HEAD -> main, tag: v1.0) Initial commit
#> git checkout -b bugfix
Switched to a new branch 'bugfix'
#> emacs project.c
... Cleaning and fixing bugs ...
#> git commit -a -m "Cleaning and fixing bugs"
[bugfix 848679e] Cleaning and fixing bugs
1 file changed, 7 insertion(+)

#> git switch main
Switched to branch 'main'
#> emacs README &
... Adding a README file ...
#> git add README
#> git commit -m "Adding a README file"
[main e16ad2e] Adding a README file
create mode 100644 README

#> git log --oneline --graph --all
* e16ad2e (HEAD -> main) Adding a README file
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed

v1.0

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 37 / 86

Example: Managing Branches and Tags

#> git log --oneline
9311eed (HEAD -> main) Initial commit
#> git tag "v1.0"
#> git log --oneline
9311eed (HEAD -> main, tag: v1.0) Initial commit
#> git checkout -b bugfix
Switched to a new branch 'bugfix'
#> emacs project.c
... Cleaning and fixing bugs ...
#> git commit -a -m "Cleaning and fixing bugs"
[bugfix 848679e] Cleaning and fixing bugs
1 file changed, 7 insertion(+)

#> git switch main
Switched to branch 'main'
#> emacs README &
... Adding a README file ...
#> git add README
#> git commit -m "Adding a README file"
[main e16ad2e] Adding a README file
create mode 100644 README

#> git log --oneline --graph --all
* e16ad2e (HEAD -> main) Adding a README file
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed

v1.0

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 37 / 86

Example: Managing Branches and Tags

#> git log --oneline
9311eed (HEAD -> main) Initial commit
#> git tag "v1.0"
#> git log --oneline
9311eed (HEAD -> main, tag: v1.0) Initial commit
#> git checkout -b bugfix
Switched to a new branch 'bugfix'
#> emacs project.c
... Cleaning and fixing bugs ...
#> git commit -a -m "Cleaning and fixing bugs"
[bugfix 848679e] Cleaning and fixing bugs
1 file changed, 7 insertion(+)

#> git switch main
Switched to branch 'main'
#> emacs README &
... Adding a README file ...
#> git add README
#> git commit -m "Adding a README file"
[main e16ad2e] Adding a README file
create mode 100644 README

#> git log --oneline --graph --all
* e16ad2e (HEAD -> main) Adding a README file
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed

v1.0

main

bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 37 / 86

Example: Managing Branches and Tags

#> git log --oneline
9311eed (HEAD -> main) Initial commit
#> git tag "v1.0"
#> git log --oneline
9311eed (HEAD -> main, tag: v1.0) Initial commit
#> git checkout -b bugfix
Switched to a new branch 'bugfix'
#> emacs project.c
... Cleaning and fixing bugs ...
#> git commit -a -m "Cleaning and fixing bugs"
[bugfix 848679e] Cleaning and fixing bugs
1 file changed, 7 insertion(+)

#> git switch main
Switched to branch 'main'
#> emacs README &
... Adding a README file ...
#> git add README
#> git commit -m "Adding a README file"
[main e16ad2e] Adding a README file
create mode 100644 README

#> git log --oneline --graph --all
* e16ad2e (HEAD -> main) Adding a README file
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed 848679e

v1.0

main bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 37 / 86

Example: Managing Branches and Tags

#> git log --oneline
9311eed (HEAD -> main) Initial commit
#> git tag "v1.0"
#> git log --oneline
9311eed (HEAD -> main, tag: v1.0) Initial commit
#> git checkout -b bugfix
Switched to a new branch 'bugfix'
#> emacs project.c
... Cleaning and fixing bugs ...
#> git commit -a -m "Cleaning and fixing bugs"
[bugfix 848679e] Cleaning and fixing bugs
1 file changed, 7 insertion(+)

#> git switch main
Switched to branch 'main'
#> emacs README &
... Adding a README file ...
#> git add README
#> git commit -m "Adding a README file"
[main e16ad2e] Adding a README file
create mode 100644 README

#> git log --oneline --graph --all
* e16ad2e (HEAD -> main) Adding a README file
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed 848679e

v1.0

main bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 37 / 86

Example: Managing Branches and Tags

#> git log --oneline
9311eed (HEAD -> main) Initial commit
#> git tag "v1.0"
#> git log --oneline
9311eed (HEAD -> main, tag: v1.0) Initial commit
#> git checkout -b bugfix
Switched to a new branch 'bugfix'
#> emacs project.c
... Cleaning and fixing bugs ...
#> git commit -a -m "Cleaning and fixing bugs"
[bugfix 848679e] Cleaning and fixing bugs
1 file changed, 7 insertion(+)

#> git switch main
Switched to branch 'main'
#> emacs README &
... Adding a README file ...
#> git add README
#> git commit -m "Adding a README file"
[main e16ad2e] Adding a README file
create mode 100644 README

#> git log --oneline --graph --all
* e16ad2e (HEAD -> main) Adding a README file
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed 848679e

v1.0

main bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 37 / 86

Example: Managing Branches and Tags

#> git log --oneline
9311eed (HEAD -> main) Initial commit
#> git tag "v1.0"
#> git log --oneline
9311eed (HEAD -> main, tag: v1.0) Initial commit
#> git checkout -b bugfix
Switched to a new branch 'bugfix'
#> emacs project.c
... Cleaning and fixing bugs ...
#> git commit -a -m "Cleaning and fixing bugs"
[bugfix 848679e] Cleaning and fixing bugs
1 file changed, 7 insertion(+)

#> git switch main
Switched to branch 'main'
#> emacs README &
... Adding a README file ...
#> git add README
#> git commit -m "Adding a README file"
[main e16ad2e] Adding a README file
create mode 100644 README

#> git log --oneline --graph --all
* e16ad2e (HEAD -> main) Adding a README file
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed 848679e

e16ad2ev1.0

main

bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 37 / 86

Example: Managing Branches and Tags

#> git log --oneline
9311eed (HEAD -> main) Initial commit
#> git tag "v1.0"
#> git log --oneline
9311eed (HEAD -> main, tag: v1.0) Initial commit
#> git checkout -b bugfix
Switched to a new branch 'bugfix'
#> emacs project.c
... Cleaning and fixing bugs ...
#> git commit -a -m "Cleaning and fixing bugs"
[bugfix 848679e] Cleaning and fixing bugs
1 file changed, 7 insertion(+)

#> git switch main
Switched to branch 'main'
#> emacs README &
... Adding a README file ...
#> git add README
#> git commit -m "Adding a README file"
[main e16ad2e] Adding a README file
create mode 100644 README

#> git log --oneline --graph --all
* e16ad2e (HEAD -> main) Adding a README file
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed 848679e

e16ad2ev1.0

main

bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 37 / 86

Commands: ’merge’ and ’rebase’
Merge
Merge is a non-destructive operation on the history. It is used when the history need to be kept.
Typically when incorporating new features in common branches (e.g. main).

9311eed e16ad2e

848679e

9311eed e16ad2e

848679e

314f5da

9311eed e16ad2e 6fb56dc

848679e

Merge

Rebase

Rebase
An alternative to merge that rewrite its own history. It is used to keep your current
work-in-progress branches up to date with main when updating.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 38 / 86

Example: Merging Branches

#> git branch
bugfix

* main
#> git merge bugfix
Removing project
Merge made by the 'recursive' strategy.
Makefile | 2 +-
project | Bin 17084 -> 0 bytes
project.c | 2 ++
3 files changed, 3 insertions(+), 1 deletion(-)
delete mode 100644 project

#> git log --oneline --graph --all
* 314f5da (HEAD -> main) Merge branch 'bugfix'
|\
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed e16ad2e

848679e

v1.0 main

bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 39 / 86

Example: Merging Branches

#> git branch
bugfix

* main
#> git merge bugfix
Removing project
Merge made by the 'recursive' strategy.
Makefile | 2 +-
project | Bin 17084 -> 0 bytes
project.c | 2 ++
3 files changed, 3 insertions(+), 1 deletion(-)
delete mode 100644 project

#> git log --oneline --graph --all
* 314f5da (HEAD -> main) Merge branch 'bugfix'
|\
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed e16ad2e

848679e

v1.0 main

bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 39 / 86

Example: Merging Branches

#> git branch
bugfix

* main
#> git merge bugfix
Removing project
Merge made by the 'recursive' strategy.
Makefile | 2 +-
project | Bin 17084 -> 0 bytes
project.c | 2 ++
3 files changed, 3 insertions(+), 1 deletion(-)
delete mode 100644 project

#> git log --oneline --graph --all
* 314f5da (HEAD -> main) Merge branch 'bugfix'
|\
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed e16ad2e

848679e

314f5da

v1.0 main

bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 39 / 86

Example: Merging Branches

#> git branch
bugfix

* main
#> git merge bugfix
Removing project
Merge made by the 'recursive' strategy.
Makefile | 2 +-
project | Bin 17084 -> 0 bytes
project.c | 2 ++
3 files changed, 3 insertions(+), 1 deletion(-)
delete mode 100644 project

#> git log --oneline --graph --all
* 314f5da (HEAD -> main) Merge branch 'bugfix'
|\
| * 848679e (bugfix) Cleaning and fixing bugs
|/
* 9311eed (tag: v1.0) Initial commit

9311eed e16ad2e

848679e

314f5da

v1.0 main

bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 39 / 86

Example: Rebasing Branches

#> git branch
bugfix

* main
#> git switch bugfix
Switched to branch 'bugfix'
#> git branch
* bugfix

main
#> git rebase main
First, rewinding head to replay your work on top of it...
Applying: Cleaning and fixing bugs
#> git log --oneline --graph --all
* 6fb56dc (HEAD -> bugfix) Cleaning and fixing bugs
* e16ad2e (main) Adding a README file
* 9311eed (tag: v1.0) Initial commit

9311eed e16ad2e

848679e

v1.0 main

bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 40 / 86

Example: Rebasing Branches

#> git branch
bugfix

* main
#> git switch bugfix
Switched to branch 'bugfix'
#> git branch
* bugfix

main
#> git rebase main
First, rewinding head to replay your work on top of it...
Applying: Cleaning and fixing bugs
#> git log --oneline --graph --all
* 6fb56dc (HEAD -> bugfix) Cleaning and fixing bugs
* e16ad2e (main) Adding a README file
* 9311eed (tag: v1.0) Initial commit

9311eed e16ad2e

848679e

v1.0 main

bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 40 / 86

Example: Rebasing Branches

#> git branch
bugfix

* main
#> git switch bugfix
Switched to branch 'bugfix'
#> git branch
* bugfix

main
#> git rebase main
First, rewinding head to replay your work on top of it...
Applying: Cleaning and fixing bugs
#> git log --oneline --graph --all
* 6fb56dc (HEAD -> bugfix) Cleaning and fixing bugs
* e16ad2e (main) Adding a README file
* 9311eed (tag: v1.0) Initial commit

9311eed e16ad2e

848679e

v1.0 main

bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 40 / 86

Example: Rebasing Branches

#> git branch
bugfix

* main
#> git switch bugfix
Switched to branch 'bugfix'
#> git branch
* bugfix

main
#> git rebase main
First, rewinding head to replay your work on top of it...
Applying: Cleaning and fixing bugs
#> git log --oneline --graph --all
* 6fb56dc (HEAD -> bugfix) Cleaning and fixing bugs
* e16ad2e (main) Adding a README file
* 9311eed (tag: v1.0) Initial commit

9311eed e16ad2e 6fb56dc

v1.0 main bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 40 / 86

Example: Rebasing Branches

#> git branch
bugfix

* main
#> git switch bugfix
Switched to branch 'bugfix'
#> git branch
* bugfix

main
#> git rebase main
First, rewinding head to replay your work on top of it...
Applying: Cleaning and fixing bugs
#> git log --oneline --graph --all
* 6fb56dc (HEAD -> bugfix) Cleaning and fixing bugs
* e16ad2e (main) Adding a README file
* 9311eed (tag: v1.0) Initial commit

9311eed e16ad2e 6fb56dc

v1.0 main bugfix

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 40 / 86

Was it ’HEADˆ3~2’ or ’HEADˆ2~3’ ?
As we can branch now, we cannot cope only with the HEAD~ notation.
We need to be able to navigate in a bi-dimensional space, so we need
to introduce another HEADˆ notation which allows to select a branch.
Here are a few examples:

HEAD~2: The first ancestor of the ancestor of HEAD.
HEADˆ3: The third ancestor of HEAD (starting from upper side).

A = = A^0
B = A^ = A^1 = A~1
C = A^2 = A^2
D = A^^ = A^1^1 = A~2
E = B^2 = A^^2
F = B^3 = A^^3
G = A^^^ = A^1^1^1 = A~3
H = D^2 = B^^2 = A^^^2 = A~2^2
I = F^ = B^3^ = A^^3^
J = F^2 = B^3^2 = A^^3^2

G D B A

H

I

J

F C

E

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 41 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 42 / 86

What is a Repository?
A Git Repository is a hierarchy of files and directories (working tree) with a
hidden .git/ directory in its top directory (repository data).
A .git/ directory contains (not exhaustive, see ’gitrepository-layout(5)’):

.git/
|
+- branches/ # Deprecated way of storing branches
+- COMMIT_EDITMSG # Last commit message
+- config # Configuration file (see later)
+- description # Used by gitweb to store project description
+- HEAD # Pointer on refs/heads to the current branch HEAD
+- hooks/ # A set of scripts automatically applied on commit/pull/...
+- index # Staging area (difference between working tree and HEAD)
+- info/ # Additional information about the repository
| +- exclude # Locally excluded files (won't be shared as the .gitignore)
+- objects/ # Contains all the files, commits and trees of your history
+- refs/ # References are stored in subdirectories of this directory
| +- heads/foo # Records tip-of-the-tree commit objects of branch 'foo'
| +- remotes/foo # Records tip-of-the-tree commit objects of remote 'foo'
| +- tags/foo # Records any object 'foo'
\- remotes # URL and default refnames for remote repositories

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 43 / 86

Create a Fresh Repository
Initialize an empty repository (working tree and .git/)
(Useful to start a new project with its own history)
#> git init my_project/
Initialized empty Git repository in /home/user/my_project/.git/
#> cd my_project/
#> git status
On branch main
No commits yet
nothing to commit (create/copy files and use "git add" to track)
#> echo "Hello!" > README
#> git add .
#> git commit -m "Initial commit"
[main (root-commit) 1305a7c] Initial commit
1 file changed, 1 insertion(+)
create mode 100644 README

Initialize a ’bare’ repository (no working tree, only history)
(Useful to store code history on a server to synchronize with others)
#> git init --bare my_project/
Initialized empty Git repository in /home/user/my_project/.git/
#> ls my_project/
branches/ config description HEAD hooks/ info/ objects/ refs/

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 44 / 86

Clone an Existing Repository
Clone a repository is equivalent to create a copy and keep a link towards the
parent repository (configured to ’push’ to parent and ’pull’ from it).

Parent
Repository

Cloned
Repository

Cloned
Repository

Cloned
Repository

Copy an existing repository (same file-system)
#> git clone my_project/ my_project-clone
Cloning into 'my_project-clone'...
done.

Copy an existing repository (remote repository through ssh)
#> git clone ssh://user@localhost/home/user/my_project my_project-remote
Cloning into 'my_project-remote'...
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (3/3), done.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 45 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 46 / 86

Synchronize with Remote Repository

Untracked
Files

Unmodified
Files

Modified
Files

Staging
Area

Local
Repository

Remote
Repository

git push

git fetchgit merge

git pull (--rebase)

git push: Update local repository with the content of a remote repository.
(git refuse to destroy remote objects by default, use ’git push --force’ when needed)

git fetch: Download the history from remote repository to local repository.
git merge: Join two (or more) code histories together.
git pull: Perform a fecth and a merge at once. Consider this operation
as “dangerous” and prefer to use fecth and merge or ’pull --rebase’.
git remote: Manage the remote repositories of this local repository.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 47 / 86

Example: Synchronize with Remotes
#> git clone my_repo/ my_project
Cloning into 'my_project'...
done.
#> cd my_project/
#> git log --oneline
81828cb (HEAD -> main, origin/main, origin/HEAD) Initial release
#> git branch -a
* main

remotes/origin/HEAD -> origin/main
remotes/origin/main

#> git remote -v
origin /home/user/my_repo/ (fetch)
origin /home/user/my_repo/ (push)
#> nano README
#> git commit -a
[main 069db25] Added a line in README file
1 file changed, 1 insertion(+)

#> git log --oneline
069db25 (HEAD -> main) Added a line in README file
81828cb (origin/main, origin/HEAD) Initial release
#> git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Writing objects: 100% (3/3), 285 bytes | 285.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

81828cb..069db25 main -> main

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 48 / 86

Example: Synchronize with Remotes
#> git clone my_repo/ my_project
Cloning into 'my_project'...
done.
#> cd my_project/
#> git log --oneline
81828cb (HEAD -> main, origin/main, origin/HEAD) Initial release
#> git branch -a
* main

remotes/origin/HEAD -> origin/main
remotes/origin/main

#> git remote -v
origin /home/user/my_repo/ (fetch)
origin /home/user/my_repo/ (push)
#> nano README
#> git commit -a
[main 069db25] Added a line in README file
1 file changed, 1 insertion(+)

#> git log --oneline
069db25 (HEAD -> main) Added a line in README file
81828cb (origin/main, origin/HEAD) Initial release
#> git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Writing objects: 100% (3/3), 285 bytes | 285.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

81828cb..069db25 main -> main

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 48 / 86

Example: Synchronize with Remotes
#> git clone my_repo/ my_project
Cloning into 'my_project'...
done.
#> cd my_project/
#> git log --oneline
81828cb (HEAD -> main, origin/main, origin/HEAD) Initial release
#> git branch -a
* main

remotes/origin/HEAD -> origin/main
remotes/origin/main

#> git remote -v
origin /home/user/my_repo/ (fetch)
origin /home/user/my_repo/ (push)
#> nano README
#> git commit -a
[main 069db25] Added a line in README file
1 file changed, 1 insertion(+)

#> git log --oneline
069db25 (HEAD -> main) Added a line in README file
81828cb (origin/main, origin/HEAD) Initial release
#> git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Writing objects: 100% (3/3), 285 bytes | 285.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

81828cb..069db25 main -> main

81828cb

origin/main

main

HEAD

Remote
Branch Tag

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 48 / 86

Example: Synchronize with Remotes
#> git clone my_repo/ my_project
Cloning into 'my_project'...
done.
#> cd my_project/
#> git log --oneline
81828cb (HEAD -> main, origin/main, origin/HEAD) Initial release
#> git branch -a
* main

remotes/origin/HEAD -> origin/main
remotes/origin/main

#> git remote -v
origin /home/user/my_repo/ (fetch)
origin /home/user/my_repo/ (push)
#> nano README
#> git commit -a
[main 069db25] Added a line in README file
1 file changed, 1 insertion(+)

#> git log --oneline
069db25 (HEAD -> main) Added a line in README file
81828cb (origin/main, origin/HEAD) Initial release
#> git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Writing objects: 100% (3/3), 285 bytes | 285.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

81828cb..069db25 main -> main

81828cb

origin/main

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 48 / 86

Example: Synchronize with Remotes
#> git clone my_repo/ my_project
Cloning into 'my_project'...
done.
#> cd my_project/
#> git log --oneline
81828cb (HEAD -> main, origin/main, origin/HEAD) Initial release
#> git branch -a
* main

remotes/origin/HEAD -> origin/main
remotes/origin/main

#> git remote -v
origin /home/user/my_repo/ (fetch)
origin /home/user/my_repo/ (push)
#> nano README
#> git commit -a
[main 069db25] Added a line in README file
1 file changed, 1 insertion(+)

#> git log --oneline
069db25 (HEAD -> main) Added a line in README file
81828cb (origin/main, origin/HEAD) Initial release
#> git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Writing objects: 100% (3/3), 285 bytes | 285.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

81828cb..069db25 main -> main

81828cb 069db25

origin/main main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 48 / 86

Example: Synchronize with Remotes
#> git clone my_repo/ my_project
Cloning into 'my_project'...
done.
#> cd my_project/
#> git log --oneline
81828cb (HEAD -> main, origin/main, origin/HEAD) Initial release
#> git branch -a
* main

remotes/origin/HEAD -> origin/main
remotes/origin/main

#> git remote -v
origin /home/user/my_repo/ (fetch)
origin /home/user/my_repo/ (push)
#> nano README
#> git commit -a
[main 069db25] Added a line in README file
1 file changed, 1 insertion(+)

#> git log --oneline
069db25 (HEAD -> main) Added a line in README file
81828cb (origin/main, origin/HEAD) Initial release
#> git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Writing objects: 100% (3/3), 285 bytes | 285.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

81828cb..069db25 main -> main

81828cb 069db25

origin/main main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 48 / 86

Example: Synchronize with Remotes
#> git clone my_repo/ my_project
Cloning into 'my_project'...
done.
#> cd my_project/
#> git log --oneline
81828cb (HEAD -> main, origin/main, origin/HEAD) Initial release
#> git branch -a
* main

remotes/origin/HEAD -> origin/main
remotes/origin/main

#> git remote -v
origin /home/user/my_repo/ (fetch)
origin /home/user/my_repo/ (push)
#> nano README
#> git commit -a
[main 069db25] Added a line in README file
1 file changed, 1 insertion(+)

#> git log --oneline
069db25 (HEAD -> main) Added a line in README file
81828cb (origin/main, origin/HEAD) Initial release
#> git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Writing objects: 100% (3/3), 285 bytes | 285.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

81828cb..069db25 main -> main

81828cb 069db25

origin/main

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 48 / 86

Example: Send Local Branch to Remote
#> git remote -v
origin /home/user/my_repo/ (fetch)
origin /home/user/my_repo/ (push)
#> git branch -a
* main

remotes/origin/HEAD -> origin/main
remotes/origin/main

#> git checkout -b bugfix
Switched to a new branch 'bugfix'

... work and commit on this branch ...

#> git push --set-upstream origin bugfix
Total 0 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/
* [new branch] bugfix -> bugfix

Branch 'bugfix' set up to track remote branch 'bugfix' from 'origin'.
#> git branch -a
* bugfix

main
remotes/origin/HEAD -> origin/main
remotes/origin/bugfix
remotes/origin/main

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 49 / 86

Example: Synchronizing First Commits

Creating the main repository
#> git init --bare my_repo
Initialized empty Git repository in /home/user/my_repo/

Cloning the main repository to project1/
#> git clone my_repo/ project1
Cloning into 'project1'...
warning: You appear to have cloned an empty repository.
done.

Cloning the main repository to project2/
#> git clone my_repo/ project2
Cloning into 'project2'...
warning: You appear to have cloned an empty repository.
done.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 50 / 86

Example: ’push’ (project1)
#> echo "Hello World!" > README
#> git add README
#> git commit -m "Initial commit"
[main (root-commit) 848679e] Initial commit
1 file changed, 1 insertion(+)
create mode 100644 README

#> echo "Second line" >> README
#> git commit -a -m "Second commit"
[main aea37e6] Second commit
1 file changed, 1 insertion(+)

#> git push
Enumerating objects: 6, done.
Counting objects: 100% (6/6), done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (6/6), 471 bytes | 471.00 KiB/s, done.
Total 6 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/
* [new branch] main -> main

#> git log --oneline
aea37e6 (HEAD -> main, origin/main, origin/HEAD) Second commit
848679e Initial commit

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 51 / 86

Example: ’push’ (project1)
#> echo "Hello World!" > README
#> git add README
#> git commit -m "Initial commit"
[main (root-commit) 848679e] Initial commit
1 file changed, 1 insertion(+)
create mode 100644 README

#> echo "Second line" >> README
#> git commit -a -m "Second commit"
[main aea37e6] Second commit
1 file changed, 1 insertion(+)

#> git push
Enumerating objects: 6, done.
Counting objects: 100% (6/6), done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (6/6), 471 bytes | 471.00 KiB/s, done.
Total 6 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/
* [new branch] main -> main

#> git log --oneline
aea37e6 (HEAD -> main, origin/main, origin/HEAD) Second commit
848679e Initial commit

848679e

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 51 / 86

Example: ’push’ (project1)
#> echo "Hello World!" > README
#> git add README
#> git commit -m "Initial commit"
[main (root-commit) 848679e] Initial commit
1 file changed, 1 insertion(+)
create mode 100644 README

#> echo "Second line" >> README
#> git commit -a -m "Second commit"
[main aea37e6] Second commit
1 file changed, 1 insertion(+)

#> git push
Enumerating objects: 6, done.
Counting objects: 100% (6/6), done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (6/6), 471 bytes | 471.00 KiB/s, done.
Total 6 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/
* [new branch] main -> main

#> git log --oneline
aea37e6 (HEAD -> main, origin/main, origin/HEAD) Second commit
848679e Initial commit

848679e aea37e6

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 51 / 86

Example: ’push’ (project1)
#> echo "Hello World!" > README
#> git add README
#> git commit -m "Initial commit"
[main (root-commit) 848679e] Initial commit
1 file changed, 1 insertion(+)
create mode 100644 README

#> echo "Second line" >> README
#> git commit -a -m "Second commit"
[main aea37e6] Second commit
1 file changed, 1 insertion(+)

#> git push
Enumerating objects: 6, done.
Counting objects: 100% (6/6), done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (6/6), 471 bytes | 471.00 KiB/s, done.
Total 6 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/
* [new branch] main -> main

#> git log --oneline
aea37e6 (HEAD -> main, origin/main, origin/HEAD) Second commit
848679e Initial commit

848679e aea37e6

origin/main

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 51 / 86

Example: ’push’ (project1)
#> echo "Hello World!" > README
#> git add README
#> git commit -m "Initial commit"
[main (root-commit) 848679e] Initial commit
1 file changed, 1 insertion(+)
create mode 100644 README

#> echo "Second line" >> README
#> git commit -a -m "Second commit"
[main aea37e6] Second commit
1 file changed, 1 insertion(+)

#> git push
Enumerating objects: 6, done.
Counting objects: 100% (6/6), done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (6/6), 471 bytes | 471.00 KiB/s, done.
Total 6 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/
* [new branch] main -> main

#> git log --oneline
aea37e6 (HEAD -> main, origin/main, origin/HEAD) Second commit
848679e Initial commit

848679e aea37e6

origin/main

main

HEAD

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 51 / 86

Example: ’push’ Attempt (project2)
#> cd project2/

#> echo "John Doe <john.doe@student.edu" > AUTHORS
#> git add AUTHORS
#> git commit -m "Adding first author"
[main 7d385a4] Adding first author
1 file changed, 1 insertion(+)
create mode 100644 AUTHORS

#> git push
To /home/user/my_repo/
! [rejected] main -> main (fetch first)

error: failed to push some refs to '/home/user/my_repo/'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

What do we do ???

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 52 / 86

Example: ’push’ Attempt (project2)
#> cd project2/

#> echo "John Doe <john.doe@student.edu" > AUTHORS
#> git add AUTHORS
#> git commit -m "Adding first author"
[main 7d385a4] Adding first author
1 file changed, 1 insertion(+)
create mode 100644 AUTHORS

#> git push
To /home/user/my_repo/
! [rejected] main -> main (fetch first)

error: failed to push some refs to '/home/user/my_repo/'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

What do we do ???

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 52 / 86

Example: ’push’ Attempt (project2)
#> cd project2/

#> echo "John Doe <john.doe@student.edu" > AUTHORS
#> git add AUTHORS
#> git commit -m "Adding first author"
[main 7d385a4] Adding first author
1 file changed, 1 insertion(+)
create mode 100644 AUTHORS

#> git push
To /home/user/my_repo/
! [rejected] main -> main (fetch first)

error: failed to push some refs to '/home/user/my_repo/'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

7d385a4

main

HEAD

What do we do ???

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 52 / 86

Example: ’push’ Attempt (project2)
#> cd project2/

#> echo "John Doe <john.doe@student.edu" > AUTHORS
#> git add AUTHORS
#> git commit -m "Adding first author"
[main 7d385a4] Adding first author
1 file changed, 1 insertion(+)
create mode 100644 AUTHORS

#> git push
To /home/user/my_repo/
! [rejected] main -> main (fetch first)

error: failed to push some refs to '/home/user/my_repo/'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

7d385a4

main

HEAD

What do we do ???

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 52 / 86

Example: ’push’ Attempt (project2)
#> cd project2/

#> echo "John Doe <john.doe@student.edu" > AUTHORS
#> git add AUTHORS
#> git commit -m "Adding first author"
[main 7d385a4] Adding first author
1 file changed, 1 insertion(+)
create mode 100644 AUTHORS

#> git push
To /home/user/my_repo/
! [rejected] main -> main (fetch first)

error: failed to push some refs to '/home/user/my_repo/'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

7d385a4

main

HEAD

What do we do ???
Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 52 / 86

Example: ’pull’ Attempt (project2)
#> git pull
warning: no common commits
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 6 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (6/6), done.
From /home/user/my_repo
* [new branch] main -> origin/main

fatal: refusing to merge unrelated histories

#> git log --oneline
7d385a4 (HEAD -> main) Adding first author

#> git push
To /home/user/my_repo/
! [rejected] main -> main (fetch first)

error: failed to push some refs to '/home/user/my_repo/'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

7d385a4

main

HEAD

What do we do ???

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 53 / 86

Example: ’pull’ Attempt (project2)
#> git pull
warning: no common commits
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 6 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (6/6), done.
From /home/user/my_repo
* [new branch] main -> origin/main

fatal: refusing to merge unrelated histories

#> git log --oneline
7d385a4 (HEAD -> main) Adding first author

#> git push
To /home/user/my_repo/
! [rejected] main -> main (fetch first)

error: failed to push some refs to '/home/user/my_repo/'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

7d385a4

848679e aea37e6

main

HEAD

origin/main

What do we do ???

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 53 / 86

Example: ’pull’ Attempt (project2)
#> git pull
warning: no common commits
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 6 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (6/6), done.
From /home/user/my_repo
* [new branch] main -> origin/main

fatal: refusing to merge unrelated histories

#> git log --oneline
7d385a4 (HEAD -> main) Adding first author

#> git push
To /home/user/my_repo/
! [rejected] main -> main (fetch first)

error: failed to push some refs to '/home/user/my_repo/'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

7d385a4

848679e aea37e6

main

HEAD

origin/main

What do we do ???

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 53 / 86

Example: ’pull’ Attempt (project2)
#> git pull
warning: no common commits
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 6 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (6/6), done.
From /home/user/my_repo
* [new branch] main -> origin/main

fatal: refusing to merge unrelated histories

#> git log --oneline
7d385a4 (HEAD -> main) Adding first author

#> git push
To /home/user/my_repo/
! [rejected] main -> main (fetch first)

error: failed to push some refs to '/home/user/my_repo/'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

7d385a4

848679e aea37e6

main

HEAD

origin/main

What do we do ???

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 53 / 86

Example: ’pull’ Attempt (project2)
#> git pull
warning: no common commits
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 6 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (6/6), done.
From /home/user/my_repo
* [new branch] main -> origin/main

fatal: refusing to merge unrelated histories

#> git log --oneline
7d385a4 (HEAD -> main) Adding first author

#> git push
To /home/user/my_repo/
! [rejected] main -> main (fetch first)

error: failed to push some refs to '/home/user/my_repo/'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

7d385a4

848679e aea37e6

main

HEAD

origin/main

What do we do ???

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 53 / 86

Example: ’pull --rebase’ (project2)
#> git pull --rebase
First, rewinding head to replay your work on top of it...
Applying: Adding first author

#> git log --oneline
ce2f041 (HEAD -> main) Adding first author
88a843d (origin/main) Second commit
617567 Initial commit

#> git push
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 320 bytes | 320.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

88a843d..7d385a4 main -> main

#> git log --oneline
ce2f041 (HEAD -> main, origin/main, origin/HEAD) Adding first author
dbb0042 Second commit
848679e Initial commit

7d385a4

848679e aea37e6

main

HEAD

origin/main

The ’rebase’ option push all the new modifications on the top of the history of what
you download from the remote repository. It minimize a lot the possibility of a conflict.

Note, also that the hash of the ’Adding first author’ commit changed after the rebase!

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 54 / 86

Example: ’pull --rebase’ (project2)
#> git pull --rebase
First, rewinding head to replay your work on top of it...
Applying: Adding first author

#> git log --oneline
ce2f041 (HEAD -> main) Adding first author
88a843d (origin/main) Second commit
617567 Initial commit

#> git push
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 320 bytes | 320.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

88a843d..7d385a4 main -> main

#> git log --oneline
ce2f041 (HEAD -> main, origin/main, origin/HEAD) Adding first author
dbb0042 Second commit
848679e Initial commit

848679e aea37e6 ce2f041

origin/main main

HEAD

The ’rebase’ option push all the new modifications on the top of the history of what
you download from the remote repository. It minimize a lot the possibility of a conflict.

Note, also that the hash of the ’Adding first author’ commit changed after the rebase!

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 54 / 86

Example: ’pull --rebase’ (project2)
#> git pull --rebase
First, rewinding head to replay your work on top of it...
Applying: Adding first author

#> git log --oneline
ce2f041 (HEAD -> main) Adding first author
88a843d (origin/main) Second commit
617567 Initial commit

#> git push
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 320 bytes | 320.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

88a843d..7d385a4 main -> main

#> git log --oneline
ce2f041 (HEAD -> main, origin/main, origin/HEAD) Adding first author
dbb0042 Second commit
848679e Initial commit

848679e aea37e6 ce2f041

origin/main main

HEAD

The ’rebase’ option push all the new modifications on the top of the history of what
you download from the remote repository. It minimize a lot the possibility of a conflict.

Note, also that the hash of the ’Adding first author’ commit changed after the rebase!

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 54 / 86

Example: ’pull --rebase’ (project2)
#> git pull --rebase
First, rewinding head to replay your work on top of it...
Applying: Adding first author

#> git log --oneline
ce2f041 (HEAD -> main) Adding first author
88a843d (origin/main) Second commit
617567 Initial commit

#> git push
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 320 bytes | 320.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

88a843d..7d385a4 main -> main

#> git log --oneline
ce2f041 (HEAD -> main, origin/main, origin/HEAD) Adding first author
dbb0042 Second commit
848679e Initial commit

848679e aea37e6 ce2f041

origin/main

main

HEAD

The ’rebase’ option push all the new modifications on the top of the history of what
you download from the remote repository. It minimize a lot the possibility of a conflict.

Note, also that the hash of the ’Adding first author’ commit changed after the rebase!

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 54 / 86

Example: ’pull --rebase’ (project2)
#> git pull --rebase
First, rewinding head to replay your work on top of it...
Applying: Adding first author

#> git log --oneline
ce2f041 (HEAD -> main) Adding first author
88a843d (origin/main) Second commit
617567 Initial commit

#> git push
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 320 bytes | 320.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

88a843d..7d385a4 main -> main

#> git log --oneline
ce2f041 (HEAD -> main, origin/main, origin/HEAD) Adding first author
dbb0042 Second commit
848679e Initial commit

848679e aea37e6 ce2f041

origin/main

main

HEAD

The ’rebase’ option push all the new modifications on the top of the history of what
you download from the remote repository. It minimize a lot the possibility of a conflict.

Note, also that the hash of the ’Adding first author’ commit changed after the rebase!

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 54 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 55 / 86

What is a Conflict?

Alice 9311eed 848679e

main

HEAD

Repository
9311eed 848679e

main

HEAD

Bob 9311eed 848679e

main

HEAD

9311eed 848679e bc82818

a69db25

f06261d

main

HEAD

Cannot merge!
Conflict!

Worked on
README at line 1

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 56 / 86

What is a Conflict?

Alice 9311eed 848679e

main

HEAD

Repository
9311eed 848679e

main

HEAD

Bob 9311eed 848679e

main

HEAD

9311eed 848679e bc82818

a69db25

f06261d

main

HEAD

Cannot merge!
Conflict!

Worked on
README at line 1

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 56 / 86

What is a Conflict?

Alice 9311eed 848679e a69db25

main

HEAD

Worked on
README at line 1

Repository
9311eed 848679e

main

HEAD

Bob 9311eed 848679e

main

HEAD

9311eed 848679e bc82818

a69db25

f06261d

main

HEAD

Cannot merge!
Conflict!

Worked on
README at line 1

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 56 / 86

What is a Conflict?

Alice 9311eed 848679e a69db25

main

HEAD

Worked on
README at line 1

git push

Repository
9311eed 848679e

main

HEAD

Bob 9311eed 848679e

main

HEAD

9311eed 848679e bc82818

a69db25

f06261d

main

HEAD

Cannot merge!
Conflict!

Worked on
README at line 1

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 56 / 86

What is a Conflict?

Alice 9311eed 848679e a69db25

main

HEAD

Worked on
README at line 1

git push

Repository
9311eed 848679e a69db25

main

HEAD

Bob 9311eed 848679e

main

HEAD

9311eed 848679e bc82818

a69db25

f06261d

main

HEAD

Cannot merge!
Conflict!

Worked on
README at line 1

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 56 / 86

What is a Conflict?

Alice 9311eed 848679e a69db25

main

HEAD

Worked on
README at line 1

Repository
9311eed 848679e a69db25

main

HEAD

Bob 9311eed 848679e

main

HEAD

9311eed 848679e bc82818

a69db25

f06261d

main

HEAD

Cannot merge!
Conflict!

Worked on
README at line 1

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 56 / 86

What is a Conflict?

Alice 9311eed 848679e a69db25

main

HEAD

Worked on
README at line 1

Repository
9311eed 848679e a69db25

main

HEAD

Bob 9311eed 848679e bc82818

main

HEAD

Worked on
README at line 1

9311eed 848679e bc82818

a69db25

f06261d

main

HEAD

Cannot merge!
Conflict!

Worked on
README at line 1

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 56 / 86

What is a Conflict?

Alice 9311eed 848679e a69db25

main

HEAD

Worked on
README at line 1

Repository
9311eed 848679e a69db25

main

HEAD

Bob 9311eed 848679e bc82818

main

HEAD

Worked on
README at line 1

git fetch

9311eed 848679e bc82818

a69db25

f06261d

main

HEAD

Cannot merge!
Conflict!

Worked on
README at line 1

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 56 / 86

What is a Conflict?

Alice 9311eed 848679e a69db25

main

HEAD

Worked on
README at line 1

Repository
9311eed 848679e a69db25

main

HEAD

Bob

git fetch

9311eed 848679e bc82818

a69db25

main

HEAD

Worked on
README at line 1

9311eed 848679e bc82818

a69db25

f06261d

main

HEAD

Cannot merge!
Conflict!

Worked on
README at line 1

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 56 / 86

What is a Conflict?

Alice 9311eed 848679e a69db25

main

HEAD

Worked on
README at line 1

Repository
9311eed 848679e a69db25

main

HEAD

Bob 9311eed 848679e bc82818

a69db25

f06261d

main

HEAD

Cannot merge!
Conflict!

Worked on
README at line 1

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 56 / 86

Example: Solving Conflicts (1/4)

Making a Change on README in project1
echo "My change1" >> README
#> git commit -a -m "Added a line to the README file"
[main 26caa4e] Added a line to the README file
1 file changed, 1 insertion(+)

#> git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 334 bytes | 334.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

0d4a3a1..26caa4e main -> main

Making a Change on README in project2
#> echo "My change2" >> README
#> git commit -a -m "Added a line to the README file too"
[main 3e0eb0f] Added a line to the README file too
1 file changed, 1 insertion(+)

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 57 / 86

Example: Solving Conflicts (2/4)
Still in project2
#> git pull
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From /home/user/my_repo

0d4a3a1..26caa4e main -> origin/main
Auto-merging README
CONFLICT (content): Merge conflict in README
Automatic merge failed; fix conflicts and then commit the result.

#> git status
Your branch and 'origin/main' have diverged,
and have 2 and 1 different commits each, respectively.

(use "git pull" to merge the remote branch into yours)

You have unmerged paths.
(fix conflicts and run "git commit")
(use "git merge --abort" to abort the merge)

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: README
no changes added to commit (use "git add" and/or "git commit -a")

Now, we have a conflict on README in project2!
Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 58 / 86

Example: Solving Conflicts (3/4)
Solving the conflict
#> git diff
diff --cc README
index 789f05d,3ae2ab8..0000000
--- a/README
+++ b/README
@@@ -1,3 -1,3 +1,7 @@@

Hello World!
Second line

++<<<<<<< HEAD
+My change1

++=======
+ My change2
++>>>>>>> Added a line to the README file too

#> nano README

#> git diff
diff --cc README
index 789f05d,3ae2ab8..0000000
--- a/README
+++ b/README
@@@ -1,3 -1,3 +1,4 @@@

Hello World!
Second line

+My change1
+ My change2

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 59 / 86

Resolve Conflicts (4/4)

Commit and Push
#> git add README
#> git commit
[main 536aa05] Merge branch 'main' of /home/user/my_repo

#> git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 342 bytes | 342.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To /home/user/my_repo/

26caa4e..baf2f20 main -> main

Conflict is solved, committed and pushed to remote!

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 60 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 61 / 86

Managing Remotes
Listing all Remotes
#> git remote
origin
#> git remote --verbose
origin /home/user/project/ (fetch)
origin /home/user/project/ (push)

Add/Rename/Remove a Remote
#> git remote add wip git@git.server.org:wip/project.git
#> git remote rename wip wip-new
#> git remote remove wip-new

Get Information about a Remote
#> git remote show origin
* remote origin

Fetch URL: /home/user/project/
Push URL: /home/user/project/
HEAD branch: main
Remote branches:

main tracked
Local branches configured for 'git pull':

main merges with remote main
Local refs configured for 'git push':

main pushes to main (up to date)

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 62 / 86

A Few Others Useful Commands
Verify your Work
#> git status
#> git log --oneline --graph --all

Put unfinished work aside
#> git stash
#> git stash list
#> git stash pop
#> git stash drop

Merge last updates first
#> git fetch
#> git pull --rebase
... solve possible conflict ...
#> git commit

Finally push
#> git push

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 63 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 64 / 86

What is a Workflow?

A Workflow is a set of rules that settle the development process in a
project. It is mainly used to avoid problems such as:

Loss of data;
Bugs in the code;
Conflicts in commits;
Useless code history;
. . .

There exists several workflows, each one with its own advantages and
drawbacks. In the following we will take a look at the following ones:

1 Centralized Workflow;
2 Feature Branch Workflow;
3 Forking Workflow.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 65 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 66 / 86

Centralized Workflow

The Centralized Workflow is used in small teams and beginner developers.

It uses a central repository to serve as a synchronization point for the team and
a single branch. Each developer pushes its changes to it in no particular order.
Developers have constantly to ensure that their commits are compatible with the
work of the others and that no break occurs.

init
alice

feat-1-a
bob

feat-2-a
charlie

feat-1-b
bob

feat-3-a
alice

Benefits
No need to have a complex git server;
Simple to understand and use;
Easy to manage.
(developers themselves are in charge of it)

Drawbacks
Risk of conflicts are extremely high;
History is not readable;
No parallel development;
No code review.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 67 / 86

Centralized Workflow (Cheatsheet)
Get Repository
#> git clone <url>

Pull
#> git pull --rebase
#> make test

Push
#> git pull --rebase
#> make test
#> git push

Commit
#> git add <file>
#> git status
#> git diff
#> make test
#> git commit -m "Meaningful message"

Conflict
#> git status
#> edit <files>
#> git add <files>
#> make test
#> git commit -m "Merging with main"

In this workflow, the main branch must always be maintained in a stable state.
(it must compile and pass all the tests after each push)
Note: The ’–-rebase’ option can be enforced globally with:
#> git config --global pull.rebase true

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 68 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 69 / 86

Feature Branch Workflow
The Feature Branch Workflow is used to render the history more readable and allow
parallel development. It uses a single remote repository and multiple branches. Each
developer creates a new branch for each feature and merge it back to the main branch
when finished. Yet, this is not appropriate for large teams and requires a lot of discipline.

Benefits
No need to have a complex git server;
Parallel development is possible;
History is much more readable;

Drawbacks
Risk of unmergeable branches is high;
Project management is more complex;
No code review.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 70 / 86

Feature Branch Workflow (Cheatsheet)
Get Repository
#> git clone <url>

Merge a branch
#> git switch main
#> git merge <branch>
#> git push

Conflicts
Conflicts mainly occurs when
merging a branch to main.

Create a branch
#> git checkout -b <branch>
#> edit <files>
#> git add <files>
#> git commit -m "Meaningful message"
#> git push --set-upstream origin <branch>

Delete a branch
#> git switch main
#> git branch -d <branch>
#> git push origin --delete <branch>

In this workflow, each branch must be dedicated to a single feature and must be
merged as soon as possible to main in order to avoid conflicts. If it takes too
long, think about rebasing your branch on main from time to time. Also, try to
keep as less as possible unmerged branches otherwise history will be unreadable.

Note: When deleting a local branch, the ’-d’ option can be blocked by local
uncommited modifications, to enforced deletion, use ’-D’ instead.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 71 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 72 / 86

Forking Workflow

Centralized Workflow
Forking Workflow

The Forking Workflow requires an extra layer of functionalities on top of git and
different roles among the team, for these it uses a git forge server. This workflow is
more complex but can be used in large teams and includes a peer review process.
Each developer creates a fork of the central repository and work on it. Once finished, he
creates a pull request to the central repository. The maintainer can then review the
code and discuss with the developer. Once ready, the code is merged in the upstream.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 73 / 86

Forking Workflow

Benefits
Parallel development is easy;
History is much more readable;
Code review is part of the process.

Drawbacks
Requires a git forge server;
Project managers are the bottleneck;
A lot of code reviews to perform.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 74 / 86

Software Forges
A Software Forge is a web-based platform that provides a set of
tools to manage a software project. It is mainly used to manage the
development of a project using a git repository. It provides a lot of
functionalities such as:

Project management tools (create, delete, fork, . . .);
Users and Groups management (set rights, . . .);
Issue tracking (bugs and features);
Code review tools (pull requests, merge requests, . . .);
Continuous Integration (build, test, runners, containers, . . .);
. . .

These software forges provides high-level functionalities such as
forking and pull requests to manage the development of a project.
The most famous forges using git are Gitlab, GitHub, BitBucket.
Gitlab is the only one to be Open Source and available at the CREMI.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 75 / 86

Fork a Project (developer) (1/2)
Step 1: Fork the upstream

Step 2: Fill the form

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 76 / 86

Fork a Project (developer) (1/2)
Step 1: Fork the upstream

Step 2: Fill the form

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 76 / 86

Fork a Project (developer) (1/2)
Step 1: Fork the upstream Step 2: Fill the form

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 76 / 86

Fork a Project (developer) (1/2)
Step 1: Fork the upstream Step 2: Fill the form

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 76 / 86

Fork a Project (developer) (2/2)
Step 3: Clone forked project locally
#> git clone gitlab.emi.u-bordeaux.fr:developer/trialproject.git
Cloning into 'trialproject'...
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.

Step 4: Add upstream remote
#> cd trialproject/
#> git remote add upstream gitlab.emi.u-bordeaux.fr:maintainer/trialproject.git
#> git remote -v
origin gitlab.emi.u-bordeaux.fr:developer/trialproject.git (fetch)
origin gitlab.emi.u-bordeaux.fr:developer/trialproject.git (push)
upstream gitlab.emi.u-bordeaux.fr:maintainer/trialproject.git (fetch)
upstream gitlab.emi.u-bordeaux.fr:maintainer/trialproject.git (push)

Step 5: Keep up with upstream
#> git fetch upstream main
#> git switch main
#> git merge upstream/main
#> git push

Step 6: Rebase a feature on main
#> git switch my_branch
#> git rebase main
#> git push --force

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 77 / 86

Merge Request (developer)
Step 1: Create a new branch
#> git switch -c new_feature

Step 2: Work on it
#> edit <files>
#> git add <files>
#> git commit -m "Message"

Step 3: Push it
#> git push --set-upstream origin new_feature
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
...
remote:To create a merge request for new_feature, visit:
remote: https://gitlab.emi.u-bordeaux.fr/...

To gitlab.emi.u-bordeaux.fr/trial-project-forked.git
* [new branch] new_feature -> new_feature

branch 'new_feature' setup to track 'origin/new_feature'

Step 4: Create merge request

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 78 / 86

Merge Request (developer)
Step 1: Create a new branch
#> git switch -c new_feature

Step 2: Work on it
#> edit <files>
#> git add <files>
#> git commit -m "Message"

Step 3: Push it
#> git push --set-upstream origin new_feature
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
...
remote:To create a merge request for new_feature, visit:
remote: https://gitlab.emi.u-bordeaux.fr/...

To gitlab.emi.u-bordeaux.fr/trial-project-forked.git
* [new branch] new_feature -> new_feature

branch 'new_feature' setup to track 'origin/new_feature'

Step 4: Create merge request

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 78 / 86

Merge Request (developer)
Step 1: Create a new branch
#> git switch -c new_feature

Step 2: Work on it
#> edit <files>
#> git add <files>
#> git commit -m "Message"

Step 3: Push it
#> git push --set-upstream origin new_feature
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
...
remote:To create a merge request for new_feature, visit:
remote: https://gitlab.emi.u-bordeaux.fr/...

To gitlab.emi.u-bordeaux.fr/trial-project-forked.git
* [new branch] new_feature -> new_feature

branch 'new_feature' setup to track 'origin/new_feature'

Step 4: Create merge request

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 78 / 86

Forking Workflow (Cheatsheet)
Get Repository
Fork the project on the forge
#> git clone <forked-project>
#> git remote add upstream <project>

Pull upstream
#> git fetch upstream main
#> git switch main
#> git merge upstream/main
#> git push

Rebase a branch on main
#> git switch <branch>
#> git rebase main
#> git push --force

Create a pull request
#> git push
Pull request on the forge

In this workflow, you have to handle two remotes: origin and upstream. The origin
remote is your fork of the project and the upstream remote is the original project. You
have to pull from upstream (read-only) and push to origin (read-write). The upstream
is only writen by the maintainer when merging your pull requests.

Note: The maintainers are in charge of reviewing all the code. Strictly speaking, they
should not push anything themselves without a merge request. That is why they should
be at least two to avoid to review their own code. Also, you have to understand that
reviewing code is a real skill and is time consuming (and extremely frustrating).

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 79 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 80 / 86

Massively Distributed Workflow
The Linux Kernel Workflow was designed by Linus Torvalds himself to manage the
development of the Linux Kernel. It is a massively distributed workflow that
uses a benevolent dictator to manage the project. It is used in large projects
with a lot of developers and a lot of sub-projects. Somehow, it generalizes the
forking workflow to a larger scale with many remotes to handle.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 81 / 86

Overview
1 Introduction

2 Basic Usages
Command Syntax
Configuration
Handling the Index
Dealing with History
Using Branches
Getting a Repository
Synchronize with Remote
Solving Conflicts
Managing Remotes & Other Useful Commands

3 Development Workflows
Centralized Workflow
Feature Branch Workflow
Forking Workflow
Massively Distributed Workflow
Best Practices

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 82 / 86

Good Practices. . . (Beginner tips)
1 Don’t panic!
2 Don’t overestimate your skills!
3 Keep control of your repository!
4 Commit early and commit often!

Always display ’git status’ and ’git diff’ before a commit.
Do not forget to push your work to the server.

5 Your repository is not a trash bin!
Do not use ’git add *’.
Do not track files produced by code!
Do not commit code that is not part of the project (use git submodules).

6 Do not ignore conflicts! Resolve it!
7 Merge branches as soon as possible!
Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 83 / 86

Good Practices. . . (Advanced tips)

1 Know, practice and read about git!
2 On doubt, back-up your repository before trying!
3 Avoid conflicts at any price!
4 Commit early and commit often!
5 One commit for one thing, no more!
6 Be meaningful on your commit messages!
7 Branch as much as possible!
8 Merge as soon as possible!
9 Try to conform the current workflow!
10 Keep up with upstream and the rest of the team!

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 84 / 86

Our Workflow
1 Work mainly on main;
2 You commit your changes as you wish to local or central

repository;
3 Once you finished your homework (or project), you push

everything to main (if you were using another branch);
4 You create a branch ’homework-N’ (or ’project’);

#> git checkout -b homework-3

5 You push it upstream on the central repository with:
#> git push --set-upstream origin homework-3

6 You start the next homework/project.
7 If you notice a bug in your homework, just switch to the branch

and push a fix on it.
Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 85 / 86

References

Git Best Practises, by Wolfgang Dobler, 2016.
http://pencil-code.nordita.org/doc/git-best-practises.pdf

Git Tutorial, by Lars Vogel, 2009-2024.
http://www.vogella.com/tutorials/Git/article.html

A Visual Git Reference, by Marko Lodato, 2010-2017.
https://marklodato.github.io/visual-git-guide/

Learn Git Branching (Interactive Tutorial), by Peter Cottle, 2012-2024.
https://learngitbranching.js.org/

Visualizing Git (Visualization Tool), by Katrina Uychaco, 2019.
http://git-school.github.io/visualizing-git/

Git Flight Rules, by Kate Hudson, 2023.
https://github.com/k88hudson/git-flight-rules

LATEX gitdags package, by Julien Cretel, 2014.
https://github.com/Jubobs/gitdags/wiki

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 86 / 86

http://pencil-code.nordita.org/doc/git-best-practises.pdf
http://www.vogella.com/tutorials/Git/article.html
https://marklodato.github.io/visual-git-guide/
https://learngitbranching.js.org/
http://git-school.github.io/visualizing-git/
https://github.com/k88hudson/git-flight-rules
https://github.com/Jubobs/gitdags/wiki

Overview

4 Backup Slides

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 1 / 3

Cleaning Local Database

A few commands useful to clean-up and compress your objects
data-base in your repository:

Verifies connectivity and validity of objects in repository
git fsck --full

Manage reflog information and set it to 'expire'
git reflog expire --expire=now --all

Pack unpacked objects in a repository
git repack -adl

Cleanup unnecessary files and optimize local repository and
prune all unreachable objects from the object database
git gc --prune=now --aggressive

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 2 / 3

Visual Studio Code FormatOnSave

You should have enabled the FormatOnSave option in Visual Studio Code and use
an automatic code formatter. But, if you have set FormatOnSaveMode to file,
you should seriously consider switch it to modificationsifAvailable. Because
it might render your commits unreadable and impossible to review.

Emmanuel Fleury (Bordeaux, France) git: A Version Control System January 21, 2025 3 / 3

	Introduction
	Basic Usages
	Command Syntax
	Configuration
	Handling the Index
	Dealing with History
	Using Branches
	Getting a Repository
	Synchronize with Remote
	Solving Conflicts
	Managing Remotes & Other Useful Commands

	Development Workflows
	Centralized Workflow
	Feature Branch Workflow
	Forking Workflow
	Massively Distributed Workflow
	Best Practices

	Appendix
	Backup Slides

