
Binary Program Analysis: Theory and Practice
(what you code is not what you execute)

Emmanuel Fleury
<emmanuel.fleury@labri.fr>

Joint work with:
Gérald Point <gerald.point@labri.fr>,

Aymeric Vincent <aymeric.vincent@labri.fr>.

LaBRI, Université Bordeaux 1, France

June 13, 2013

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 1 / 46

Overview

1 Binary Program Analysis

2 CFG Recovery

3 Insight: A Binary Analysis Framework

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 2 / 46

Overview

1 Binary Program Analysis
Program Analysis
Why Analyze Binary Program?
Object of Study: Binary Programs
Binary Code vs. Source Code
What You Code Is Not What You Execute
Analysis goals

2 CFG Recovery

3 Insight: A Binary Analysis Framework

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 3 / 46

Program Analysis
Definition
Program analysis is the process of automatically deriving properties about the
behavior of computer programs.

Dynamic Program Analysis
Analysis is performed by executing the
program on chosen inputs. Traces of
the actual executions are collected and
processed. Properties about program
behavior is deduced based on the
analysis of these concrete executions.

Techniques
Software Testing
Performance Analysis
. . .

Static Program Analysis
Analysis is performed without actually
executing the program. An abstract
model of the program is issued and
symbolically executed. Properties about
program behavior is deduced from the
analysis of these symbolic executions.

Techniques
Abstract Interpretation
Data-flow Analysis
Model-checking
Theorem Proving
. . .

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 4 / 46

Input Program Formats for Analysis

Abstract Model: All unnecessary information for the analysis have been
removed. Only necessary information remains.

Source Code: Keep track of high-level information about the program such as
variables, types, functions. But also, variable and function names, and pragmas
or code decorations.

Bytecode: May vary depending on the bytecode considered, but keep track of few
high-level information about the program such as types and functions. But,
programs are unstructured.

Binary File: Only keep track of the instructions in an unstructured way (no
for-loop, no clear argument passing in procedures, . . .). No type, no naming. But,
the binary file may enclose meta-data that might be helpful (symbols, debug, . . .).

Memory Dump: Pure assembler instructions with a full memory state of the
current execution. We do not have anymore the meta-data of the executable file.

Binary code is the closest format of what will be executed !

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 5 / 46

Input Program Formats for Analysis

Abstract Model: All unnecessary information for the analysis have been
removed. Only necessary information remains.

Source Code: Keep track of high-level information about the program such as
variables, types, functions. But also, variable and function names, and pragmas
or code decorations.

Bytecode: May vary depending on the bytecode considered, but keep track of few
high-level information about the program such as types and functions. But,
programs are unstructured.

Binary File: Only keep track of the instructions in an unstructured way (no
for-loop, no clear argument passing in procedures, . . .). No type, no naming. But,
the binary file may enclose meta-data that might be helpful (symbols, debug, . . .).

Memory Dump: Pure assembler instructions with a full memory state of the
current execution. We do not have anymore the meta-data of the executable file.

Binary code is the closest format of what will be executed !

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 5 / 46

Input Program Formats for Analysis

Abstract Model: All unnecessary information for the analysis have been
removed. Only necessary information remains.

Source Code: Keep track of high-level information about the program such as
variables, types, functions. But also, variable and function names, and pragmas
or code decorations.

Bytecode: May vary depending on the bytecode considered, but keep track of few
high-level information about the program such as types and functions. But,
programs are unstructured.

Binary File: Only keep track of the instructions in an unstructured way (no
for-loop, no clear argument passing in procedures, . . .). No type, no naming. But,
the binary file may enclose meta-data that might be helpful (symbols, debug, . . .).

Memory Dump: Pure assembler instructions with a full memory state of the
current execution. We do not have anymore the meta-data of the executable file.

Binary code is the closest format of what will be executed !

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 5 / 46

Input Program Formats for Analysis

Abstract Model: All unnecessary information for the analysis have been
removed. Only necessary information remains.

Source Code: Keep track of high-level information about the program such as
variables, types, functions. But also, variable and function names, and pragmas
or code decorations.

Bytecode: May vary depending on the bytecode considered, but keep track of few
high-level information about the program such as types and functions. But,
programs are unstructured.

Binary File: Only keep track of the instructions in an unstructured way (no
for-loop, no clear argument passing in procedures, . . .). No type, no naming. But,
the binary file may enclose meta-data that might be helpful (symbols, debug, . . .).

Memory Dump: Pure assembler instructions with a full memory state of the
current execution. We do not have anymore the meta-data of the executable file.

Binary code is the closest format of what will be executed !
E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 5 / 46

Why Analyze Binary Program?

The Lack of High-Level Source Code
Low-level assembly code built-in the source code
Legacy code
Commercial Off-the-shelf software (COTS)
Application stores (for cell phones and tablets)
Malware or any “hostile” programs
Technology forecasting

Mistrust in the Compilation Chain
C compiler possibly buggy
Optimization probably buggy, yet optimized code reduce hardware cost
Checking low-level bugs (exploitability of a stack buffer-overflow)
Bugs with a strong interconnection with hardware
What you code is not what you execute1 (see further example)

1Inspired by G. Balakrishnan and T. Reps.
E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 6 / 46

Binary Code vs. Source Code (1/3)
We want to analyze binary code. It can come as:

an executable file,
an object file,
a dynamic library,
a firmware,
a memory dump,
. . .

We don’t rely on getting the corresponding high-level source code.

Until now, most of the analysis techniques have been designed
for source code analysis. So, what do we loose exactly at

looking at binary programs only ?

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 7 / 46

Binary Code vs. Source Code (1/3)
We want to analyze binary code. It can come as:

an executable file,
an object file,
a dynamic library,
a firmware,
a memory dump,
. . .

We don’t rely on getting the corresponding high-level source code.

Until now, most of the analysis techniques have been designed
for source code analysis. So, what do we loose exactly at

looking at binary programs only ?

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 7 / 46

Binary Code vs. Source Code (2/3)

Compile this to assembly
Compile this to a binary object
Let’s compare those versions.

int
addition (int x, int y) {

return x + y;
}

$ gcc -S -m32 addition-function.c

.file "addition -function.c"

.text

.globl addition

.type addition , @function
addition:
.LFB0:
pushl %ebp
movl %esp , %ebp
movl 12(% ebp), %eax
movl 8(%ebp), %edx
addl %edx , %eax
popl %ebp
ret
.LFE0:
.size addition , .-addition
.ident "GCC:␣(Debian␣4.7.3 -4)␣4.7.3"
.section .note.GNU -stack ,"",@progbits

$ objdump -d addition-function.o

addition -function.o:
file format elf32 -i386

Disassembly of section .text:

00000000 <addition >:
0: 55 push %ebp
1: 89 e5 mov %esp ,%ebp
3: 8b 45 0c mov 0xc(%ebp),%eax
6: 8b 55 08 mov 0x8(%ebp),%edx
9: 01 d0 add %edx ,%eax
b: 5d pop %ebp
c: c3 ret

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 8 / 46

Binary Code vs. Source Code (2/3)

Compile this to assembly
Compile this to a binary object
Let’s compare those versions.

int
addition (int x, int y) {

return x + y;
}

$ gcc -S -m32 addition-function.c

.file "addition -function.c"

.text

.globl addition

.type addition , @function
addition:
.LFB0:
pushl %ebp
movl %esp , %ebp
movl 12(% ebp), %eax
movl 8(%ebp), %edx
addl %edx , %eax
popl %ebp
ret
.LFE0:
.size addition , .-addition
.ident "GCC:␣(Debian␣4.7.3 -4)␣4.7.3"
.section .note.GNU -stack ,"",@progbits

$ objdump -d addition-function.o

addition -function.o:
file format elf32 -i386

Disassembly of section .text:

00000000 <addition >:
0: 55 push %ebp
1: 89 e5 mov %esp ,%ebp
3: 8b 45 0c mov 0xc(%ebp),%eax
6: 8b 55 08 mov 0x8(%ebp),%edx
9: 01 d0 add %edx ,%eax
b: 5d pop %ebp
c: c3 ret

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 8 / 46

Binary Code vs. Source Code (2/3)

Compile this to assembly
Compile this to a binary object
Let’s compare those versions.

int
addition (int x, int y) {

return x + y;
}

$ gcc -S -m32 addition-function.c

.file "addition -function.c"

.text

.globl addition

.type addition , @function
addition:
.LFB0:
pushl %ebp
movl %esp , %ebp
movl 12(% ebp), %eax
movl 8(%ebp), %edx
addl %edx , %eax
popl %ebp
ret
.LFE0:
.size addition , .-addition
.ident "GCC:␣(Debian␣4.7.3 -4)␣4.7.3"
.section .note.GNU -stack ,"",@progbits

$ objdump -d addition-function.o

addition -function.o:
file format elf32 -i386

Disassembly of section .text:

00000000 <addition >:
0: 55 push %ebp
1: 89 e5 mov %esp ,%ebp
3: 8b 45 0c mov 0xc(%ebp),%eax
6: 8b 55 08 mov 0x8(%ebp),%edx
9: 01 d0 add %edx ,%eax
b: 5d pop %ebp
c: c3 ret

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 8 / 46

Binary Code vs. Source Code (3/3)
We can notice the following losses between versions:

From C to assembly
Typing information of variables;
Variables are turned into “a piece of memory” or a register;
The structure (and associated intent) of the code.

From assembly to binary
Almost nothing;
Function names;
Ease of reading.

So, we loose information but this is not all, because:

“What you code is not what you execute!”

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 9 / 46

Binary Code vs. Source Code (3/3)
We can notice the following losses between versions:

From C to assembly
Typing information of variables;
Variables are turned into “a piece of memory” or a register;
The structure (and associated intent) of the code.

From assembly to binary
Almost nothing;
Function names;
Ease of reading.

So, we loose information but this is not all, because:
“What you code is not what you execute!”

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 9 / 46

What You Code Is Not What You Execute (1/5)

Let consider a function using a simple “switch” statement,
and suppose we forget the “default” case in the source code:

/* Function with a switch statement */
enum { DIGIT , AT, BANG , MINUS }
f(char c) {

switch (c) {
case ’0’: case ’1’: case ’2’: case ’3’: case ’4’:
case ’5’: case ’6’: case ’7’: case ’8’: case ’9’:

return DIGIT;
case ’@’:

return AT;
case ’!’:

return BANG;
case ’-’:

return MINUS;
}

}

What happen when we have “f(’a’)” ?

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 10 / 46

What You Code Is Not What You Execute (1/5)

Let consider a function using a simple “switch” statement,
and suppose we forget the “default” case in the source code:

/* Function with a switch statement */
enum { DIGIT , AT, BANG , MINUS }
f(char c) {

switch (c) {
case ’0’: case ’1’: case ’2’: case ’3’: case ’4’:
case ’5’: case ’6’: case ’7’: case ’8’: case ’9’:

return DIGIT;
case ’@’:

return AT;
case ’!’:

return BANG;
case ’-’:

return MINUS;
}

}

What happen when we have “f(’a’)” ?
E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 10 / 46

What You Code Is Not What You Execute (2/5)

Compiled version of the function

f:
pushl %ebp
movl %esp , %ebp
subl $4 , %esp
movl 8(% ebp), %eax
movb %al , -4(% ebp)
movsbl -4(% ebp), %eax
subl $33 , %eax
cmpl $31 , %eax
ja .L2
movl .L7 (,%eax ,4), %eax
jmp *% eax

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 11 / 46

What You Code Is Not What You Execute (2/5)

Compiled version of the function

f:
pushl %ebp
movl %esp , %ebp
subl $4 , %esp
movl 8(% ebp), %eax
movb %al , -4(% ebp)
movsbl -4(% ebp), %eax
subl $33 , %eax ; ASCII for ’!’
cmpl $31 , %eax ; 64 is ASCII for ’@’
ja .quit ; Out of bounds - quit
movl .L7 (,%eax ,4), %eax ; Character becomes an
jmp *% eax ; offset in jump table

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 12 / 46

What You Code Is Not What You Execute (3/5)

The jump table
.L7:

.long .L3 ; ’!’

.long .L2

...

.long .L2

.long .L4 ; ’-’

.long .L2

.long .L2

.long .L5 ; ’0’

.long .L5 ; ’1’

.long .L5 ; ’2’

...

.long .L2

.long .L6 ; ’@’

Code pointed to by jump table
.L5: movl $0 , %eax

jmp .L8
.L6: movl $1 , %eax

jmp .L8
.L3: movl $2 , %eax

jmp .L8
.L4: movl $3 , %eax

jmp .L8
.L2: jmp .L1
.L8:
.L1:

leave
ret

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 13 / 46

What You Code Is Not What You Execute (4/5)

Control Flow Graph from C version

switch (c)

return BANG;

return MINUS;

return DIGIT;

return AT;

Indeterminate

’!’

’-’
’0’..’9’

’@’
default

The CFG is completely known.
The absence of default case appears immediately in the CFG, and is a
potential bug.

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 14 / 46

What You Code Is Not What You Execute (5/5)

Control Flow Graph from assembly version

switch (c)

jmp *%eax

Dynamic jump to “unknown” location

return c - 33;

31..64 default

The CFG ends in a dynamic jump which can lead to any place in memory if
we do not know what values can be stored in %eax.
The missing default case becomes a deterministic computation.

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 15 / 46

Problems Specifically Linked to Binary Analysis

Compared to source code analysis the main difficulties are:
We cannot start the analysis with a complete description of the program;

We do not have types of the values that are manipulated
(data/address/code);

We lack of high-level structure on the recovered program (variables,
functions, modules, . . .);

The compiler can introduce dynamic jumps on its own;

Code and data can live in the same memory space (e.g. self-modifying code).

And, the problems encountered in code analysis are still here:
Undecidability of most of the interesting problems;

Scalability problem (state-space explosion, line of code analyzed, . . .);

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 16 / 46

Analysis goals
Software Verification

Check violation of memory boundaries;
Check arithmetic overflows;
Check reachability properties;
Check invariants.

Reverse-Engineering
Automatically rebuild as much as the control flow;
Recover types and data structure in memory;
Guess procedures or modules;
Allow the user to check formally his hypothesis;
Safe automated desobfuscation.

But, recovering the control-flow itself is already non trivial. . .

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 17 / 46

Analysis goals
Software Verification

Check violation of memory boundaries;
Check arithmetic overflows;
Check reachability properties;
Check invariants.

Reverse-Engineering
Automatically rebuild as much as the control flow;
Recover types and data structure in memory;
Guess procedures or modules;
Allow the user to check formally his hypothesis;
Safe automated desobfuscation.

But, recovering the control-flow itself is already non trivial. . .

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 17 / 46

Overview

1 Binary Program Analysis

2 CFG Recovery
A Bit of Vocabulary
Program Representations and Collected Data
Disassembler Accuracy
Syntax-Based CFG Recovery
About Syntaxic-Based Disassemblers
Semantics-Based CFG Recovery
CFG Recovery Methods: Summary

3 Insight: A Binary Analysis Framework

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 18 / 46

A Bit of Vocabulary
Processing Units

Loader: Open the input file, parse the meta-data enclosed in the binary file and
extract the code to be mapped in memory.
Decoder: Given a sequence of bytes, translate it to an assembler instruction
represented in a machine readable format.
Disassembler: Combination of a decoder and a strategy to browse through the
memory in order to recover all the program.
Decompiler: Translate the assembly code into a high-level language with variables,
functions and more (modules, objects, classes, . . .).

Assembler Specific Terms
Opcode: Hexadecimal code for assembler instructions;
Operands: Hexadecimal code for arguments of an instruction;
Mnemonic: Human-readable name of an assembler instruction;
Instruction: Basic assembler operation;
Registers: Basic unit of storage, usually of the size of a memory word.
Memory: A (finite) table of bytes.

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 19 / 46

Program Representations and Collected Data

Context: A valuation for the memory and the registers. The
context is changed by the instructions.

Trace: Given a memory state and an instruction, a trace is a
valid sequence of instructions given their semantics.

Run: A complete trace starting from the entrypoint of the
program and from a correct initial memory.

Control-Flow (Graph): Oriented graph resulting of the union of
all possible runs taken by the program. And,where:

node = (memory address × instruction)
edges = relation given by the union of all the possible runs

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 20 / 46

Disassembler Accuracy

The disassembler will output a CFG representing the union of all
(potential) behaviors found by the disassembler. Namely, there are
four types of disassemblers:

Exact: The disassembler output the exact CFG that cover all the
possible behaviors of the input program.

Under-approximation: The disassembler output a subset of all
the possible behaviors of the input program.

Over-approximation: The disassembler output a set of
behaviors that enclose the set of all possible ones.

Incorrect: The disassembler output a set that may miss some
behaviors and add some extra as well (we cannot say anything
from this output).

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 21 / 46

Overview

1 Binary Program Analysis

2 CFG Recovery
A Bit of Vocabulary
Program Representations and Collected Data
Disassembler Accuracy
Syntax-Based CFG Recovery

Linear Sweep
Recursive Traversal

About Syntaxic-Based Disassemblers
Semantics-Based CFG Recovery

SMT-based Symbolic Exploration
Directed Automated Random Exploration
Abstract Interpretation-Based CFG Recovery
Alternating CFG Recovery

CFG Recovery Methods: Summary

3 Insight: A Binary Analysis Framework

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 22 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Adding Behaviors ?

Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 23 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Adding Behaviors ?

Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 23 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Adding Behaviors ?

Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 23 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Adding Behaviors ?

Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4

0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 23 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Adding Behaviors ?

Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax

0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 23 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Adding Behaviors ?

Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead

08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 23 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Adding Behaviors ?

Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al

08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 23 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Adding Behaviors ?

Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 23 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Adding Behaviors ?

Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!
E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 23 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Ignoring Behaviors ?

Lets disassemble this piece of binary code (entrypoint = 0x5):
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax # Entrypoint here !
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 24 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Ignoring Behaviors ?

Lets disassemble this piece of binary code (entrypoint = 0x5):
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax # Entrypoint here !
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 24 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Ignoring Behaviors ?

Lets disassemble this piece of binary code (entrypoint = 0x5):
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax # Entrypoint here !
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 24 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Ignoring Behaviors ?

Lets disassemble this piece of binary code (entrypoint = 0x5):
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax # Entrypoint here !
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax

0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 24 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Ignoring Behaviors ?

Lets disassemble this piece of binary code (entrypoint = 0x5):
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax # Entrypoint here !
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx

0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 24 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Ignoring Behaviors ?

Lets disassemble this piece of binary code (entrypoint = 0x5):
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax # Entrypoint here !
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 24 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Ignoring Behaviors ?

Lets disassemble this piece of binary code (entrypoint = 0x5):
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax # Entrypoint here !
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 24 / 46

Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the instruction pointer to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is It Ignoring Behaviors ?

Lets disassemble this piece of binary code (entrypoint = 0x5):
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax # Entrypoint here !
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 24 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Adding Behaviors ?
Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 25 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Adding Behaviors ?

Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 25 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Adding Behaviors ?
Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 25 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Adding Behaviors ?
Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4

0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 25 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Adding Behaviors ?
Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax

0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 25 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Adding Behaviors ?
Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead

08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 25 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Adding Behaviors ?
Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al

08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 25 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Adding Behaviors ?
Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 25 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Adding Behaviors ?
Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 25 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Adding Behaviors ?
Lets disassemble this piece of binary code:
0804846c: eb04 jmp 0x804846e +4
0804846e: efbeadde dd 0xdeadbeef
08048472: a16e840408 mov eax , [0 x804846e]
08048477: 83c00a add eax , 0xa

0804846c: eb04 jmp 0x804846e +4
0804846e: ef out dx, eax
0804846f: beaddea16e mov esi , 0x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83c00a add eax , 0xa

Yes!
E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 25 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Ignoring Behaviors ?
Lets disassemble this piece of binary code:
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 26 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Ignoring Behaviors ?

Lets disassemble this piece of binary code:
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 26 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Ignoring Behaviors ?
Lets disassemble this piece of binary code:
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 26 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Ignoring Behaviors ?
Lets disassemble this piece of binary code:
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax

0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 26 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Ignoring Behaviors ?
Lets disassemble this piece of binary code:
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx

0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 26 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Ignoring Behaviors ?
Lets disassemble this piece of binary code:
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 26 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Ignoring Behaviors ?
Lets disassemble this piece of binary code:
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 26 / 46

Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

Is It Ignoring Behaviors ?
Lets disassemble this piece of binary code:
00000000: b80003c1bb inc eax
00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

00000005: b900000005 mov $0, %eax
0000000a: 01c8 mov $0 , %ecx
0000000c: ff2502000000 jmp *%eax

Yes!

Incorrect

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 26 / 46

About Syntaxic-Based Disassemblers

Proposition
Having no knowledge of the semantics (or partial knowledge), will
always lead to an incorrect disassembler.

Sketch of Proof:
Over-approximation: An “always false” statement will be always
followed.
Under-approximation: Dynamic jumps will never be followed.

Thus, a disassembler always need to know about
the semantics of the instructions.

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 27 / 46

Overview

1 Binary Program Analysis

2 CFG Recovery
A Bit of Vocabulary
Program Representations and Collected Data
Disassembler Accuracy
Syntax-Based CFG Recovery

Linear Sweep
Recursive Traversal

About Syntaxic-Based Disassemblers
Semantics-Based CFG Recovery

SMT-based Symbolic Exploration
Directed Automated Random Exploration
Abstract Interpretation-Based CFG Recovery
Alternating CFG Recovery

CFG Recovery Methods: Summary

3 Insight: A Binary Analysis Framework

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 28 / 46

SMT-based Symbolic Exploration

1 int f(int x, int y)
2 {
3 int z;
4 z = y;
5

6 if (x == y)
7 if (z == x + 10)
8 return 1;
9

10 return 0;
11 }

input(x)
input(y)
new(z)

z=y

return 1 return 0

x==y
x!=y

z==x+10 z!=x+10

line 4: (x = y)
line 8: (x = y)∧ (y = x +10) (UNSAT)
line 10 (path1): (x 6= y)
line 10 (path2): (x = y)∧ (y 6= x +10)

Algorithm
Explore the program and ask the
SMT-solver at each program
point if the path is feasible.

Under-approximation

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 29 / 46

SMT-based Symbolic Exploration

1 int f(int x, int y)
2 {
3 int z;
4 z = y;
5

6 if (x == y)
7 if (z == x + 10)
8 return 1;
9

10 return 0;
11 }

input(x)
input(y)
new(z)

z=y

return 1 return 0

x==y
x!=y

z==x+10 z!=x+10

line 4: (x = y)
line 8: (x = y)∧ (y = x +10) (UNSAT)
line 10 (path1): (x 6= y)
line 10 (path2): (x = y)∧ (y 6= x +10)

Algorithm
Explore the program and ask the
SMT-solver at each program
point if the path is feasible.

Under-approximation

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 29 / 46

SMT-based Symbolic Exploration

1 int f(int x, int y)
2 {
3 int z;
4 z = y;
5

6 if (x == y)
7 if (z == x + 10)
8 return 1;
9

10 return 0;
11 }

input(x)
input(y)
new(z)

z=y

return 1 return 0

x==y
x!=y

z==x+10 z!=x+10

line 4: (x = y)
line 8: (x = y)∧ (y = x +10) (UNSAT)
line 10 (path1): (x 6= y)
line 10 (path2): (x = y)∧ (y 6= x +10)

Algorithm
Explore the program and ask the
SMT-solver at each program
point if the path is feasible.

Under-approximation

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 29 / 46

Directed Automated Random Exploration

DARE
1 First run the program on random inputs and get a trace;
2 Get each possible branching inside the previous trace and ask the SMT-solver

to solve it.
3 If the SMT-solver fail, try to generate a random input to reach the

untouched branches.

Original idea (2005):
DART (Directed Automated Random Testing) [GKS05];
First applied to binary analysis (2008):
Inside the OSMOSE software by CEA List [BH08]

Under-approximation

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 30 / 46

Directed Automated Random Exploration

DARE
1 First run the program on random inputs and get a trace;
2 Get each possible branching inside the previous trace and ask the SMT-solver

to solve it.
3 If the SMT-solver fail, try to generate a random input to reach the

untouched branches.

Original idea (2005):
DART (Directed Automated Random Testing) [GKS05];
First applied to binary analysis (2008):
Inside the OSMOSE software by CEA List [BH08]

Under-approximation

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 30 / 46

Abstract Interpretation-Based CFG Recovery
Using an abstract interpretation framework on the CFG recovery problem is

difficult because of the ‘chicken-and-egg’ problem.

Abstract Interpretation-Based CFG Recovery [KZV09]
In ‘An abstract interpretation-based framework for control flow reconstruction
from binaries’ by Johannes Kinder, Florian Zuleger, and Helmut Veith (VMCAI
2009).

Use a double abstract domain: CFG × Data-flow analysis;
Recovery of the CFG is part of part of the process for reaching the fix-point.
Data-flow analysis help on the way for the fix-point.
The abstract domain of the data-flow analysis is a parameter of the
framework. It can be anything as long as it match usual hypothesis of
abstract domain (Galois connection, monotonicity, . . .)
Possible domains to use: k-sets, (stridded) intervals or VSA (Value-Set
Analysis) [BR04].

Over-approximation

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 31 / 46

Abstract Interpretation-Based CFG Recovery
Using an abstract interpretation framework on the CFG recovery problem is

difficult because of the ‘chicken-and-egg’ problem.

Abstract Interpretation-Based CFG Recovery [KZV09]
In ‘An abstract interpretation-based framework for control flow reconstruction
from binaries’ by Johannes Kinder, Florian Zuleger, and Helmut Veith (VMCAI
2009).

Use a double abstract domain: CFG × Data-flow analysis;
Recovery of the CFG is part of part of the process for reaching the fix-point.
Data-flow analysis help on the way for the fix-point.
The abstract domain of the data-flow analysis is a parameter of the
framework. It can be anything as long as it match usual hypothesis of
abstract domain (Galois connection, monotonicity, . . .)
Possible domains to use: k-sets, (stridded) intervals or VSA (Value-Set
Analysis) [BR04].

Over-approximation
E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 31 / 46

Alternating CFG Recovery
The previous framework lead very often to > (top) when recovering the CFG.

Building very coarse over-approximation of the original CFG. The idea here is to
alternate between under-approximation (‘trace collecting’ approach) and

over-approximation (‘abstract-interpretation framework’).

Alternating CFG Recovery [KK12]
In ‘Alternating control flow reconstruction, by Kinder, Johannes and Kravchenko, Dmitry
(VMCAI’12).

The semantics of the analyzed program is parametrized, three are given:
Concrete semantics: A symbolic execution with full semantics;
Under-approximation semantics: Build bounded traces of the program;
Over-approximation semantics: Any abstract domain cited previously.

Then an ‘Alternation framework is defined that will decide when to use one semantics or
the other.
The problem with that technique is that it is not clear what is obtained at the end. It is
something between under-approximation and over-approximation.

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 32 / 46

CFG Recovery Methods: Summary

Syntax-Based Disassembler Accuracy
Linear Sweep Incorrect

Recursive Traversal Incorrect

All methods are just incorrect in all cases.

Semantics-Based Disassembler Accuracy
SMT-based Symbolic Exploration Under-approximation

Directed Automated Random Exploration Under-approximation
Abstract Interpretation CFG Recovery Over-approximation

Alternating CFG Reconstruction ?

Symbolic Exploration and Directed Automated Random Exploration are of the
same kind and provide under-approximation. They are useful for reverse-engineering.
Abstract-Interpretation framework can be used for verification purpose.
And, Alternating CFG Reconstruction is yet difficult to classify (need more work).

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 33 / 46

Overview

1 Binary Program Analysis

2 CFG Recovery

3 Insight: A Binary Analysis Framework
Insight Overview
Insight Architecture
The Insight Microcode
A Full Example
Current & Future Work

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 34 / 46

Insight Overview

Started during the ANR project BINCOA (2009-2012)
Currently involved in the FUI project Marshal (2012-2014)
A project of the “Formal Methods” team at LaBRI

Targeting UNIXish platforms (should work with Cygwin but untested).
Programmed in C++ language.
Available under a 2-clause BSD license (Summer 2012).
Essentially meant to be a research tool to ease experiments and techniques
comparisons.
Yet, we do care about usability and users (eg. use GNU Autotools
build-system for build and install: configure && make && make install).

But, we lack of time. . .

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 35 / 46

Insight Overview

Started during the ANR project BINCOA (2009-2012)
Currently involved in the FUI project Marshal (2012-2014)
A project of the “Formal Methods” team at LaBRI

Targeting UNIXish platforms (should work with Cygwin but untested).
Programmed in C++ language.
Available under a 2-clause BSD license (Summer 2012).
Essentially meant to be a research tool to ease experiments and techniques
comparisons.
Yet, we do care about usability and users (eg. use GNU Autotools
build-system for build and install: configure && make && make install).

But, we lack of time. . .

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 35 / 46

Insight Architecture

io decoders domains analyses

kernel
Memory Microcode Expressions Architecture

binary
(libbfd)

expressions
(SMTLib, text)

microcode
(asm, graphviz, xml)

process
(ptrace)

x86-32
(libopcodes)

x86-64
(libopcodes)

ARM
(libopcodes)

Sparc
(libopcodes)

concrete
domain

intervals
domain

value-sets
domain

symbolic-sets
domain

Weakest
precondition

Data
dependency

Simulator
engine

IR-recovery

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 36 / 46

The Insight Microcode
Our intermediate representation is a directed graph:

Nodes are labelled by memory locations
Edges contain a guard and a statement

Nodes and edges can be annotated by arbitrary objects, for example:
Assembly instructions which produced this microcode;
Procedure calls/returns known or found;
Procedure start/end;
Higher-level constructs discovered;
. . .

Microcode instructions are very limited:
Skip: Does nothing;
Assign: Assigns the value of an expression to a l-value;
Jump: Jumps to the address computed by an expression (dynamic jump);
External: Specifies a relation between current variable values and next variable
values. This allows to model in a very abstract way a piece of code.

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 37 / 46

Microcode expressions

Operate on bitvectors arithmetic;

Are used in instructions and guards;
Are very expressive:

Arithmetic operators;
Operate on registers and immediate values;
Concatenation, sign extensions, bit reversal, . . .
Every expression can extract a sub-bitvector.

Boolean expressions are expressions of bit-size 1.

Example: “stackpointer minus four” (esp - 4)
%esp{0:32} -{0:32} 4{0:32}

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 38 / 46

Microcode example

Assembly code:
0 x8049284 : push %eax
0 x8049285 : test %eax , %eax
0 x8049287 : ...

Becomes the following microcode:
x8049284 ,0: %esp {0:32} := %esp {0:32} SUB 4{0:32} -> x8049284 ,1
x8049284 ,1: [%esp {0:32},4,le] := %eax {0:32} -> x8049285 ,0
x8049285 ,0: %tmp {0:32} := %eax {0:32} AND %eax {0:32} -> x8049285 ,1
x8049285 ,1: %pf{0:1} := %tmp {0:32} LT 0{0:32} -> x8049285 ,2
x8049285 ,2: %zf{0:1} := %tmp {0:32} EQ 0{0:32} -> x8049285 ,3
x8049285 ,3: %pf{0:1} := %tmp {0:1} XOR %tmp {1:1} XOR -> x8049285 ,4
x8049285 ,4: %cf{0:1} := 0{0:1} -> x8049285 ,5
x8049285 ,5: %of{0:1} := 0{0:1} -> x8049287 ,0
x8049287 ,0: ...

Note that we assigned a ‘local address’ to some sub-instructions.

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 39 / 46

A Full Example (1/2)
main:

cmp $0 , %eax
jle lthen

lelse:
mov $main + 1, %eax
jmp lcont

lhalt:
hlt

lthen:
mov $l1 + 6, %eax

l1:
sub $5 , %eax

lcont:
sub $1 , %eax
jmp *% eax

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 40 / 46

A Full Example (2/2)

jk_vmcai_demo1.bin

Symbols

 80480b8: cmp $0x0,%eax

 80480bb: jle 0x80480c5

 80480c5: mov $0x80480d0,%eax 80480bd: mov $0x80480b9,%eax

 80480ca: sub $0x5,%eax 80480c2: jmp 0x80480cd

 80480cd: sub $0x1,%eax

 80480d0: jmp *%eax

 80480c4: hlt

l1 lcontlelse lhaltlthen main

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 41 / 46

A Bigger Example (Callbacks)

callbacks.bin

Symbols

 80480d8: push %ebp

 80480d9: mov %esp,%ebp

 80480db: sub $0x10,%esp

 80480de: mov 0x80493a0,%eax

 80480e3: movzbl (%eax),%eax

 80480e6: movsbl %al,%eax

 80480e9: mov %eax,-0x4(%ebp)

 80480ec: cmpl $0x0,-0x4(%ebp)

 80480f0: je 0x8048101

[(0x8048101,0)] 80480f2: mov 0x80493a0,%eax

 80480f7: add $0x1,%eax

 80480fa: mov %eax,0x80493a0

 80480ff: jmp 0x8048108

 8048108: mov -0x4(%ebp),%eax

 804810b: leave

 804810c: ret

 80481e9: mov %eax,-0xc(%ebp)

 80481ec: cmpl $0xffffffff,-0xc(%ebp)

 804810d: push %ebp

 804810e: mov %esp,%ebp

 8048110: mov 0x8(%ebp),%eax

 8048113: lea -0x61(%eax),%edx

 8048116: mov 0xc(%ebp),%eax

 8048119: mov %eax,0x80493c0(,%edx,4)

 8048120: pop %ebp

 8048121: ret

 8048174: movl $0x8048155,0x4(%esp) 8048188: leave 80481a9: leave 80481ca: leave

 804817c: movl $0x62,(%esp) 8048189: ret 80481aa: ret 80481cb: ret

 8048122: push %ebp

 8048123: mov %esp,%ebp

 8048125: sub $0x28,%esp

 8048128: mov 0x8(%ebp),%eax

 804812b: sub $0x61,%eax

 804812e: mov 0x80493c0(,%eax,4),%eax

 8048135: mov %eax,-0xc(%ebp)

 8048138: cmpl $0x0,-0xc(%ebp)

 804813c: je 0x8048149

 8048149: cmpl $0x0,-0xc(%ebp)

 804813e: mov 0x8(%ebp),%eax

 804814d: sete %al

 8048141: mov %eax,(%esp)

 8048144: mov -0xc(%ebp),%eax

 8048147: call *%eax

 8048155: push %ebp 804818a: push %ebp 80481ab: push %ebp

 8048156: mov %esp,%ebp 804818b: mov %esp,%ebp 80481ac: mov %esp,%ebp

 8048150: movzbl %al,%eax

 8048153: leave

 8048154: ret

 80481fd: test %eax,%eax

 80481ff: je 0x80481e3

 8048158: pop %ebp

 8048159: ret

 804815a: push %ebp

 804815b: mov %esp,%ebp

 804815d: sub $0x8,%esp

 8048160: movl $0x8048155,0x4(%esp)

 8048168: movl $0x61,(%esp)

 804816f: call 0x804810d

 8048183: call 0x804810d 80481d7: call 0x804818f

 804818f: push %ebp

 804818d: pop %ebp

 804818e: ret

 8048190: mov %esp,%ebp

 8048192: sub $0x8,%esp

 8048195: movl $0x804818a,0x4(%esp)

 804819d: movl $0x64,(%esp)

 80481a4: call 0x804810d

 80481dc: call 0x80481b0

 80481b0: push %ebp

 80481ae: pop %ebp

 80481af: ret

 80481b1: mov %esp,%ebp

 80481b3: sub $0x8,%esp

 80481b6: movl $0x80481ab,0x4(%esp)

 80481be: movl $0x65,(%esp)

 80481c5: call 0x804810d

 80481e1: jmp 0x80481e4

 80481e4: call 0x80480d8

 80481cc: push %ebp

 80481cd: mov %esp,%ebp

 80481cf: sub $0x28,%esp

 80481d2: call 0x804815a

 80481e3: nop

 80481f0: je 0x8048208

[(0x8048208,0)] 80481f2: mov -0xc(%ebp),%eax

 80481f5: mov %eax,(%esp)

 80481f8: call 0x8048122

 8048201: mov $0x1,%eax

 8048206: jmp 0x804820e

 804820e: leave

 804820f: ret

 804821b: hlt

 8048210: push %ebp

 8048211: mov %esp,%ebp

 8048213: and $0xfffffff0,%esp

 8048216: call 0x80481cc

_maincallback_call callback_registerinput_char mainxxx_cb xxx_inityyy_cb yyy_initzzz_cb zzz_init

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 42 / 46

Current & Future Work
Work on progress

Add SPARC and amd64 architectures;
Implement DARE and the abstract interpretation framework;
Improve user interface (cfgrecovery);
Make some more realistic case studies;
Build a model-checker for microcode;
Build a data-flow analyzer for microcode;
Debug, debug, debug.

Future Work
Build a complete UNIX and Microsoft Windows environment to simulate the
execution properly;
Recovery of high-level memory structures and types;
Identification of procedures in the code;
Handle self-modifying code;
Automated de-obfuscation routines on microcode;
. . .

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 43 / 46

References I

Sébastien Bardin and Philippe Herrmann.
Structural testing of executables.
In Proceedings of First International Conference on Software
Testing, Verification, and Validation (ICST’2008), pages 22–31,
Lillehammer, Norway, 2008. IEEE Computer Society.
Gogul Balakrishnan and Thomas Reps.
Analyzing memory access in x86 executables.
In Proc. Int. Conf. on Compiler Construction, pages 5–23, New
York, NY, 2004. Springer.
Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: directed automated random testing.
In Proceedings of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation (PLDI’2005),
pages 213–223, Chicago, IL, USA, 2005. ACM.

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 44 / 46

References II

Johannes Kinder and Dmitry Kravchenko.
Alternating control flow reconstruction.
In Proceeding of 13th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI’2012),
volume 7148 of Lecture Notes in Computer Science, pages
267–282, Philadelphia, PA, 2012. Springer.
Johannes Kinder, Florian Zuleger, and Helmut Veith.
An abstract interpretation-based framework for control flow
reconstruction from binaries.
In Proceedings of 10th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI’2009),
volume 5403 of Lecture Notes in Computer Science, pages
214–228, Savannah, GA, USA, 2009. Springer.

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 45 / 46

Questions ?

E. Fleury (LaBRI, France) Binary Program Analysis: Theory and Practice June 13, 2013 46 / 46

