
http://www.lsv.ens−cachan.fr/Publis/
In Proc. 25th Int. Symp. Math. Found. Comp. Sci. (MFCS’2000), Bratislava, Slovakia, Aug. 2000.
volume 1893 of Lecture Notes in Computer Science, pages 232−242. Springer, 2000.

Expressiveness of Updatable Timed Automata
P. Bouyer, C. Dufourd, E. Fleury, A. PetitLSV, UMR 8643, CNRS & ENS de Cahan,61 Av. du Président Wilson, 94235 Cahan edex, Frane{bouyer, dufourd, fleury, petit}�lsv.ens-ahan.fr

Abstrat. Sine their introdution by Alur and Dill, timed automatahave been one of the most widely studied models for real-time systems.The syntati extension of so-alled updatable timed automata allowsmore powerful updates of loks than the reset operation proposed inthe original model.We prove that any language aepted by an updatable timed automa-ton (from lasses where emptiness is deidable) is also aepted by a�lassial� timed automaton. We propose even more preise results onbisimilarity between updatable and lassial timed automata.
1 IntrodutionSine their introdution by Alur and Dill [2, 3℄, timed automata have beenone of the most studied models for real-time systems (see [4, 1, 16, 8, 12, 17, 13℄).In partiular numerous works proposed extensions of timed automata [7, 10, 11℄.This paper fouses on one of this extension, the so-alled updatable timedautomata, introdued in order to model the ATM protool ABR [9℄. Updatabletimed automata are onstruted with updates of the following forms:x :� j x :� y + where x; y are loks; 2 Q + and �2 f<;�;=; 6=;�; >gIn [5℄, the (un)deidability of emptiness of updatable timed automata hasbeen haraterized in a preise way (see Setion 2 for detailed results). We ad-dress here the open question of the expressive power of updatable timed au-tomata (from deidable lasses). We solve ompletely this problem by provingthat any language aepted by an updatable timed automaton is also aeptedby a �lassial� timed automaton with "-transitions. In fat, we propose evenmore preise results by showing that any updatable timed automaton using onlydeterministi updates is strongly bisimilar to a lassial timed automaton andthat any updatable timed automaton using arbitrary updates is weakly bisimilar(but not strongly bisimilar) to a lassial timed automaton.The paper is organized as follows. In Setion 2, we present updatable timedautomata, generalizing lassial de�nitions of Alur and Dill. Several natu-ral equivalenes of updatable timed automata are introdued in Setion 3. Thebisimulation algorithms are presented in Setion 4.For lak of spae, this paper ontains only some skeths of proofs. They areavailable on the tehnial report [6℄.

2 Updatable Timed AutomataTimed Words and CloksIf Z is any set, let Z� (respetively Z!) be the set of �nite (resp. in�nite)sequenes of elements in Z and let Z1 = Z� [Z!. We onsider as time domainT the set of non-negative rational Q + and � as �nite set of ations. A timesequene over T is a �nite or in�nite non dereasing sequene � = (ti)i�1 2 T1 .A timed word ! = (ai; ti)i�1 is an element of (� � T)1 .We onsider an at most ountable set X of variables, alled loks. A lokvaluation over X is a mapping v : X ! T that assigns to eah lok a time value.Let t 2 T, the valuation v + t is de�ned by (v + t)(x) = v(x) + t, 8x 2 X .Clok ConstraintsGiven a subset of loks X � X , we introdue two sets of lok onstraints overX. The most general one, denoted by C(X), is de�ned by the following grammar:' ::=x� jx�y� j'^' j :' j true; with x; y2X; 2Q + ;�2f<;�;=; 6=;�; >gThe proper subset Cdf (X) of �diagonal-free� onstraints in whih the omparisonbetween two loks is not allowed, is de�ned by the grammar:' ::=x� j'^' j :' j true; with x2X; 2Q + and �2f<;�;=; 6=;�; >gWe write v j= ' when the lok valuation v satis�es the lok onstraint '.UpdatesAn update is a funtion whih assigns to eah valuation a set of valuations. Here,we restrit ourselves to loal updates whih are de�ned in the following way. Asimple update over a lok z is of one of the two following forms:up ::= z :� j z :� y + d; where ; d 2 Q + ; y 2 X and �2 f<;�;=; 6=;�; >gWhen the operator � is the equality (=), the update is said to be deterministi,non deterministi otherwise. Let v be a valuation and up be a simple updateover z. A valuation v0 is in up(v) if v0(y) = v(y) for any lok y 6= z and ifv0(z) � (v0(z) � v(y) + d resp.) if up = z :� (up = z :� y + d resp.)The set lu(U) of loal updates generated by a set of simple updates U is de�nedas follows. A olletion up = (upi)1�i�k is in lu(U) if, for eah i, upi is a simpleupdate of U over some lok xi 2 X (note that it ould happen that xi = xjfor some i 6= j). Let v; v0 2 Tn be two lok valuations. We have v0 2 up(v)if and only if, for any i, the lok valuation v00 de�ned by v00(xi) = v0(xi) andv00(y) = v(y) for any y 6= xi veri�es v00 2 upi(v).Note that up(v) may be empty. For instane, the loal update (x :< 1; x :> 1)leads to an empty set. But if we take the loal update (x :> y; x :< 7), the valuev0(x) has to satisfy : v0(x) > v(y) ^ v0(x) < 7.For any subset X of X , U(X) is the set of loal updates whih are olletions ofsimple updates over loks of X. In the following, U0(X) denotes the set of resetupdates. A reset update is an update up suh that for every lok valuation v,v0 with v0 2 up(v) and any lok x 2 X, either v0(x) = v(x) or v0(x) = 0. It ispreisely this set of updates whih was used in �lassial� timed automata [3℄.

Updatable Timed AutomataAn updatable timed automaton over T is a tuple A = (�;Q;X; T; I; F;R), where� is a �nite alphabet of ations, Q a �nite set of states, X � X a �nite set ofloks, T � Q� [C(X)�� [f"g � U(X)℄�Q a �nite set of transitions, I � Q(F � Q, R � Q resp.) the subset of initial (�nal, repeated resp.) states.Let C � C(X) be a subset of lok onstraints and U � U(X) be a subset ofupdates, the lass Aut"(C;U) is the set of all timed automata whose transitionsonly use lok onstraints of C and updates of U . The usual lass of timedautomata, de�ned in [2℄, is the family Aut"(Cdf (X);U0(X)).A path in A is a �nite or an in�nite sequene of onseutive transitions:P = q0 '1;a1;up1������! q1 '2;a2;up2������! q2 : : : ; where (qi�1; 'i; ai; upi; qi) 2 T; 8i > 0The path is said aepting if q0 2 I and either it is �nite and it ends in an �nalstate, or it is in�nite and passes in�nitely often through a repeated state. A runof the automaton through the path P is a sequene of the form:hq0; v0i '1;a1;up1������!t1 hq1; v1i '2;a2;up2������!t2 hq2; v2i : : :where � = (ti)i�1 is a time sequene and (vi)i�0 are lok valuations suh that8x 2 X ; v0(x) = 0 and 8i � 1; vi�1+(ti�ti�1) j= 'i and vi 2 upi(vi�1+(ti�ti�1).Remark that any set upi(vi�1 + (ti � ti�1)) of a run is non empty.The label of the run is the sequene (a1; t1)(a2; t2) � � � 2 ((� [f"g)� T)1 . Thetimed word assoiated with this sequene is w = (ai1 ; ti1)(ai2 ; ti2) : : : whereai1ai2 : : : is the sequene of ations whih are in � (i.e. distint from "). If thepath P is aepting then the timed word w is aepted by the timed automaton.About Deidability of Updatable Timed AutomataFor veri�ation purposes, a fundamental question is to know if the emptiness of(the language aepted by) an updatable timed automaton is deidable or not.The paper [5℄ proposes a preise haraterization whih is summarized in thepiture below. Note that deidability an depend on the set of lok onstraintsthat are used � diagonal-free or not � whih makes an important di�erenewith �lassial� timed automata for whih it is well known that these two kindsof onstraints are equivalent. The tehnique proposed in [5℄ shows that all thedeidability ases are Pspae-omplete.diagonal-free lok onstraints general lok onstraints
Determin
isti updates

x := ; x := y Deidable Deidablex := y + , 2 Q+ Deidable Undeidablex := y + , 2 Q� Undeidable Undeidable

Nondete
rministi updates

x :< , 2 Q+ Deidable Deidablex :> , 2 Q+ Deidable Undeidablex :< y + , 2 Q+ Deidable Undeidablex :> y + , 2 Q+ Deidable Undeidable

The present paper adresses the natural question of the exat expressive powerof the deidable lasses. To solve this problem, we �rst introdue natural andlassial equivalenes between updatable timed automata.
3 Some Equivalenes of Updatable Timed AutomataLanguage EquivaleneTwo updatable timed automata are language-equivalent if they aept the sametimed language. By extension, two families Aut1 and Aut2 are said to be equiv-alent if any automaton of one of the families is equivalent to one automatonof the other. We write �` in both ases. For instane, Aut"(Cdf (X);U0(X)) �`Aut"(C(X);U0(X)), (see e.g. [7℄).BisimilarityBisimilarity [15, 14℄ is stronger than language equivalene. It de�nes a step bystep orrespondene between two transition systems. Two labelled transition sys-tems T = (S; S0; E; (e�!)e2E) and T 0 = (S0; S00; E; (e�!)e2E) are bisimilar when-ever there exists a relation R � S � S0 whih meets the following onditions:initialization : �8s0 2 S0, 9s00 2 S00 suh that s0Rs008s00 2 S00, 9s0 2 S0 suh that s0Rs00

propagation : 8>>><>>>:
if s1Rs01 and s1 e�! s2 then there exists s02 2 S0suh that s01 e�! s02 and s2Rs02if s1Rs01 and s01 e�! s02 then there exists s2 2 Ssuh that s1 e�! s2 and s2Rs02Strong and Weak BisimilarityTimed transition systems - Eah updatable timed automaton A =(�;Q;X; T; I; F;R) in Aut"(C(X);U(X)) de�nes a timed transition system TA =(S; S0; E; (e�!)e2E) as follows :� S = Q� TX , S0 = fhq; vi j q 2 I and 8x 2 X; v(x) = 0g, E = � [f"g [Q +� 8a2� [f"g, hq; vi a�!hq0; v0i i� 9(q; '; a; up; q0)2T s.t. v j= ' and v02up(v)� 8d 2 Q + , hq; vi d�! hq0; v0i i� q = q0 and v0 = v + dWhen " is onsidered as an invisible ation, eah updatable timed automaton Ain Aut"(C(X);U(X)) de�nes another transition system T 0A = (S; S0; E0; (e))e2E)as follows:� S = Q� TX , S0 = fhq; vi j q2I and 8x2X; v(x) = 0g, E0 = � [Q +� 8a2�, hq; vi a) hq0; v0i i� hq; vi "�!� a�! "�!� hq0; v0i� 8d2Q + , hq; vi d)hq0; v0i i� hq; vi "�!� d1�! "�!�: : : dk�! "�!� hq0; v0i and d =Pki=1diTwo bisimilarities for timed automata - Two updatable timed automata A andB are strongly bisimilar, denoted A �s B, if TA and TB are bisimilar. They areweakly bisimilar, denoted A �w B, if T 0A and T 0B are bisimilar.

Remark 1. Two timed strongly bisimilar automata are obviously weakly bisim-ilar. If the bisimulation R preserves the �nal and repeated states, weakly orstrongly bisimilar updatable timed automata reognize the same language.Let A a timed automaton and � be a onstant. We denote by �A the timedautomaton in whih all the onstants whih appear are multiplied by the onstant�. The proof of the following lemma is immediate and similar to the one ofLemma 4.1 in [3℄. This lemma allows us to treat only updatable timed automatawhere all onstants appearing in the lok onstraints and in the updates areinteger (and not arbitrary rationals).Lemma 1. Let A and B be two timed automata and � 2 Q + be a onstant.Then A �w B () �A �w �B and A �s B () �A �s �B4 Expressive Power of Deterministi UpdatesWe �rst deal with updatable timed automata where only deterministi updatesare used. The following theorem is often onsidered as a �folklore� result.Theorem 1. Let C � C(X) be a set of lok onstraints and let U � lu(fx :=d jx 2 X and d 2 Q +g [fx := y jx; y 2 Xg). Let A be in Aut"(C;U). Thenthere exists B in Aut"(C(X);U0(X)) suh that A �s B.The next theorem is lose to the previous one. Note nevertheless that this theo-rem beomes false if we onsider arbitrary lok onstraints, sine as we realledin setion 2, the orresponding lass is undeidable.Theorem 2. Let C � Cdf (X) be a set of diagonal-free lok onstraints. LetU � lu(fx := d jx 2 X and d 2 Q +g [fx := y + d jx; y 2 X and d 2 Q +g).Let A be in Aut"(C;U). Then there exists B in Aut"(Cdf (X);U0(X)) suh thatA �s B.5 Expressive Power of Non Deterministi UpdatesIn the ase of non deterministi updates, we �rst show that it is hopeless toobtain strong bisimulation with lassial timed automata. To this purpose, letus onsider the automaton C of Figure 1. It has been proved in [7℄ that thereis no lassial timed automaton without "�transitions that reognize the samelanguage than C.Now, it is not di�ult to prove that the automaton C reognizes the same lan-guage than the automaton B and that B reognizes itself the same language thanA. If A was strongly bisimilar to some automaton D of Aut"(C(X);U0(X)), thisautomaton D would not ontain any "�transition (sine A does not ontain suhtransition). Hene L(D) would be equal to L(A) = L(C), in ontradition withthe result of [7℄ realled above. Sine A belongs to the lass Aut"(C(X);U1(X))(where U1(X) denotes the set of updates orresponding to the ells labelled �de-idable� in the �general lok onstraints� olumn in tabular of Setion 2), wethus have proved:

A

0<x<1; b; y :<0
x=1^x=y�1;a; x :=0

y=1^y=x�1;a; y :=0
�1<y<0; b; x :<0

0<x<1^x=y�1; b; y :<0
0<y<1^y=x�1; b; x :<0x=1;a;x :=0 y=1;a;y :=0

B C
x=1;a;x :=0 0<x<1;b;x :=x�1 x=1;a;x :=0 0<x<1; b

x=1; "; x :=0Fig. 1. Timed automata A, B and CProposition 1. Aut"(C(X);U1(X)) 6�s Aut"(C(X);U0(X))We now fous on weak bisimilarity. As it will appear, the onstrution ofan automaton of Aut(C(X);U0(X)) weakly bisimilar to a given automaton ofAut(C(X);U1(X)) is rather tehnial. As we realled in Setion 2, the deidablelasses of updatable timed automata depend on the set of lok onstraints thatare used. We onsider �rst the ase of diagonal-free lok onstraints.We �rst propose a normal form for diagonal-free updatable automata. Let(x)x2X be a family of onstants of N . In what follows we will restrit ourselvesto the lok onstraints x � where � x. We de�ne: Ix = f℄d; d+1[j 0 � d <xg [f[d℄ j 0 � d � xg [f℄x;1[gA lok onstraint ' is said to be total if ' is a onjuntion Vx2X Ix where foreah lok x, Ix is an element of Ix. Any diagonal free lok onstraint boundedby the onstants (x)x2X is equivalent to a disjuntion of total lok onstraints.We de�ne I 0x = f℄d; d+1[j 0 � d < xg[f℄x;1[g. An update upx is elementaryif it is of one of the two following forms:- x := or x 2 I 0x with I 0x 2 I 0x,- Vy2H x :� y+^x 2 I 0x with �2 f=; <;>g, I 0x 2 I 0x and 8y 2 H, x � y+.An elementary update ((Vy2H x :� y +) ^ x 2 I 0x) is ompatible with a totalguard Vx2X Ix if, for any y 2 H, Iy + � I 0x. By applying lassial rulesof propositional alulus and splitting the transitions, we obtain the followingnormal form for diagonal-free updatable timed automata.Proposition 2. Any diagonal-free updatable timed automaton fromAut"(Cdf (X);U(X)) is strongly bisimilar to a diagonal-free updatable timedautomaton from Aut"(Cdf (X);U(X)) in whih for any transition (p; '; a; up; q)it holds:� ' is a total guard� up = Vx2X upx with for any x, upx is an elementary update ompatiblewith '

Constrution for Diagonal-Free Updatable Timed AutomataWe an now state our main result onerning updatable diagonal-free timedautomata:Theorem 3. Let C � Cdf (X) be a set of diagonal-free lok onstraints. LetU � U(X) be a set of updates. Let A be in Aut(C;U). Then there exists B inAut"(Cdf (X);U0(X)) suh that A �w B. In partiular A and B aept the sametimed language.Proof (Sketh of proof). Thanks to Lemma 1 and Proposition 2, we assume thatall the onstants appearing in A are integers and that A is in normal form forsome onstants (x)x2X . For eah lok x, we denote by I 00x the set of intervalsf℄; + 1[j 0 � < xg.A lok x is said �xed if the last update of x was of the form either x := or(Vy2H x := y +) ^ x :2 I 0x where all the loks of H were �xed themselves. Alok whih is not �xed is said �oating.The transformation algorithm onsists in onstruting (a lot of) opies of theoriginal automaton A, adding suitable loks, transforming the existing transi-tions and �nally adding "�transitions going from one opy to another.Dupliation of the initial automaton - For eah subset Y � X, for eah tuple(Iy)y2Y with Iy 2 I 00y , for eah partial preorder � de�ned on Y and for eahsubset Z � Y , we onsider a opy of A, denoted by A(Iy)y2Y ;�;Z . Intuitively,eah lok y 2 Y will be �oating and with Iy as set of possible values. Thepreorder � orresponds to the partial order between the frational parts of theloks of Y . The role of Z will be explained below.Keeping in mind the frational part of the loks - We assoiate with eahlok x an other lok zx representing the frational part of x. In an automatonA(Iy)y2Y ;�;Z , we need to fore the frational part of any lok x to stay in [0; 1[.If a frational part reahs the value 1, then either the lok is in Y and we willhange of automaton (see below) or the lok is not in Y and the frational parthas to be reset to 0. To this purpose, we add to this automaton:� on eah transition, the lok onstraint Vx2X(zx < 1)� on eah state r, for eah lok x 2 X n Y , a loop (r; zx = 1; "; zx := 0; r)Erasing some transitions - Sine in an automaton A(Iy)y2Y ;�;Z , a lok y 2 Ywill always verify y 2 Iy, a total lok onstraint ' ^Vx x 2 I 0x an be satis�edonly if I 0y = Iy for all y 2 Y . Therefore, we erase all the transitions with lokonstraints whih do not have this property.Modi�ation of the updates - We onsider a opy A(Iy)y2Y ;�;Z and a transi-tion (q; '; a; up; q0) inside this opy. This transition will be replaed by anothertransition (q; '; a;up; bq0) from A(Iy)y2Y ;�;Z to another automaton A(bIy)y2 bY ;b�;bZ(whih an be possibly A(Iy)y2Y ;�;Z itself) and where bq0 is the opy of q0 in thenew automaton. The elements bY , (Iy)y2Y , b� and up are onstruted indutivelyby onsidering one after the other the updates upx involved in up (the order inwhih the updates are treated is irrelevant). The new update up will be only

onstituted of updates of the form x := or x := y + . Initially, we set bY = Y ,bIy = Iy for all y 2 Y , b� =�, up = true and bZ = Z.Before listing the di�erent updates, let us explain the role of the set Z. Assumethat a lok x is updated by an instrution x :< y + where y is �oating.Then the lok x is added to the set of �oating loks. Sine we do not want touse anymore non deterministi updates, we update the frational part zx to 0,zx := 0. But we need to keep the urrent value of zy in order to ensure that zx,whih has to be smaller than zy, will not reah 1 before zy. Of ourse, it an beheked easily if y is not updated but if it is the ase, we do not have any wayto verify this fat. Therefore, in suh a ase, we add the lok x to the set Z andwe use a new lok wx to keep in mind the urrent value of zy: wx := zy. Therequired property is then veri�ed by the ondition wx � 1.� if upx is equal to x := then we just have to onsider x as �xed:� bY bY n fxg, bZ bZ n fxg, up up ^ x := ^ zx := 0� if upx is equal to Vy2H x := y + ^ x :2 I 0x then :1. if I 0x is bounded, then we write H as the disjoint union of H1 = H \ Yand H2 = H n Y . We distinguish two ases:(a) if H1 = ;, then:� bY bY n fxg, bZ bZ n fxg� up up ^Vy2H(x := y + ^ zx := zy)(b) if H1 6= ;, then:� bY bY [fxg, bIx I 0x, bZ bZ [fxg� for eah y 2 H1, xb�y and yb�x� up up ^ Vy2H2(x := y + ^ zx := zy) ^ Vy2H2(wx := zy) ifH2 6= ; ; up up ^ (zx := 0) if H2 = ;2. if I 0x is non bounded, then we writeH as the disjoint union ofH1 = H\Yand H2 = H n Y . We distinguish two ases:(a) if H1 = ;, then:� bY bY n fxg, bZ bZ n fxg� up up ^Vy2H(x := y + ^ zx := zy)(b) if H1 6= ;, then:� bY bY [ftg n fxg where t is some lok of H2� bIt is some tested interval (we test whether the value of t is insome interval ℄; + 1[and the lok t beomes a �oating lokin this interval)� bZ bZ [ftg n fxg, for eah lok y 2 H1, tb�y and yb�t� up up^Vy2H2(x0 := y+)^(x := x+1^zx := 0)^(wt := zt)� if upx is equal to Vy2H x :< y + ^ x :2 I 0x then there are two ases:1. if I 0x is bounded, then:� bY bY [fxg, bIx I 0x� for all y 2 Y \H, xb�y (but not yb�x) is added to b�� bZ bZ n fxg if H � Y ; bZ bZ [fxg if H 6� Y� up up ^ (zx := 0) ^Vy2HnY (wx := zy)2. if I 0x is non bounded, then:� bY bY n fxg, up up ^ (x := x + 1) ^ (zx := 0)

� if upx is equal to Vy x :> y + ^ x :2 I 0x then:1. if I 0x is non bounded, then:� bY bY [fxg, bIx I 0x, bZ bZ n fxg� yb�x (but not xb�y) is added to b�, up up ^ zx := zy2. if I 0x is bounded, then:� bY bY n fxg, up up ^ (x := x + 1) ^ (zx := 0)Adding deterministi updates to go from one opy to another- We onsidera partiular opy A(Iy)y2Y ;�;Z . We add new "�transitions in order to leave thisautomaton as soon as some lok y leaves the interval Iy. By de�nition, theloks whih will �rst leave Iy belong to the maximal elements of the preorder�. Therefore, for any subset M of Y suh that the elements of M are maximalelements of the preorder � and if y 2M , x � y and y � x then x 2M , we adda transition from any opy of a state q in A(Iy)y2Y ;�;Z to the opy of q in theautomaton A(Iy)y2Y 0 ;�0;Z0 with Y 0 = Y nM , �0=� \(Y 0 � Y 0), Z 0 = Z nM .This transition is labelled by^x2X\Z(zx � 1) ^ ^x2XnZ(zx < 1) ^ ^x2Z\M(wx � 1); "; 8x 2M x := sup(Ix)where sup(Ix) is the least upper bound of the interval Ix.Intuitively it means that the values of some maximal elements have reahed theupper bound of their �oating interval and thus beome �xed.Now, we just need to de�ne a weak bisimulation R. Roughly, a state of theoriginal timed automaton will be in relation with all the opies of this state(with appropriate valuations). This onludes the proof of Theorem 3.When we deal with the general updatable timed automata, as we realled inSetion 2, we need to restrit deeply the updates that are used in order to havedeidable lasses. As states the next theorem, these lasses are one again weaklybisimilar to lassial timed automata with "�transitions.Theorem 4. Let C � C(X) be a set of general lok onstraints and U �lu(fx := y jx; y 2 Xg [fx :� jx 2 X; 2 Q + and �2 f<;�;=gg) be aset of updates. Let A be in Aut(C;U). Then there exists B in Aut"(C(X);U0(X))suh that A �w B. In partiular A and B aept the same timed language.The proof is quite similar to the one of Theorem 3, and even simpler beausethere is no non deterministi update allowed and involving two loks.
6 ConlusionOur results are summarized in the following tabular (a � denotes an undeidablease). A ell labelled �(Strongly/Weakly) bisimilar� means that any updatabletimed automaton of the lass represented by the ell is (strongly/weakly) bisim-ilar to a �lassial� timed automaton with "�transitions:

Diagonal-free onstraints General onstraints
Determ. updates x := ; x := y Strongly bisimilar Strongly bisimilarx := y + , 2 Q+ Strongly bisimilar �
NonDeter
m. updates x :< , 2 Q+ Weakly bisimilar Weakly bisimilarx :> , 2 Q+ Weakly bisimilar �x :� y + ; 2 Q+ ; �2 f<;>g Weakly bisimilar �

Referenes1. R. Alur, C. Couroubetis, and T.A. Henzinger. The observational power of loks.In Pro. of CONCUR'94, LNCS 836, pages 162�177, 1994.2. R. Alur and D. Dill. Automata for modeling real-time systems. In Pro. ofICALP'90, LNCS 443, pages 322�335, 1990.3. R. Alur and D. Dill. A theory of timed automata. TCS'94, pages 183�235, 1994.4. R. Alur, T.A. Henzinger, and M. Vardi. Parametri real-time reasoning. In Pro.of the 25th ACM STOC, pages 592�601, 1993.5. P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata updatable ?In Pro. of CAV'2000, LNCS, 2000. To appear.6. P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Expressiveness of updatable timedautomata. Researh report, ENS de Cahan, 2000.7. B. Bérard, V. Diekert, P. Gastin, and A. Petit. Charaterization of the expressivepower of silent transitions in timed automata. Fundamenta Informatiae, pages145�182, 1998.8. B. Bérard and C. Dufourd. Timed automata and additive lok onstraints. Re-searh report LSV-00-4, LSV, ENS de Cahan, 2000.9. B. Bérard and L. Fribourg. Automati veri�ation of a parametri real-time pro-gram : the ABR onformane protool. In Pro. of CAV'99, LNCS 1633, pages96�107, 1999.10. C. Cho�rut and M. Goldwurm. Timed automata with periodi lok onstraints.Tehnial Report 99/28, LIAFA, Université Paris VII, 1999.11. F. Demihelis and W. Zielonka. Controlled timed automata. In Pro. of CON-CUR'98, LNCS 1466, pages 455�469, 1998.12. T.A. Henzinger, P. Ho, and H. Wong-Toi. Hyteh: A model heker for hybridsystems. In Software Tools for Tehnology Transfer, pages 110�122, 1997. (speialissue on Timed and Hybrid Systems).13. K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal onSoftware Tools for Tehnology Transfer, 1:134�152, 1997.14. R. Milner. Communiation and Conurreny. Prentie Hall Int., 1989.15. D. M. Park. Conurreny on automata and in�nite sequenes. In CTCS'81, LNCS104, pages 167�183, 1981.16. T. Wilke. Speifying timed state sequenes in powerful deidable logis and timedautomata. In Pro. of FTRT-FTS, LNCS 863, pages 694�715, 1994.17. S. Yovine. A veri�ation tool for real-time systems. Springer International Journalof Software Tools for Tehnology Transfer, 1, 1997.

