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Using IDDs for Paket FilteringMikkel Christiansen Emmanuel FleuryBRICS∗Department of Computer SieneAalborg UniversityEmail: {mixxel,�eury}�s.au.dkOtober 29, 2002AbstratFirewalls are one of the key tehnologies used to ontrol the tra� go-ing in and out of a network. A entral feature of the �rewall is the paket�lter. In this paper, we propose a omplete framework for paket lassi�-ation. Through two appliations we demonstrate that both performaneand seurity an be improved.We show that a traditional ordered rule set an always be expressedas a �rst-order logi formula on integer variables. Moreover, we empha-size that, with suh spei�ation, the paket �ltering problem is knownto be onstant time (O(1)). We propose to represent the �rst-order logiformula as Interval Deision Diagrams [ST98℄. This struture has severaladvantages. First, the algorithm for removing redundany and unnees-sary tests is very simple. Seondly, it allows us to handle integer variableswhih makes it e�ient on a generi CPUs. And, �nally, we introduean extension of IDDs alled Multi-Terminal Interval Deision Diagramsin order to deal with any number of poliies.In matter of e�ieny, we evaluate the performane our frameworkthrough a prototype toolkit omposed by a ompiler and a paket �lter.The results of the experiments shows that this method is e�ient in termsof CPU usage and has a low storage requirements.Finally, we outline a tool, alled Network Aess Veri�er. This tooldemonstrates how the IDD representation an be used for verifying aessproperties of a network. In total, potentially improving the seurity of anetwork.
∗Basi Researh in Computer Siene (www.bris.dk)1



1 IntrodutionThe Internet �rewall is one of the key tehnologies used by network adminis-trators for ontrolling aess to an organizations network. The main reasonfor the suess is that the �rewall allows entralized �ltering of tra� enter-ing and exiting the proteted network. The entral �ltering mehanism of the�rewall is the paket �lter. It operates by identifying a poliy by omparingthe protool header �elds of a paket with a �lter spei�ation. In this paperwe fous on the paket �ltering mehanism, and in partiular on how paket�lters an be improved both in terms of seurity and performane.The primary aspet of paket �ltering is the issue of paket lassi�ation.Paket lassi�ation has been subjet of muh study in reent time, for examplesee [LS98, GM99, FM00℄. The reason being that the ability to lassify paketsplays a entral role in routing and in the Di�erentiated Servies Arhiteture.However, the requirements to the paket lassi�ation sheme may be quitedi�erent from one appliation to the other. One example is routing on theInternet, where the lassi�er is used for hoosing an interfae based on a routingtable. Here the lassi�ation only uses one or two of the address �elds in thepaket header determine route, where a �rewall may lassify pakets basedon any number of paket header �elds TCP and/or IP. An related exampleis whether the lassi�ation algorithms should support dynami updates ofthe spei�ation or not. This is, for instane, the ase with dynami routing.Firewalls, on the other hand, uses more stati spei�ations. An �nal di�erenemay be the option to use dediated hardware or not.Given these di�erenes, ommon performane measures of paket lassi�a-tion algorithms still remain. This inludes lassi�ation time, spae omplexity,and performane of the optimization phase. Often worst ase omplexities aregiven in along with empirial measurements.An other aspet of paket �ltering is ability to analyze and hek the �lterspei�ation before taking it into use. Current seurity audits rely on perform-ing tests on the atual network by using port sanning or more advaned toolssuh as Nessus [nes℄. Performing o�-line seurity audits allow administratorsto perform omplete tests of their networks and minimize the requirement toperform test on the atual networks. However, a entral issue for tool designis that the tool is based on a strong foundation, whih in the ase of paket�ltering means a sound and omplete representation of �lter spei�ations.In this paper we present a paket lassi�ation sheme that is well suitedfor paket �ltering and an be summarized as follows:
• Sound representation of paket �lters that is ompatible with the tradi-tional representation, e.g. ordered rule based �lter desription.
• Salable in terms of the number of header �elds, poliies used in the2



spei�ation.
• E�iently lassi�ation omplexity (O(1)), assuming that the number ofbounded �elds.
• Compat and stati representation of �lter spei�ation using deisiondiagrams.
• Aess to tehniques for verifying properties of �lter spei�ations.The key idea in the paket lassi�ation sheme it to transform a tra-ditional rule based representation of a paket �lter into a boolean expres-sion represented as a deision diagram, similar to the approah presentedin [Haz99℄. However rather then using the widely known Boolean Deision Di-agrams (BDDs) [Bry86℄ as in [Haz99℄ we use the less explored Interval DeisionDiagrams (IDDs) [ST98℄. IDDs operate on integer ranges rather then booleansthus providing the aess to e�ient lassi�ation of pakets on generi CPUs.However IDDs an only be used for lassifying between two poliies. Toalleviate this problem we introdue the onept of Multi Terminal IntervalDeision Diagrams (MTIDDs), that provide aess to using any number ofpoliies. This extension is similar to the MTBDD extension of BDDs desribedin [Bry86℄ whih is suggested for paket lassi�ation in [AH02℄.To demonstrate the potential of using IDDs for representing �lter spe-i�ations, we outline a tool alled Network Aess Veri�er (NAV). The keyonept of the veri�er is the ability perform a reahability of analysis of anentire network, for instane proving whether the network is vulnerable to IPspoo�ng.In the following setions we �rst desribe bakground and related work.Then in Setion 3 we desribe our model of paket �ltering. Setion 4 on-tinues by introduing IDDs and show how we represent �lter spei�ationsusing IDDs. In setion 5 we desribe the �rst of two appliations whih takesadvantage of the paket lassi�ation sheme. This �rst appliation is a highperformane paket lassi�er that provides empirial evidene showing that theperformane of the sheme orresponds to expetations. In Setion 6 we out-line the seond appliation whih is NAV, through whih we demonstrate thestrength of using the IDD representation of paket �lters. Finally in Setion 7we state onlusions and desribe future work.2 Related WorkIn [Haz99℄ Hazelhurst presents the idea of transforming �rewall paket �ltersinto boolean expressions that are represented as BDDs. The paper desribesan algorithm for transforming a Ciso �rewall �lter into a BDD, inluding the3



handling of issues with overlapping rules. The main use of BDDs in this paperis for a tool that an be used analyzing and test �lters. A later paper by Hazel-hurst et. al [HAS00℄ fous on using using the BDD strutures for performingpaket lassi�ation. The onlusion is that BDDs an improve the lookuplateny on systems using dediated hardware suh as FPGAs, while they donot perform well on generi CPUs. In [AH02℄ Attar and Hazelhurst use N-arydeision diagrams for improving the lookup performane. The experimentalresults show that the lookup time an be signi�antly improved by using thismethod, however at the prie of inreased memory usage. Furthermore the ideaof using MTBDDs to handle the more general paket lassi�ation is suggested.Several papers propose algorithms for pakets lassi�ation on multiple�elds for generi CPUs [BMG99, FM00, Sri01, BV01℄.Begel et. al [BMG99℄ proposes a fully general paket �lter framework. Fil-ters are spei�ed in a delarative prediate language, that are ompiled intoa �ow graph, and then optimized before being exeuted on a virtual mahinemodel. Optimization is performed on the �ow-graph by using redundant pred-iate elimination for removing redundanies and rearranging non-optimal odesequenes. An interesting point is the introdution of a safety veri�er thatheks the validity of the programs before they are exeuted on the virtualmahine. This prevents the user from running programs with in�nite loops ormemory faults. The evaluation of the tool shows good performane. Howeveronly with small test ases are applied.In [BV01℄ Baboesu and Varghese desribe a sheme alled Aggregate BitVetor (ABV). The aim of the sheme is to provide salable paket lassi�ation(100,000 rules) to handle large �lters while also providing e�ient lassi�ationtimes on generi CPUs. The sheme is an extension of the bit vetor searhalgorithm (BV) desribed in [LS98℄. The �rst optimization of the BV shemeonsists of minimizing the number of unused bits in the bit vetors, by takingadvantage of the observation that the number of rules overlapping in a �lter islikely to be small. This is tehnique referred to as aggregation. Seondly, totake full advantage of using aggregation the order of the rules is rearranged.However, again due to the issues of overlapping rules, it is not possible. Butby modifying the BV sheme to �rst �nd all mathes and then omputing thelowest ost math this is made possible.In omparison with the approah presented in this paper, both the BVsheme and the ABV sheme solve a more general paket lassi�ation problemthe we do. The reason being that in BV and ABV issues of overlapping rulesare handled in the lassi�ation algorithm while we remove the overlap betweenrules when building the deision diagram struture.An other ative area for researh is on tools for managing and analyzing�lters. An example is the tool presented in [HSP00℄ whih an be used fordeteting an resolving paket on�its in paket �lters. Here a sheme is in-4



trodued to resolve paket on�its by adding resolve �lters. An other tool,presented in a paper by Eronen and Zitting [EZ01℄, presents a tool that usesonstraint logi programming for analyzing paket �lters. Similar to the workpresented in [Haz99℄ this tool transforms paket �lters to boolean expressionsbefore performing the analysis.3 Paket FilteringThe problem of paket �ltering is to math a paket header with a poliy. Thisdeision is based only on the header of the urrent examined paket and a setof rules, also alled '�lter '.The �lters are de�ned as an ordered list of independent rules. Eah rulespeify both a set of headers and what poliy to apply to the paket. For ex-ample, in Ciso-like syntax, one an de�ne the rule set represented on Figure 1.aess-list 108 permit tp any any eq wwwaess-list 108 deny tp any anyaess-list 108 deny ip any anyFigure 1: Example of a �lter in a Ciso-like syntax.The �rst rule applies the poliy "permit" to any TCP paket when thedestination port is equal to "www". if the inoming paket is not mathing the�rst rule, it is ompared to the seond one, whih states that the �lter applythe poliy "deny" to any TCP paket. If, again, the inoming paket is notmathed with this rule, it is ompared to the last one whih apply the poliy"deny" to all IP pakets.A naive approah would be to use this �lter spei�ation strait forward.But, this way of speifying a �lter is strongly dependent of the order of therules in the list. Keeping this order prevent a lot of possible optimizations bothin spae storage for the rules set and in speed to perform the lassi�ation ofeah paket.The worst ase omplexity of suh naive algorithm is O(n ·m), with n thenumber of rules, m the number of �elds to hek in the header. If we assumethe number of �elds as onstant (as we are dealing only with known protoolswith a known number of �elds), we have a linear omplexity in the numberof rules (O(n)). This omplexity analysis show that the number of rules hasgreat impat on the performane of the paket �lter.In this setion we propose to onsider a �lter as a �rst-order logi formulaon integers. We show that not only we have the same expressive power thanthe ordered rule-set representation, but also that this way of speifying a �lter5



allow us to deal with a onstant time omplexity O(1) onerning the paketlassi�ation problem.3.1 Speifying Filters as First-Order Logi FormulaSpeifying �lters as �rst-order logi formula on integer variables is immediate.In order to do it right we introdue a formal framework of the problem in orderto be able to prove formally the properties we are interested in.Let H be the �nite set of all the possible headers, and Π = (π1, π2, . . . , πp)the set of all the poliies. A rule is given by a set of headers (η ∈ P(H)1) anda poliy (π ∈ Π):
r = (η, π), with η ∈ P(H) and π ∈ Π. (1)For example, a rule whih drops the pakets that have the �eld 'soure IP'set to 192.134.*.* and use the protool TCP would be written:

r = ((sip = 192.134. ∗ .∗) ∧ (proto = TCP ), DROP) (2)We de�ne a �lter as a set of rules over P(H) × Π:
ϕ = ((η1, πk1

), (η2, πk2
), . . . , (ηn, πkn

)), with πki
∈ Π, ∀i ≤ n. (3)By extension, we de�ne a �lter ϕ = (ηi, πki

)i≤n as a funtion that mapsone header to a set of poliies. Formally, the funtion ϕ : H → P(Π) is de�nedsuh that:
ϕ(h) = {πki

∈ Π/h ∈ ηi} (4)We say that two �lters ϕ and ϕ′ are equivalent i� for all h ∈ H we have
ϕ(h) = ϕ′(h). And we note ϕ ≡ ϕ′We de�ne a normal form �lter as a �lter with no dupliate poliy in therule set. And, �nally, we all a valid �lter, a �lter in whih the set of headers
(ηi)i≤n are a partition of H. Formally a partition is de�ned as:De�nition 1 Let H be a set and (ηi)i≤n suh that, for all i ≤ n, ηi ∈ P(H).Then, (ηi)i≤n is a partition of H i�:1. ⋃

i≤n ηi = H,2. ηi ∩ ηj = ∅, ∀i, j ≤ n with i 6= j.1Where P(A) is the powerset of A.
6



3.2 Ordered Filters vs First-Order Logi FiltersA �lter has to be valid in order to avoid any ambiguity while the lassi�ationof a given header. The ambiguity was previously avoided by ordering rules inthe list. This order was intended to prioritize a rule over the others, as we hadillustrated it in our �rst example.In order to prove the equivalene between an ordered �lter and a �rst-orderlogi only �lter, we have �rst to de�ne formally what is an ordered �lter.Lets all ψ an ordered �lter i� ψ = (ηi, πki
)i≤n with ηi ∈ P(H), πki

∈ Πfor all i ≤ n and we de�ne an impliit order ≻ on the rules suh that:
(ηi, πi) ≻ (ηj , πj) ⇔ i > j (5)By extension, we all an ordered �lter ψ = (ηi, πki

)i≤n a funtion that mapsone header to one poliy. Formally, the funtion ψ : H → Π is de�ned suhthat:
ψ(h) = {πki

∈ Π/h ∈ ηi and h 6∈ ηj, ∀j < i} (6)We will now state that for any ordered �lter ψ we an build an equivalentvalid �lter ϕ′.Proposition 1 For any ordered �lter ψ = (ηi, πki
)i≤n, we an build a �lter

ϕ = (η′i, π
′
ki

)i≤n suh that ψ and ϕ are equivalent.Proof 1 The proof is strait forward from the de�nitions and the followingonstrution of ϕ:
• π′ki

= πki
, ∀i ≤ n,

• η′i = ηi \
⋃

j<i ηj , ∀i ≤ n.So, ϕ′ is given by:
ϕ = ((η1, πi1),

(η2 \ {η1}, πi2),

(η3 \ {η1 ∪ η2}, πi3),

. . . ,

(ηk \ {η1 ∪ · · · ∪ ηk−1}, πik))By onstrution of ϕ, this �lter is valid and equivalent to ψ.Therefore, from the proposition 1 we an dedue that our formalism is, atleast, as expressive than the urrent method.7



3.3 Complexity of Paket Classi�ationAtually, removing the need of the order in the de�nition of a �lter has someimportant onsequenes on the omplexity of the paket lassi�ation problem.Indeed, if we onsider a normal valid �lter, lassifying a paket is equivalentto evaluate a �rst-order logi formula on integer variables. This operation isknown to be linear in the number of variables, or in other words in the numberof �elds (m) and logarithmi in the domain of the greatest �eld2 (log(w), with
w the wider ranger of the �elds). Therefore, the omplexity of suh operationwould be O(m · log(w)). Finally, if we onsider that the number of �elds inthe header and the domain of eah �eld are bounded, then we have a onstanttime omplexity (O(1)).Proposition 2 Given a normal valid �lter, and a bounded number of bounded�elds, the problem of paket lassi�ation is O(1).In onlusion, we proved that speifying a rule-set as an ordered-list ora �rst-order formula is equivalent, we even exhibit an algorithm to derive a�rst-order logi spei�ation from any ordered list. We also shown that theomplexity of lassifying a paket with a normal and valid �rst-order logispei�ation is onstant time (O(1)). In the next setion we will desribe ane�ient data-struture for handling �rst-order logi formula.4 Deision DiagramsAs we pointed out in the previous setion, the paket �ltering problem is equiv-alent to evaluate a �rst-order logi formula. Indeed, one of the most e�ientdata-struture, both in spae storage and omputational time, are the dei-sion diagrams. The most famous of those are binary deision diagrams (BDD,[And97℄). Using suh data-struture to represent �lters have been alreadyinvestigated by S. Hazelhurst in [AH02, Haz99℄. But, one main problem insuh approah is that BDD are based on boolean variables only. Therefore,it is mandatory to onsider one bit after one. As a generi CPU is used toonsider one word of several bits in one operation, there is an overhead onextrating bits from words. In order to avoid this drawbak, we hose to fouson another deision diagram struture alled interval deision diagram (IDD,[ST98℄). This struture allows us to perform lassi�ation on integer numberswithin a domain (�nite of in�nite).2Worst ase of number of tests to perform in order to �nd the position of an integervariable on a partition

8



4.1 Interval Deision DiagramsAn IDD is a DAG struture in whih eah node orrespond to a test on aninteger variable. Eah out going edge from a node is assoiated to an intervalwithin the domain of the variable attahed to the node. Finally, the edge islinked either to another node either to a boolean terminal (True or False).More formally, the de�nition of an IDD node is given by:De�nition 2 Let x be an integer variable de�ned on the domain Dx ⊆ N and
t a �rst-order logi formula on integer variables. We all t an IDD node i�one of the following hold:

• t ∈ {True, False},
• t = (x ∈ I0 ∧ t0) ∨ (x ∈ I1 ∧ t1) ∨ . . . (x ∈ Ik ∧ tk).With (Ii)i≤k a partition of Dx and (ti)i≤k a set of IDD nodes. We note: t =

x→ (I0, t0)(I1, t1) . . . (In, tk).We all an IDD root, an IDD node without predeessor. We say that a setof IDD nodes (ti)i≤n is onsistent if there is only one root. Moreover, if t is anIDD node, let var(t) be the funtion whih give the integer variable tested onthis node. More formally:
var(t) =

{

x, if t = x→ (I0, t0)(I1, t1) . . . (Ik, tk)
t, if t ∈ {True, False}Finally, we all I = ((ti)i≤n,≻) an IDD i� (ti)i≤n is a onsistent set of IDDnodes and ≻ is an order on the integer variables suh that for all t ∈ (ti)i≤nwith t = x→ (I0, t

′
0)(I1, t

′
1) . . . (Ik, t

′
k), we have x ≻ var(t′i) for eah i ≤ k.For example, if we onsider the logi formula:

(x = 0 ∧ y ≤ 3) ∨ (1 ≤ x ≤ 6 ∧ z ≤ 6) ∨ (x = 7 ∧ y = 1)The orresponding IDD would be (see Figure 2):
t0 = x→ ({0}, t00) ([1, 6], t000) ({7}, t01)

t00 = y → ([0, 3], T ) ([4, 7], F )

t01 = y → ({0}, F ) ({1}, T ) ([2, 7], F )

t000 = z → ([0, 6], T ) ({7}, F )IDD strutures an easily be used for desribing a �lter. On Figure 3, werepresent a very simple �lter as an IDD. This example is testing the 'soureIP' variable that we splitted into four sub-variables (sipi) whih are easier totest. It an be notied that all non-relevant tests have been removed from theIDD struture.On the Figure 3 the terminal DROP is assumed to be ¬ACCEPT , as wehandle only boolean terminals. We did not represent it, beause it is assumedthat an edge whih is not represented just leads by default to DROP .9
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T F

{0} {7}

[1, 6]

[0, 3]

[4, 7] {1}

{0}

[2, 7]

[0, 6] {7}

t0

t00 t01

t000

Figure 2: Example of an Interval Deision Diagram (IDD).

sip1sip2sip3 sip3ACCEPT
{192}{132} {164}[133,163℄[13,255℄ [0,156℄

RulesetACCEPT: 192.132.13.*�192.164.156.*DROP: others
Figure 3: IDD representing a �ltering rule.
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4.2 Boolean Operations on Interval Deision DiagramsAs IDD are representing �rst-order logi formulas on integer variables, we anperform all the usual logial operations as negation (¬), and (∧), or (∨), andso on. Some examples are given on Figures 4 and 5. Figure 4 represent twoformulas ϕ1 and ϕ2. Figure 5 represent the result of ¬ϕ1, ϕ1 ∧ϕ2 and ϕ1 ∨ϕ2.The edges labeled by ∗ are denoting the omplement of all the other edges.For example, if a node has four edges labeled by [0, 2], {9},[12, 15] and ∗ andhas a range of [0, 15], then ∗ stand for [3, 8] and [10, 11].
x

y

F T

x

z

F T

[10, 15]* * [0, 9]

* [0, 11]* {4}

ϕ1 = (x > 9) ∧ (y < 10) ϕ2 = (x < 12) ∨ (z = 4)

Figure 4: Examples of Interval Deision Diagrams.
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[0, 9]

{4}

[12, 15]

[0, 9]

[10, 11]

[0, 9]

*
[0, 9]

{4}

[10, 15]* * [0, 9]

ϕ1 ∧ ϕ2 ϕ1 ∨ ϕ2

¬ϕ1

Figure 5: Examples of boolean operations on IDDs.11



4.3 Optimization of Interval Deision DiagramsAs you an see on Figure 5, the result of ∧ and ∨ operations is not a diretombination of ϕ1 and ϕ2. Indeed, some optimizations have been performedon the struture in order to prune redundant nodes and sub-trees.Optimization proess is very simple. It is performed by listing all the nodeof the IDD and applying the following optimization rules:1. If a non-terminal node only has one outgoing edge, it must be pruned.2. If two nodes have the same outgoing edges and represent the same vari-able, they must be merged into one.3. If two edges of a node, with onseutive intervals, refer to the same hild,they must be merged.When all the nodes have been proessed, the input IDD to the optimizationfuntion is ompared to the resulting IDD. If they are equal a �x-point havebeen reahed and the optimization terminates. If not, it takes the resultingIDD as the input and it performs the optimization funtion again.This optimization algorithm is proved to always terminate (as all the rulesare pruning nodes and none is adding one). It also guaranty, both, that thenumber of nodes will be minimal and that the depth of the IDD, for this givenorder3, will be minimal [ST98℄.4.4 Multi-Terminal Deision DiagramsUnfortunately, in real life examples, you often have more than two poliies.One good reason ould be beause the �rewall allow the user to reate his ownpoliies. As IDDs are representing boolean formulas, they annot provide morethan two terminals and therefore they an't give an e�ient way of dealingwith more than two poliies. The idea is now to extend the IDD struturewith multiple terminals (MTIDD). This is diretly derived from the multipleterminal binary deision diagrams (MTBDD, [And97℄).Figure 6 represent a �lter whih have more than two poliies (ALLOW ,
RESET , DROP ). As previously, one terminal is not represented. TheDROPpoliy has been hosen as the default. The preise semanti is that all the edgeswhih are not represented on the �gure leads to the default poliy.More formally, the de�nition is very similar to the interval deision dia-gram's de�nition, exept that we allow more than two terminals. In plae ofboolean as terminal we de�ne a �nite set T of terminals (T1, T2, . . . ). Lets�rst de�ne a MTIDD node:3Choosing a di�erent order an sometimes leads to some gain12



sip1sip2sip3 sip3
sip3ACCEPT REJECT

{192}{132} {164} {250}[133,163℄ [165,249℄[13,255℄ [0,156℄ [157,255℄ [0,156℄
RulesetACCEPT: 192.132.13.*�192.164.156.*REJECT: 192.140.*.*�255.250.156.*DROP: others

Figure 6: MTIDD representing a �ltering rule.De�nition 3 Let x be an integer variable de�ned on the domain Dx ⊆ N and
t a �rst-order logi formula on integer variables. We all t an MTIDD nodei� one of the following hold:

• t ∈ T,
• t = x→ (I0, t0)(I1, t1) . . . (Ik, tk).With (Ii)i≤k a partition of Dx and (ti)i≤k a set of MTIDD nodes.The notion of root node and onsisteny are the same, but we have toextend slightly the funtion var:

var(t) =

{

x, if t = x→ (I0, t0)(I1, t1) . . . (Ik, tk)
t, if t ∈ TFinally, we all I = ((ti)i≤n,≻) a MTIDD i� (ti)i≤n is a onsistent setof MTIDD nodes and ≻ is an order on the integer variables suh that for all

t ∈ (ti)i≤n suh that t = x→ (I0, t0)(I1, t1) . . . (Ik, tk), we have x ≻ var(ti) foreah i ≤ k. For example (see Figure 7):
t0 = x→ ([0, 4], t00) ([5, 7], t000)

t00 = y → ([0, 3], T1) ([4, 15], T2)

t000 = z → ([0, 1], T2) ([2,+∞[, T3)Performing paket lassi�ation on MTIDD in plae of IDD does not implyany omplexity overhead and an be see as a strait extension of a regularIDD. But, MTIDD are no more boolean formulas. In a matter of fat, we areomputing MTIDD by ombining non-overlapping IDDs (one by poliy).13
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Figure 7: Multiple-Terminal Interval Deision Diagram (MTIDD).In onlusion, we have presented an e�ient data-struture to handle with�rst-order logi on integer variables (IDD), we desribed an algorithm to opti-mize in size and depth suh data-strutures. And, we proposed an extension ofIDD in order to deal easily with several terminals (MTIDD). In the two nextsetions we will present the general arhiteture of a tool using suh frameworkto lassify pakets and the basi algorithm of a network aess veri�er tool.5 High Performane Paket FilteringIn the previous setions we desribed the IDD and MTIDD data-struturesthat we propose to use when performing paket �ltering. This setion fouseson evaluating the performane of the data-struture by desribing a prototypetool that performs paket �ltering using MTIDDs. In the following setions we�rst desribe the arhiteture of the paket �ltering toolkit and then evaluatethe performane of the tool based an number of simple experiments.5.1 ArhitetureThe arhiteture of the paket �ltering toolkit is shown in Figure 8. The mainomponents are the ompiler, the paket lassi�er, and the NAV tool thatwe desribe in Setion 6. In the following we fous on desribing the �ow ofdata through the arhiteture and then the issues related to the design of theompiler and the paket lassi�er.Figure 8 shows the overall arhiteture of the paket lassi�ation tool.The �ow of data begins with a �lter spei�ation in a high level language.In our partiular ase we have simply hosen to use a Ciso-like aess listlanguage that supports overlapping rules and logging. Using a ompiler thehigh-level spei�ation is transformed into an MTIDD that has been optimizedthus ensuring near optimum performane. After the ompilation there are twodiretions for the data. Either the MTIDD an be used in a tool suh as NAV,or it an be loaded into the paket lassi�er.14



Rule-basedFilterSpei�ationCompilerMTIDDNetwork AessVeri�er PaketClassi�erKernel Spae
Figure 8: Paket Filter Arhiteture.The ompiler performs the transformation from the high-level �lter spei-�ation into a MTIDD struture as we desribed it in Setion 3.2. The overallapproah onsists of building an IDD for eah of the poliies used in the �lterspei�ation. These IDDs are then merged into an MTIDD representing theentire �lter in a single deision diagram. An example is the result of ompilingthe �lter spei�ation in Figure 1. This results in an MTIDD built from twodisjoint IDDs representing the poliies: PERMIT and DENY . At a moredetailed level, the ompiler operates by building an IDD for eah of the rulesin the order they are stated in the spei�ation. Then, before adding an ruleto the IDD with the orresponding poliy, any overlap with previous rules isremoved. This is done by removing any overlap between the urrent rule andthe IDDs representing various poliies used in the �lter. This orresponds tothe equivalene proof given in Setion 3.2. For instane, from the example ofFigure 1, when adding the seond rule to the IDD representing DENY , weremove the part of the rule whih overlaps with the IDD of the PERMITpoliy.Having desribed the main idea of the ompiler we move on and look loserat the design of the paket lassi�er. As shown on Figure 8 an atual im-plementation paket lassi�er will run in kernel spae and serve as the orelassi�ation mehanism in a paket �lter, however, in the prototype we hoseonly to do a user spae implementation. The majority of ode onsists ofinitializing the MTIDD data-struture desribing the �ltering poliy. To rep-resent the MTIDD we used a struture fairly similar to the a adjaeny-listrepresentation of direted ayli graphs desribed in [Sed02℄, with the exep-tion that adjaeny-lists are arrays, thus allowing fast searh of the partitions.Figure 10 illustrates the organization of this struture based on the example15



IDD shown in Figure 9. To limit the proessing overhead, eah node is ini-tialized to have a pointer to a omparison funtion whih is used to perform abinary searh for the mathing partition entry. This allows us to use di�erentfuntions based on the size of the header �eld without any proessing over-head. The worst ase number of omparisons neessary to lassify a paket is:
m · log(w)) where m is the number of �elds and w is the maximum numberof intervals in the largest �eld. The atual searh funtion simply onsists oftraversing the DAG, performing a binary searh at eah non-terminal until aleaf is reahed. Field0Field1 Field1DENY PERMIT
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3 4Figure 9: Filter example.
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TerminalsFigure 10: Organization of an IDD struture in the paket lassi�er.The main strength of this arhiteture is that the whole omplexity ofpaket �ltering lies is in the ompiler that runs in user-spae while paket las-si�er, that run in kernel spae, is very simple. A onsequene of this design isthat the �ltering poliy is more stati sine any hange requires reompilationof the �lter spei�ation. On the other hand ompiling that �lter spei�ationbefore atually loading it to the �rewall allows an administrator to have the �l-16



ter heked before it is taken into prodution. This proess ould be supportedby a tool suh as NAV (see Setion 6) or similar.5.2 PerformaneThe relevane of proposing the use of the MTIDD struture for paket lassi�-ation is highly dependent on whether performane is ompetitive with otheralgorithms for paket lassi�ation that performs well on generi CPUs. How-ever, we should emphasize that the possibilities of optimizing time and spaerequirements when using MTIDD strutures are many and not fully exploredin the work presented here. In the following we �rst fous on the spae re-quirements of the paket lassi�er, then we look brie�y at the performane ofthe ompilation from �lter spei�ation to MTIDD.The memory requirements of using MTIDDs are di�ult to reason aboutdue to the nature of deision diagrams. The worst ase memory requirementof an MTIDD is exponential in the depth of the MTIDD. However the advan-tage of deision diagrams, in general, is that they remove any redundany ofboolean expressions hereby minimizing the memory requirements. Seondly,the strength of IDDs, in partiular, is that boolean expressions over intervalsor ranges an be desribed in a very ompat manner.Indeed, ranges and intervals often our in �lter spei�ations. For instaneif we brie�y look a �lter on TCP/IP protool �elds then we an easily identifyoften ourring intervals. For instane it is ommon to only allow inboundtra� on a few port numbers, so the range from 1024-65535 ould for instanebe an often ourring interval to speify the range of losed ports. An otherexample is the IP-address �elds where we often group networks by subnet mask,whih in itself desribes a grouping of addresses. A �nal example is the protool�eld in the IP header, where only a few di�erent values are used for speifyingprotools suh as TCP, UDP, ICMP, and IGMP. Thus we an onlude that itis unlikely to see exponential memory requirements for representing �lters.To provide empirial evidene of the memory requirements needed for rep-resenting paket �lters as MTIDDs we performed two experiments. The �rstexperiment onsists of analyzing the memory requirements of a set of real-life�lters spei�ations from prodution networks. The seond experiment aims atstudying the salability of the memory requirements by exploring the memoryrequirements of a �lter that spei�es the tra� of a bakbone header trae.For the �rst experiment we studied a set of six real-life �lters. The �lters areall used on prodution networks and manually written by professional networkadministrators (e.g. no automati rule generation is used). The �lters Axare aess �lters from the University routers while �lters Bx are �lters from aommerial organization.Table 1 shows the summary of the memory requirements for eah of the17



Filter #Rules #Nodes #Edges Size Time
B1 132 142 771 16.5 KB 4.8 s
A1 129 164 1255 24.8 KB 7.7 s
B3 90 53 274 6.00 KB 0.31 s
A2 71 97 605 12.5 KB 2.8 s
A3 39 18 109 2.33 KB 0.16 s
B2 18 62 259 6.05 KB 0.19 sTable 1: MTIDD resoure requirements of real-life �lters.�lters. The �rst olumn two desribes the number of rules in the original �lterspei�ation. Columns three and four summarizes size of resulting MTIDD,and olumn �ve shows the memory usage of the MTIDD struture when hasbeen loaded into the paket lassi�ation prototype. It should be mentionedthat in this study we hose to split the representation of IP addresses into fourvariables, eah representing a byte of the address separately. This may meanfewer edges but more nodes.To some degree we see a orrespondene between the number of rules inthe order rule set spei�ation and the memory requirements of the MTIDDrepresentation. However in the ase of B3 a �lter of 90 rules is represented withless memory than �lter B2 whih only has 18 rules. The reason is that �lter B3has many very similar rules. Another interesting remark is that �lter A1 usessigni�antly more memory than �lter B1, even though the number of rules arenearly idential. Indeed, the author of �lter A1 uses overlapping rules whihauses a higher degree of fragmentation of intervals in the resulting MTIDD.In total, these results are promising due to the small memory requirements.The seond experiment explores the salability of the MTIDD representa-tion of �lter spei�ation. Due to the lak of real-life �lters for this experiment,we hose a di�erent approah, where the idea is to extrat a �lter desribing thetra� of a network bakbone. An alternative approah is to generate randomrules. However, sine the MTIDD data-struture relies on �nding intervals inthe address range, then rules with random values will not give fair piture ofthe salability issue.In pratie the rules are generated using a paket header trae of bakbonetra�4. Eah header in the trae is desribed by a rule. The rule permitspakets with similar headers �elds to pass through the �lter. The set of header�elds onsidered are soure and destination address, IP protool �eld, andsoure and destination port numbers if appliable. Any dupliate rules areremoved from the �nal �lter.4IP addresses were mangled to ensure privay, but it suh a way that the o�set betweenaddresses in the trae remained present 18
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• The memory requirements of MTIDDs for representing real-life paket �l-ters has proven to be quite small. Our largest example used only 24.8KBwhen loaded.
• When using MTIDDs for desribing the headers of bakbone tra�, wefound that the spae requirements were logarithmi in the number ofrules of the �lter.
• Compilation time is aeptable with real-life �lters, but di�erent opti-mization possibilities need to be explored for making the ompilationtime aeptable with larger �lters.In total, our evaluation suggests that the use of MTIDDs for representingpaket �lters is e�etive and ompetitive. However, it should be noted thatthe evaluation is not omplete in any way. For instane, we have not exploredthe potential gain of variable reordering our IDD strutures, suh as desribedin [And97℄. Neither have we made attempts to measure the speed of thelassi�ation algorithm when �ltering tra�.6 Network Aess Veri�erA problem when working with �lters spei�ations suh as those used on �re-walls is to ensure that the poliy implemented in the spei�ation orrespondsto the intended poliy. An even more di�ult problem is to understand theumulative e�et of two �lters separated onto di�erent routers or �rewalls.In this setion we outline a tool alled a Network Aess Veri�er (NAV) thatan be used to explore the aess properties of a omplex network by takingadvantage of the �lter spei�ations as being �rst-order logi expressions. Aspreviously, the �rst-order logi formulas are represented as IDDs.To illustrate the idea, onsider the model of a network as a bidiretionalgraph as shown in Figure 12. The network onsists of a set of omputers,denoted from A to E, that have one or more interfaes that onnets theomputer to one or more of its neighbors. Network aess is ontrolled throughin inbound and an outbound �lter for eah interfae. The �lters are a booleanexpressions that either permit (True) or deny (False) pakets to pass throughbased on values in the header �elds. To inlude aspets of routing in the modelwe transform the routing table into a set of boolean expressions, one for eah�lter. Eah boolean expression is given by the routing table entries for thatpartiular interfae, thus the boolean expression desribes the set of headersthat are forwarded on that interfae.Using this model we derive a matrix desribing the �lter between any ofpair of omputers in the network. As an illustration of this priniple Table 2shows the �lters in the example network. Eah of the �lters in the matrix is20
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IAB = IA,outB ∧ IB,inAFigure 12: Example of a Network Graph Representation.found by ombining the �lters on eah link between the soure and destination.A sequene of �lters are ombined by onjuntion, and if alternative paths existthen the �lters for eah path are ombined with a disjuntion. For instanethe �lter for any pakets passing from omputer A to omputer B is given by
IAB = IA,outB∧IB,inA

thus ombining the outbound �lter from A to destinationomputer B and Bs inbound �lter for tra� from A. An other example it the�lter between the two hosts A and E. Here tra� an pass through either Cor D, so using disjuntion we get IAE = IAB ∧ (IBC ∧ ICE ∨ IBD ∧ IED).Destination
A B C D E

A × IAB IAC IAD IAE

B IBA × IBC IBD IBESoure C ICA ICB × ICD ICE

D IDA IDB IDC × IDE

E IEA IEB IEC IED ×Table 2: Matrix of �lters in example network.The matrix immediately give the reahability analysis of the network. Infat, if an element IST of this matrix is the IDD node False, the soure node Sannot send any paket to the target node T without being �ltered out. Thisreahability test is really wide. Indeed it over also IP-spoofed pakets.A more reasonable query would be to ask if the mahine S an reah themahine T with pakets suh that the soure-IP is set to the IP of S. Thisoperation is, atually, very easy to perform. It is enough to ompute theonjuntion of IST and the IDD desribing the set of headers suh that thesoure-IP �eld is equal to the IP address of S.More generally, the user an speify a set of headers (Iquery) and hek if21



some of them (Iresult) an be sent from S to T (IST ):
Iquery ∧ IST = Iresult (7)If Iresult is equal to False, none of the headers desribed in Iquery an reah Tfrom S.In this setion we have brie�y desribed a tool for network aess veri�a-tion whih test for paket reahability into a, possibly, omplex network. Theoverall strength the tool lies in the fat that the tests are exhaustive. Mean-ing that all ases are overed by the omputation, thus improving the overallseurity of the network being analyzed. Moreover, the omputational powerneeded to perform suh veri�ation is really low and an be performed on anypersonal omputer.7 ConlusionIn this paper we have foused on paket �ltering on Internet �rewalls, andespeially on improving both aspets of performane and seurity. As a resultwe have proposed a formalized framework for paket lassi�ation and throughtwo appliations we demonstrate that both performane and seurity an beimproved.The entral idea of this paper onsists of transforming the traditional or-dered rule based �lter spei�ations into �rst order logi formulas on integervariables, and representing these using a Multi Terminal Interval Deision Di-agrams (MTIDDs). Performing this transformation results in several advan-tages. First of all, the representation is sound and omplete essentially pro-viding a strong platform for building tools for testing and verifying propertiesof �lter spei�ations. Seondly, the worst ase lassi�ation time when usingMTIDDs is O(1) making the lassi�ation time independent of the size of the�lter spei�ation. Thirdly, the onept of Interval Deision Diagrams is easyto understand and provides a natural representation of �lter spei�ations.Finally the algorithms for optimizing and manipulating IDDs are simple.For purposes of demonstrating the strength of the framework, we havedesribed two appliations: a paket �ltering prototype and a network aessveri�er (NAV).The purpose of the paket �ltering prototype is to demonstrate the perfor-mane issues related to using a deision diagram representation of paket �ltersand suggesting an arhiteture for a paket �ltering toolkit. The main bene�tsof the suggested arhiteture is that, when using this framework, the majorityof the omplexity runs in user spae, while the paket lassi�er, running inkernel spae, is very simple. In terms of performane we have presented a pre-liminary study spae-usage issues. Most interesting is the empirial evideneshowing that the memory requirements for representing �lters as MTIDDs are22



very promising. In the set of real-life �lter spei�ations tested the largestused only 25KB. In a test of large paket �lters we saw logarithmi spaeusage as a funtion of the number of rules, where the largest �lter required3.1MB of memory for 50.000 rules. A seond study foused on the paket �l-ter ompilation time. Here we found aeptable ompilation times for real-life�lters, however with larger �lters ompilation times are quite long. Severalissues remains open for further study, this inludes measurements of atuallassi�ation times, and exploring ways to minimize the size of the MTIDDstrutures.The seond appliation, whih is only outlined, demonstrates a potentialuse of our framework for improving network seurity. The idea is to modela network and all the �lters. Then by issuing queries we an explore theaess properties of the network. For instane, exploring the reahability ofIP spoofed pakets from one hosts to any of the destinations. The strength ofsuh a tool is that the tests are exhaustive and performed o�-line. Moreover,the omputational omplexity of exploring the network is quite low.In total, this paper demonstrates that the use of IDDs for paket �lteringan both improve performane and seurity of Internet �rewalls.The most immediate extension to this work is a more elaborate analysis ofthe performane issues related to using this framework for paket lassi�ation.Espeially exploring possibilities of minimizing paket lassi�ation time andspae requirements. Long term extensions inludes using the framework on anatual �rewall, and implementing the Network Aess Veri�er. More gener-ally, an interesting aspet is to study the possibilities of using the frameworkin ontext of related appliation areas. For instane, routing and Di�erenti-ated servies. However this may involve extending the framework to supportdynami updates.8 AknowledgementsWe would like to aknowledge the DIRT group at University of North Carolina,and in partiular Felix Hernandez-Campos, for providing aess to relevantnetwork traes.Referenes[AH02℄ A. Attar and S. Hazelhurst. Fast Paket Filtering Using N-ary Dei-sion Diagrams. Tehnial report, Shool of Computer Siene, Uni-versity of Witwatersrand, 2002.[And97℄ H. R. Andersen. An Introdution to Binary Deision Diagrams.Letures Notes, 1997. 23
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