
B
R

IC
S

R
S

-02-43
C

hristiansen
&

F
leury:

U
sing

ID
D

s
forP

acketF
iltering

BRICS
Basic Research in Computer Science

Using IDDs for Packet Filtering

Mikkel Christiansen
Emmanuel Fleury

BRICS Report Series RS-02-43

ISSN 0909-0878 October 2002

Copyright c© 2002, Mikkel Christiansen & Emmanuel Fleury.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectoryRS/02/43/

Using IDDs for Pa
ket FilteringMikkel Christiansen Emmanuel FleuryBRICS∗Department of Computer S
ien
eAalborg UniversityEmail: {mixxel,�eury}�
s.au
.dkO
tober 29, 2002Abstra
tFirewalls are one of the key te
hnologies used to
ontrol the tra�
 go-ing in and out of a network. A
entral feature of the �rewall is the pa
ket�lter. In this paper, we propose a
omplete framework for pa
ket
lassi�-
ation. Through two appli
ations we demonstrate that both performan
eand se
urity
an be improved.We show that a traditional ordered rule set
an always be expressedas a �rst-order logi
 formula on integer variables. Moreover, we empha-size that, with su
h spe
i�
ation, the pa
ket �ltering problem is knownto be
onstant time (O(1)). We propose to represent the �rst-order logi
formula as Interval De
ision Diagrams [ST98℄. This stru
ture has severaladvantages. First, the algorithm for removing redundan
y and unne
es-sary tests is very simple. Se
ondly, it allows us to handle integer variableswhi
h makes it e�
ient on a generi
 CPUs. And, �nally, we introdu
ean extension of IDDs
alled Multi-Terminal Interval De
ision Diagramsin order to deal with any number of poli
ies.In matter of e�
ien
y, we evaluate the performan
e our frameworkthrough a prototype toolkit
omposed by a
ompiler and a pa
ket �lter.The results of the experiments shows that this method is e�
ient in termsof CPU usage and has a low storage requirements.Finally, we outline a tool,
alled Network A

ess Veri�er. This tooldemonstrates how the IDD representation
an be used for verifying a

essproperties of a network. In total, potentially improving the se
urity of anetwork.
∗Basi
 Resear
h in Computer S
ien
e (www.bri
s.dk)1

1 Introdu
tionThe Internet �rewall is one of the key te
hnologies used by network adminis-trators for
ontrolling a

ess to an organizations network. The main reasonfor the su

ess is that the �rewall allows
entralized �ltering of tra�
 enter-ing and exiting the prote
ted network. The
entral �ltering me
hanism of the�rewall is the pa
ket �lter. It operates by identifying a poli
y by
omparingthe proto
ol header �elds of a pa
ket with a �lter spe
i�
ation. In this paperwe fo
us on the pa
ket �ltering me
hanism, and in parti
ular on how pa
ket�lters
an be improved both in terms of se
urity and performan
e.The primary aspe
t of pa
ket �ltering is the issue of pa
ket
lassi�
ation.Pa
ket
lassi�
ation has been subje
t of mu
h study in re
ent time, for examplesee [LS98, GM99, FM00℄. The reason being that the ability to
lassify pa
ketsplays a
entral role in routing and in the Di�erentiated Servi
es Ar
hite
ture.However, the requirements to the pa
ket
lassi�
ation s
heme may be quitedi�erent from one appli
ation to the other. One example is routing on theInternet, where the
lassi�er is used for
hoosing an interfa
e based on a routingtable. Here the
lassi�
ation only uses one or two of the address �elds in thepa
ket header determine route, where a �rewall may
lassify pa
kets basedon any number of pa
ket header �elds TCP and/or IP. An related exampleis whether the
lassi�
ation algorithms should support dynami
 updates ofthe spe
i�
ation or not. This is, for instan
e, the
ase with dynami
 routing.Firewalls, on the other hand, uses more stati
 spe
i�
ations. An �nal di�eren
emay be the option to use dedi
ated hardware or not.Given these di�eren
es,
ommon performan
e measures of pa
ket
lassi�
a-tion algorithms still remain. This in
ludes
lassi�
ation time, spa
e
omplexity,and performan
e of the optimization phase. Often worst
ase
omplexities aregiven in along with empiri
al measurements.An other aspe
t of pa
ket �ltering is ability to analyze and
he
k the �lterspe
i�
ation before taking it into use. Current se
urity audits rely on perform-ing tests on the a
tual network by using port s
anning or more advan
ed toolssu
h as Nessus [nes℄. Performing o�-line se
urity audits allow administratorsto perform
omplete tests of their networks and minimize the requirement toperform test on the a
tual networks. However, a
entral issue for tool designis that the tool is based on a strong foundation, whi
h in the
ase of pa
ket�ltering means a sound and
omplete representation of �lter spe
i�
ations.In this paper we present a pa
ket
lassi�
ation s
heme that is well suitedfor pa
ket �ltering and
an be summarized as follows:
• Sound representation of pa
ket �lters that is
ompatible with the tradi-tional representation, e.g. ordered rule based �lter des
ription.
• S
alable in terms of the number of header �elds, poli
ies used in the2

spe
i�
ation.
• E�
iently
lassi�
ation
omplexity (O(1)), assuming that the number ofbounded �elds.
• Compa
t and stati
 representation of �lter spe
i�
ation using de
isiondiagrams.
• A

ess to te
hniques for verifying properties of �lter spe
i�
ations.The key idea in the pa
ket
lassi�
ation s
heme it to transform a tra-ditional rule based representation of a pa
ket �lter into a boolean expres-sion represented as a de
ision diagram, similar to the approa
h presentedin [Haz99℄. However rather then using the widely known Boolean De
ision Di-agrams (BDDs) [Bry86℄ as in [Haz99℄ we use the less explored Interval De
isionDiagrams (IDDs) [ST98℄. IDDs operate on integer ranges rather then booleansthus providing the a

ess to e�
ient
lassi�
ation of pa
kets on generi
 CPUs.However IDDs
an only be used for
lassifying between two poli
ies. Toalleviate this problem we introdu
e the
on
ept of Multi Terminal IntervalDe
ision Diagrams (MTIDDs), that provide a

ess to using any number ofpoli
ies. This extension is similar to the MTBDD extension of BDDs des
ribedin [Bry86℄ whi
h is suggested for pa
ket
lassi�
ation in [AH02℄.To demonstrate the potential of using IDDs for representing �lter spe
-i�
ations, we outline a tool
alled Network A

ess Veri�er (NAV). The key
on
ept of the veri�er is the ability perform a rea
hability of analysis of anentire network, for instan
e proving whether the network is vulnerable to IPspoo�ng.In the following se
tions we �rst des
ribe ba
kground and related work.Then in Se
tion 3 we des
ribe our model of pa
ket �ltering. Se
tion 4
on-tinues by introdu
ing IDDs and show how we represent �lter spe
i�
ationsusing IDDs. In se
tion 5 we des
ribe the �rst of two appli
ations whi
h takesadvantage of the pa
ket
lassi�
ation s
heme. This �rst appli
ation is a highperforman
e pa
ket
lassi�er that provides empiri
al eviden
e showing that theperforman
e of the s
heme
orresponds to expe
tations. In Se
tion 6 we out-line the se
ond appli
ation whi
h is NAV, through whi
h we demonstrate thestrength of using the IDD representation of pa
ket �lters. Finally in Se
tion 7we state
on
lusions and des
ribe future work.2 Related WorkIn [Haz99℄ Hazelhurst presents the idea of transforming �rewall pa
ket �ltersinto boolean expressions that are represented as BDDs. The paper des
ribesan algorithm for transforming a Cis
o �rewall �lter into a BDD, in
luding the3

handling of issues with overlapping rules. The main use of BDDs in this paperis for a tool that
an be used analyzing and test �lters. A later paper by Hazel-hurst et. al [HAS00℄ fo
us on using using the BDD stru
tures for performingpa
ket
lassi�
ation. The
on
lusion is that BDDs
an improve the lookuplaten
y on systems using dedi
ated hardware su
h as FPGAs, while they donot perform well on generi
 CPUs. In [AH02℄ Attar and Hazelhurst use N-aryde
ision diagrams for improving the lookup performan
e. The experimentalresults show that the lookup time
an be signi�
antly improved by using thismethod, however at the pri
e of in
reased memory usage. Furthermore the ideaof using MTBDDs to handle the more general pa
ket
lassi�
ation is suggested.Several papers propose algorithms for pa
kets
lassi�
ation on multiple�elds for generi
 CPUs [BMG99, FM00, Sri01, BV01℄.Begel et. al [BMG99℄ proposes a fully general pa
ket �lter framework. Fil-ters are spe
i�ed in a de
larative predi
ate language, that are
ompiled intoa �ow graph, and then optimized before being exe
uted on a virtual ma
hinemodel. Optimization is performed on the �ow-graph by using redundant pred-i
ate elimination for removing redundan
ies and rearranging non-optimal
odesequen
es. An interesting point is the introdu
tion of a safety veri�er that
he
ks the validity of the programs before they are exe
uted on the virtualma
hine. This prevents the user from running programs with in�nite loops ormemory faults. The evaluation of the tool shows good performan
e. Howeveronly with small test
ases are applied.In [BV01℄ Baboes
u and Varghese des
ribe a s
heme
alled Aggregate BitVe
tor (ABV). The aim of the s
heme is to provide s
alable pa
ket
lassi�
ation(100,000 rules) to handle large �lters while also providing e�
ient
lassi�
ationtimes on generi
 CPUs. The s
heme is an extension of the bit ve
tor sear
halgorithm (BV) des
ribed in [LS98℄. The �rst optimization of the BV s
heme
onsists of minimizing the number of unused bits in the bit ve
tors, by takingadvantage of the observation that the number of rules overlapping in a �lter islikely to be small. This is te
hnique referred to as aggregation. Se
ondly, totake full advantage of using aggregation the order of the rules is rearranged.However, again due to the issues of overlapping rules, it is not possible. Butby modifying the BV s
heme to �rst �nd all mat
hes and then
omputing thelowest
ost mat
h this is made possible.In
omparison with the approa
h presented in this paper, both the BVs
heme and the ABV s
heme solve a more general pa
ket
lassi�
ation problemthe we do. The reason being that in BV and ABV issues of overlapping rulesare handled in the
lassi�
ation algorithm while we remove the overlap betweenrules when building the de
ision diagram stru
ture.An other a
tive area for resear
h is on tools for managing and analyzing�lters. An example is the tool presented in [HSP00℄ whi
h
an be used fordete
ting an resolving pa
ket
on�i
ts in pa
ket �lters. Here a s
heme is in-4

trodu
ed to resolve pa
ket
on�i
ts by adding resolve �lters. An other tool,presented in a paper by Eronen and Zitting [EZ01℄, presents a tool that uses
onstraint logi
 programming for analyzing pa
ket �lters. Similar to the workpresented in [Haz99℄ this tool transforms pa
ket �lters to boolean expressionsbefore performing the analysis.3 Pa
ket FilteringThe problem of pa
ket �ltering is to mat
h a pa
ket header with a poli
y. Thisde
ision is based only on the header of the
urrent examined pa
ket and a setof rules, also
alled '�lter '.The �lters are de�ned as an ordered list of independent rules. Ea
h rulespe
ify both a set of headers and what poli
y to apply to the pa
ket. For ex-ample, in Cis
o-like syntax, one
an de�ne the rule set represented on Figure 1.a

ess-list 108 permit t
p any any eq wwwa

ess-list 108 deny t
p any anya

ess-list 108 deny ip any anyFigure 1: Example of a �lter in a Cis
o-like syntax.The �rst rule applies the poli
y "permit" to any TCP pa
ket when thedestination port is equal to "www". if the in
oming pa
ket is not mat
hing the�rst rule, it is
ompared to the se
ond one, whi
h states that the �lter applythe poli
y "deny" to any TCP pa
ket. If, again, the in
oming pa
ket is notmat
hed with this rule, it is
ompared to the last one whi
h apply the poli
y"deny" to all IP pa
kets.A naive approa
h would be to use this �lter spe
i�
ation strait forward.But, this way of spe
ifying a �lter is strongly dependent of the order of therules in the list. Keeping this order prevent a lot of possible optimizations bothin spa
e storage for the rules set and in speed to perform the
lassi�
ation ofea
h pa
ket.The worst
ase
omplexity of su
h naive algorithm is O(n ·m), with n thenumber of rules, m the number of �elds to
he
k in the header. If we assumethe number of �elds as
onstant (as we are dealing only with known proto
olswith a known number of �elds), we have a linear
omplexity in the numberof rules (O(n)). This
omplexity analysis show that the number of rules hasgreat impa
t on the performan
e of the pa
ket �lter.In this se
tion we propose to
onsider a �lter as a �rst-order logi
 formulaon integers. We show that not only we have the same expressive power thanthe ordered rule-set representation, but also that this way of spe
ifying a �lter5

allow us to deal with a
onstant time
omplexity O(1)
on
erning the pa
ket
lassi�
ation problem.3.1 Spe
ifying Filters as First-Order Logi
 FormulaSpe
ifying �lters as �rst-order logi
 formula on integer variables is immediate.In order to do it right we introdu
e a formal framework of the problem in orderto be able to prove formally the properties we are interested in.Let H be the �nite set of all the possible headers, and Π = (π1, π2, . . . , πp)the set of all the poli
ies. A rule is given by a set of headers (η ∈ P(H)1) anda poli
y (π ∈ Π):
r = (η, π), with η ∈ P(H) and π ∈ Π. (1)For example, a rule whi
h drops the pa
kets that have the �eld 'sour
e IP'set to 192.134.*.* and use the proto
ol TCP would be written:

r = ((sip = 192.134. ∗ .∗) ∧ (proto = TCP), DROP) (2)We de�ne a �lter as a set of rules over P(H) × Π:
ϕ = ((η1, πk1

), (η2, πk2
), . . . , (ηn, πkn

)), with πki
∈ Π, ∀i ≤ n. (3)By extension, we de�ne a �lter ϕ = (ηi, πki

)i≤n as a fun
tion that mapsone header to a set of poli
ies. Formally, the fun
tion ϕ : H → P(Π) is de�nedsu
h that:
ϕ(h) = {πki

∈ Π/h ∈ ηi} (4)We say that two �lters ϕ and ϕ′ are equivalent i� for all h ∈ H we have
ϕ(h) = ϕ′(h). And we note ϕ ≡ ϕ′We de�ne a normal form �lter as a �lter with no dupli
ate poli
y in therule set. And, �nally, we
all a valid �lter, a �lter in whi
h the set of headers
(ηi)i≤n are a partition of H. Formally a partition is de�ned as:De�nition 1 Let H be a set and (ηi)i≤n su
h that, for all i ≤ n, ηi ∈ P(H).Then, (ηi)i≤n is a partition of H i�:1. ⋃

i≤n ηi = H,2. ηi ∩ ηj = ∅, ∀i, j ≤ n with i 6= j.1Where P(A) is the powerset of A.
6

3.2 Ordered Filters vs First-Order Logi
 FiltersA �lter has to be valid in order to avoid any ambiguity while the
lassi�
ationof a given header. The ambiguity was previously avoided by ordering rules inthe list. This order was intended to prioritize a rule over the others, as we hadillustrated it in our �rst example.In order to prove the equivalen
e between an ordered �lter and a �rst-orderlogi
 only �lter, we have �rst to de�ne formally what is an ordered �lter.Lets
all ψ an ordered �lter i� ψ = (ηi, πki
)i≤n with ηi ∈ P(H), πki

∈ Πfor all i ≤ n and we de�ne an impli
it order ≻ on the rules su
h that:
(ηi, πi) ≻ (ηj , πj) ⇔ i > j (5)By extension, we
all an ordered �lter ψ = (ηi, πki

)i≤n a fun
tion that mapsone header to one poli
y. Formally, the fun
tion ψ : H → Π is de�ned su
hthat:
ψ(h) = {πki

∈ Π/h ∈ ηi and h 6∈ ηj, ∀j < i} (6)We will now state that for any ordered �lter ψ we
an build an equivalentvalid �lter ϕ′.Proposition 1 For any ordered �lter ψ = (ηi, πki
)i≤n, we
an build a �lter

ϕ = (η′i, π
′
ki

)i≤n su
h that ψ and ϕ are equivalent.Proof 1 The proof is strait forward from the de�nitions and the following
onstru
tion of ϕ:
• π′ki

= πki
, ∀i ≤ n,

• η′i = ηi \
⋃

j<i ηj , ∀i ≤ n.So, ϕ′ is given by:
ϕ = ((η1, πi1),

(η2 \ {η1}, πi2),

(η3 \ {η1 ∪ η2}, πi3),

. . . ,

(ηk \ {η1 ∪ · · · ∪ ηk−1}, πik))By
onstru
tion of ϕ, this �lter is valid and equivalent to ψ.Therefore, from the proposition 1 we
an dedu
e that our formalism is, atleast, as expressive than the
urrent method.7

3.3 Complexity of Pa
ket Classi�
ationA
tually, removing the need of the order in the de�nition of a �lter has someimportant
onsequen
es on the
omplexity of the pa
ket
lassi�
ation problem.Indeed, if we
onsider a normal valid �lter,
lassifying a pa
ket is equivalentto evaluate a �rst-order logi
 formula on integer variables. This operation isknown to be linear in the number of variables, or in other words in the numberof �elds (m) and logarithmi
 in the domain of the greatest �eld2 (log(w), with
w the wider ranger of the �elds). Therefore, the
omplexity of su
h operationwould be O(m · log(w)). Finally, if we
onsider that the number of �elds inthe header and the domain of ea
h �eld are bounded, then we have a
onstanttime
omplexity (O(1)).Proposition 2 Given a normal valid �lter, and a bounded number of bounded�elds, the problem of pa
ket
lassi�
ation is O(1).In
on
lusion, we proved that spe
ifying a rule-set as an ordered-list ora �rst-order formula is equivalent, we even exhibit an algorithm to derive a�rst-order logi
 spe
i�
ation from any ordered list. We also shown that the
omplexity of
lassifying a pa
ket with a normal and valid �rst-order logi
spe
i�
ation is
onstant time (O(1)). In the next se
tion we will des
ribe ane�
ient data-stru
ture for handling �rst-order logi
 formula.4 De
ision DiagramsAs we pointed out in the previous se
tion, the pa
ket �ltering problem is equiv-alent to evaluate a �rst-order logi
 formula. Indeed, one of the most e�
ientdata-stru
ture, both in spa
e storage and
omputational time, are the de
i-sion diagrams. The most famous of those are binary de
ision diagrams (BDD,[And97℄). Using su
h data-stru
ture to represent �lters have been alreadyinvestigated by S. Hazelhurst in [AH02, Haz99℄. But, one main problem insu
h approa
h is that BDD are based on boolean variables only. Therefore,it is mandatory to
onsider one bit after one. As a generi
 CPU is used to
onsider one word of several bits in one operation, there is an overhead onextra
ting bits from words. In order to avoid this drawba
k, we
hose to fo
uson another de
ision diagram stru
ture
alled interval de
ision diagram (IDD,[ST98℄). This stru
ture allows us to perform
lassi�
ation on integer numberswithin a domain (�nite of in�nite).2Worst
ase of number of tests to perform in order to �nd the position of an integervariable on a partition

8

4.1 Interval De
ision DiagramsAn IDD is a DAG stru
ture in whi
h ea
h node
orrespond to a test on aninteger variable. Ea
h out going edge from a node is asso
iated to an intervalwithin the domain of the variable atta
hed to the node. Finally, the edge islinked either to another node either to a boolean terminal (True or False).More formally, the de�nition of an IDD node is given by:De�nition 2 Let x be an integer variable de�ned on the domain Dx ⊆ N and
t a �rst-order logi
 formula on integer variables. We
all t an IDD node i�one of the following hold:

• t ∈ {True, False},
• t = (x ∈ I0 ∧ t0) ∨ (x ∈ I1 ∧ t1) ∨ . . . (x ∈ Ik ∧ tk).With (Ii)i≤k a partition of Dx and (ti)i≤k a set of IDD nodes. We note: t =

x→ (I0, t0)(I1, t1) . . . (In, tk).We
all an IDD root, an IDD node without prede
essor. We say that a setof IDD nodes (ti)i≤n is
onsistent if there is only one root. Moreover, if t is anIDD node, let var(t) be the fun
tion whi
h give the integer variable tested onthis node. More formally:
var(t) =

{

x, if t = x→ (I0, t0)(I1, t1) . . . (Ik, tk)
t, if t ∈ {True, False}Finally, we
all I = ((ti)i≤n,≻) an IDD i� (ti)i≤n is a
onsistent set of IDDnodes and ≻ is an order on the integer variables su
h that for all t ∈ (ti)i≤nwith t = x→ (I0, t

′
0)(I1, t

′
1) . . . (Ik, t

′
k), we have x ≻ var(t′i) for ea
h i ≤ k.For example, if we
onsider the logi
 formula:

(x = 0 ∧ y ≤ 3) ∨ (1 ≤ x ≤ 6 ∧ z ≤ 6) ∨ (x = 7 ∧ y = 1)The
orresponding IDD would be (see Figure 2):
t0 = x→ ({0}, t00) ([1, 6], t000) ({7}, t01)

t00 = y → ([0, 3], T) ([4, 7], F)

t01 = y → ({0}, F) ({1}, T) ([2, 7], F)

t000 = z → ([0, 6], T) ({7}, F)IDD stru
tures
an easily be used for des
ribing a �lter. On Figure 3, werepresent a very simple �lter as an IDD. This example is testing the 'sour
eIP' variable that we splitted into four sub-variables (sipi) whi
h are easier totest. It
an be noti
ed that all non-relevant tests have been removed from theIDD stru
ture.On the Figure 3 the terminal DROP is assumed to be ¬ACCEPT , as wehandle only boolean terminals. We did not represent it, be
ause it is assumedthat an edge whi
h is not represented just leads by default to DROP .9

x

y y
z

T F

{0} {7}

[1, 6]

[0, 3]

[4, 7] {1}

{0}

[2, 7]

[0, 6] {7}

t0

t00 t01

t000

Figure 2: Example of an Interval De
ision Diagram (IDD).

sip1sip2sip3 sip3ACCEPT
{192}{132} {164}[133,163℄[13,255℄ [0,156℄

RulesetACCEPT: 192.132.13.*�192.164.156.*DROP: others
Figure 3: IDD representing a �ltering rule.

10

4.2 Boolean Operations on Interval De
ision DiagramsAs IDD are representing �rst-order logi
 formulas on integer variables, we
anperform all the usual logi
al operations as negation (¬), and (∧), or (∨), andso on. Some examples are given on Figures 4 and 5. Figure 4 represent twoformulas ϕ1 and ϕ2. Figure 5 represent the result of ¬ϕ1, ϕ1 ∧ϕ2 and ϕ1 ∨ϕ2.The edges labeled by ∗ are denoting the
omplement of all the other edges.For example, if a node has four edges labeled by [0, 2], {9},[12, 15] and ∗ andhas a range of [0, 15], then ∗ stand for [3, 8] and [10, 11].
x

y

F T

x

z

F T

[10, 15]* * [0, 9]

* [0, 11]* {4}

ϕ1 = (x > 9) ∧ (y < 10) ϕ2 = (x < 12) ∨ (z = 4)

Figure 4: Examples of Interval De
ision Diagrams.

x

y y

z

T

x

y y

z

T

x

y

T F

[10, 11] [12, 15]

[0, 9]

[0, 9]

{4}

[12, 15]

[0, 9]

[10, 11]

[0, 9]

*
[0, 9]

{4}

[10, 15]* * [0, 9]

ϕ1 ∧ ϕ2 ϕ1 ∨ ϕ2

¬ϕ1

Figure 5: Examples of boolean operations on IDDs.11

4.3 Optimization of Interval De
ision DiagramsAs you
an see on Figure 5, the result of ∧ and ∨ operations is not a dire
t
ombination of ϕ1 and ϕ2. Indeed, some optimizations have been performedon the stru
ture in order to prune redundant nodes and sub-trees.Optimization pro
ess is very simple. It is performed by listing all the nodeof the IDD and applying the following optimization rules:1. If a non-terminal node only has one outgoing edge, it must be pruned.2. If two nodes have the same outgoing edges and represent the same vari-able, they must be merged into one.3. If two edges of a node, with
onse
utive intervals, refer to the same
hild,they must be merged.When all the nodes have been pro
essed, the input IDD to the optimizationfun
tion is
ompared to the resulting IDD. If they are equal a �x-point havebeen rea
hed and the optimization terminates. If not, it takes the resultingIDD as the input and it performs the optimization fun
tion again.This optimization algorithm is proved to always terminate (as all the rulesare pruning nodes and none is adding one). It also guaranty, both, that thenumber of nodes will be minimal and that the depth of the IDD, for this givenorder3, will be minimal [ST98℄.4.4 Multi-Terminal De
ision DiagramsUnfortunately, in real life examples, you often have more than two poli
ies.One good reason
ould be be
ause the �rewall allow the user to
reate his ownpoli
ies. As IDDs are representing boolean formulas, they
annot provide morethan two terminals and therefore they
an't give an e�
ient way of dealingwith more than two poli
ies. The idea is now to extend the IDD stru
turewith multiple terminals (MTIDD). This is dire
tly derived from the multipleterminal binary de
ision diagrams (MTBDD, [And97℄).Figure 6 represent a �lter whi
h have more than two poli
ies (ALLOW ,
RESET , DROP). As previously, one terminal is not represented. TheDROPpoli
y has been
hosen as the default. The pre
ise semanti
 is that all the edgeswhi
h are not represented on the �gure leads to the default poli
y.More formally, the de�nition is very similar to the interval de
ision dia-gram's de�nition, ex
ept that we allow more than two terminals. In pla
e ofboolean as terminal we de�ne a �nite set T of terminals (T1, T2, . . .). Lets�rst de�ne a MTIDD node:3Choosing a di�erent order
an sometimes leads to some gain12

sip1sip2sip3 sip3
sip3ACCEPT REJECT

{192}{132} {164} {250}[133,163℄ [165,249℄[13,255℄ [0,156℄ [157,255℄ [0,156℄
RulesetACCEPT: 192.132.13.*�192.164.156.*REJECT: 192.140.*.*�255.250.156.*DROP: others

Figure 6: MTIDD representing a �ltering rule.De�nition 3 Let x be an integer variable de�ned on the domain Dx ⊆ N and
t a �rst-order logi
 formula on integer variables. We
all t an MTIDD nodei� one of the following hold:

• t ∈ T,
• t = x→ (I0, t0)(I1, t1) . . . (Ik, tk).With (Ii)i≤k a partition of Dx and (ti)i≤k a set of MTIDD nodes.The notion of root node and
onsisten
y are the same, but we have toextend slightly the fun
tion var:

var(t) =

{

x, if t = x→ (I0, t0)(I1, t1) . . . (Ik, tk)
t, if t ∈ TFinally, we
all I = ((ti)i≤n,≻) a MTIDD i� (ti)i≤n is a
onsistent setof MTIDD nodes and ≻ is an order on the integer variables su
h that for all

t ∈ (ti)i≤n su
h that t = x→ (I0, t0)(I1, t1) . . . (Ik, tk), we have x ≻ var(ti) forea
h i ≤ k. For example (see Figure 7):
t0 = x→ ([0, 4], t00) ([5, 7], t000)

t00 = y → ([0, 3], T1) ([4, 15], T2)

t000 = z → ([0, 1], T2) ([2,+∞[, T3)Performing pa
ket
lassi�
ation on MTIDD in pla
e of IDD does not implyany
omplexity overhead and
an be see as a strait extension of a regularIDD. But, MTIDD are no more boolean formulas. In a matter of fa
t, we are
omputing MTIDD by
ombining non-overlapping IDDs (one by poli
y).13

x

y

z

T1 T2 T3

[0, 4]
[5, 7]

[0, 3]
[4, 15]

[0, 1]]2,+∞[

t0

t00

t000

Figure 7: Multiple-Terminal Interval De
ision Diagram (MTIDD).In
on
lusion, we have presented an e�
ient data-stru
ture to handle with�rst-order logi
 on integer variables (IDD), we des
ribed an algorithm to opti-mize in size and depth su
h data-stru
tures. And, we proposed an extension ofIDD in order to deal easily with several terminals (MTIDD). In the two nextse
tions we will present the general ar
hite
ture of a tool using su
h frameworkto
lassify pa
kets and the basi
 algorithm of a network a

ess veri�er tool.5 High Performan
e Pa
ket FilteringIn the previous se
tions we des
ribed the IDD and MTIDD data-stru
turesthat we propose to use when performing pa
ket �ltering. This se
tion fo
useson evaluating the performan
e of the data-stru
ture by des
ribing a prototypetool that performs pa
ket �ltering using MTIDDs. In the following se
tions we�rst des
ribe the ar
hite
ture of the pa
ket �ltering toolkit and then evaluatethe performan
e of the tool based an number of simple experiments.5.1 Ar
hite
tureThe ar
hite
ture of the pa
ket �ltering toolkit is shown in Figure 8. The main
omponents are the
ompiler, the pa
ket
lassi�er, and the NAV tool thatwe des
ribe in Se
tion 6. In the following we fo
us on des
ribing the �ow ofdata through the ar
hite
ture and then the issues related to the design of the
ompiler and the pa
ket
lassi�er.Figure 8 shows the overall ar
hite
ture of the pa
ket
lassi�
ation tool.The �ow of data begins with a �lter spe
i�
ation in a high level language.In our parti
ular
ase we have simply
hosen to use a Cis
o-like a

ess listlanguage that supports overlapping rules and logging. Using a
ompiler thehigh-level spe
i�
ation is transformed into an MTIDD that has been optimizedthus ensuring near optimum performan
e. After the
ompilation there are twodire
tions for the data. Either the MTIDD
an be used in a tool su
h as NAV,or it
an be loaded into the pa
ket
lassi�er.14

Rule-basedFilterSpe
i�
ationCompilerMTIDDNetwork A

essVeri�er Pa
ketClassi�erKernel Spa
e
Figure 8: Pa
ket Filter Ar
hite
ture.The
ompiler performs the transformation from the high-level �lter spe
i-�
ation into a MTIDD stru
ture as we des
ribed it in Se
tion 3.2. The overallapproa
h
onsists of building an IDD for ea
h of the poli
ies used in the �lterspe
i�
ation. These IDDs are then merged into an MTIDD representing theentire �lter in a single de
ision diagram. An example is the result of
ompilingthe �lter spe
i�
ation in Figure 1. This results in an MTIDD built from twodisjoint IDDs representing the poli
ies: PERMIT and DENY . At a moredetailed level, the
ompiler operates by building an IDD for ea
h of the rulesin the order they are stated in the spe
i�
ation. Then, before adding an ruleto the IDD with the
orresponding poli
y, any overlap with previous rules isremoved. This is done by removing any overlap between the
urrent rule andthe IDDs representing various poli
ies used in the �lter. This
orresponds tothe equivalen
e proof given in Se
tion 3.2. For instan
e, from the example ofFigure 1, when adding the se
ond rule to the IDD representing DENY , weremove the part of the rule whi
h overlaps with the IDD of the PERMITpoli
y.Having des
ribed the main idea of the
ompiler we move on and look
loserat the design of the pa
ket
lassi�er. As shown on Figure 8 an a
tual im-plementation pa
ket
lassi�er will run in kernel spa
e and serve as the
ore
lassi�
ation me
hanism in a pa
ket �lter, however, in the prototype we
hoseonly to do a user spa
e implementation. The majority of
ode
onsists ofinitializing the MTIDD data-stru
ture des
ribing the �ltering poli
y. To rep-resent the MTIDD we used a stru
ture fairly similar to the a adja
en
y-listrepresentation of dire
ted a
y
li
 graphs des
ribed in [Sed02℄, with the ex
ep-tion that adja
en
y-lists are arrays, thus allowing fast sear
h of the partitions.Figure 10 illustrates the organization of this stru
ture based on the example15

IDD shown in Figure 9. To limit the pro
essing overhead, ea
h node is ini-tialized to have a pointer to a
omparison fun
tion whi
h is used to perform abinary sear
h for the mat
hing partition entry. This allows us to use di�erentfun
tions based on the size of the header �eld without any pro
essing over-head. The worst
ase number of
omparisons ne
essary to
lassify a pa
ket is:
m · log(w)) where m is the number of �elds and w is the maximum numberof intervals in the largest �eld. The a
tual sear
h fun
tion simply
onsists oftraversing the DAG, performing a binary sear
h at ea
h non-terminal until aleaf is rea
hed. Field0Field1 Field1DENY PERMIT

[0, 1] [2, 3]

{0}

[1, 3] {3}

[0, 2]

2

0 1

3 4Figure 9: Filter example.
0 Field1

1 Field1

2 Field0

3 DENY
4PERMIT

{0}, 3 [1, 3], 4

[0, 2], 4 {3}, 3

[0, 1], 0 [2, 3], 1{{Nodes
TerminalsFigure 10: Organization of an IDD stru
ture in the pa
ket
lassi�er.The main strength of this ar
hite
ture is that the whole
omplexity ofpa
ket �ltering lies is in the
ompiler that runs in user-spa
e while pa
ket
las-si�er, that run in kernel spa
e, is very simple. A
onsequen
e of this design isthat the �ltering poli
y is more stati
 sin
e any
hange requires re
ompilationof the �lter spe
i�
ation. On the other hand
ompiling that �lter spe
i�
ationbefore a
tually loading it to the �rewall allows an administrator to have the �l-16

ter
he
ked before it is taken into produ
tion. This pro
ess
ould be supportedby a tool su
h as NAV (see Se
tion 6) or similar.5.2 Performan
eThe relevan
e of proposing the use of the MTIDD stru
ture for pa
ket
lassi�-
ation is highly dependent on whether performan
e is
ompetitive with otheralgorithms for pa
ket
lassi�
ation that performs well on generi
 CPUs. How-ever, we should emphasize that the possibilities of optimizing time and spa
erequirements when using MTIDD stru
tures are many and not fully exploredin the work presented here. In the following we �rst fo
us on the spa
e re-quirements of the pa
ket
lassi�er, then we look brie�y at the performan
e ofthe
ompilation from �lter spe
i�
ation to MTIDD.The memory requirements of using MTIDDs are di�
ult to reason aboutdue to the nature of de
ision diagrams. The worst
ase memory requirementof an MTIDD is exponential in the depth of the MTIDD. However the advan-tage of de
ision diagrams, in general, is that they remove any redundan
y ofboolean expressions hereby minimizing the memory requirements. Se
ondly,the strength of IDDs, in parti
ular, is that boolean expressions over intervalsor ranges
an be des
ribed in a very
ompa
t manner.Indeed, ranges and intervals often o

ur in �lter spe
i�
ations. For instan
eif we brie�y look a �lter on TCP/IP proto
ol �elds then we
an easily identifyoften o

urring intervals. For instan
e it is
ommon to only allow inboundtra�
 on a few port numbers, so the range from 1024-65535
ould for instan
ebe an often o

urring interval to spe
ify the range of
losed ports. An otherexample is the IP-address �elds where we often group networks by subnet mask,whi
h in itself des
ribes a grouping of addresses. A �nal example is the proto
ol�eld in the IP header, where only a few di�erent values are used for spe
ifyingproto
ols su
h as TCP, UDP, ICMP, and IGMP. Thus we
an
on
lude that itis unlikely to see exponential memory requirements for representing �lters.To provide empiri
al eviden
e of the memory requirements needed for rep-resenting pa
ket �lters as MTIDDs we performed two experiments. The �rstexperiment
onsists of analyzing the memory requirements of a set of real-life�lters spe
i�
ations from produ
tion networks. The se
ond experiment aims atstudying the s
alability of the memory requirements by exploring the memoryrequirements of a �lter that spe
i�es the tra�
 of a ba
kbone header tra
e.For the �rst experiment we studied a set of six real-life �lters. The �lters areall used on produ
tion networks and manually written by professional networkadministrators (e.g. no automati
 rule generation is used). The �lters Axare a

ess �lters from the University routers while �lters Bx are �lters from a
ommer
ial organization.Table 1 shows the summary of the memory requirements for ea
h of the17

Filter #Rules #Nodes #Edges Size Time
B1 132 142 771 16.5 KB 4.8 s
A1 129 164 1255 24.8 KB 7.7 s
B3 90 53 274 6.00 KB 0.31 s
A2 71 97 605 12.5 KB 2.8 s
A3 39 18 109 2.33 KB 0.16 s
B2 18 62 259 6.05 KB 0.19 sTable 1: MTIDD resour
e requirements of real-life �lters.�lters. The �rst
olumn two des
ribes the number of rules in the original �lterspe
i�
ation. Columns three and four summarizes size of resulting MTIDD,and
olumn �ve shows the memory usage of the MTIDD stru
ture when hasbeen loaded into the pa
ket
lassi�
ation prototype. It should be mentionedthat in this study we
hose to split the representation of IP addresses into fourvariables, ea
h representing a byte of the address separately. This may meanfewer edges but more nodes.To some degree we see a
orresponden
e between the number of rules inthe order rule set spe
i�
ation and the memory requirements of the MTIDDrepresentation. However in the
ase of B3 a �lter of 90 rules is represented withless memory than �lter B2 whi
h only has 18 rules. The reason is that �lter B3has many very similar rules. Another interesting remark is that �lter A1 usessigni�
antly more memory than �lter B1, even though the number of rules arenearly identi
al. Indeed, the author of �lter A1 uses overlapping rules whi
h
auses a higher degree of fragmentation of intervals in the resulting MTIDD.In total, these results are promising due to the small memory requirements.The se
ond experiment explores the s
alability of the MTIDD representa-tion of �lter spe
i�
ation. Due to the la
k of real-life �lters for this experiment,we
hose a di�erent approa
h, where the idea is to extra
t a �lter des
ribing thetra�
 of a network ba
kbone. An alternative approa
h is to generate randomrules. However, sin
e the MTIDD data-stru
ture relies on �nding intervals inthe address range, then rules with random values will not give fair pi
ture ofthe s
alability issue.In pra
ti
e the rules are generated using a pa
ket header tra
e of ba
kbonetra�
4. Ea
h header in the tra
e is des
ribed by a rule. The rule permitspa
kets with similar headers �elds to pass through the �lter. The set of header�elds
onsidered are sour
e and destination address, IP proto
ol �eld, andsour
e and destination port numbers if appli
able. Any dupli
ate rules areremoved from the �nal �lter.4IP addresses were mangled to ensure priva
y, but it su
h a way that the o�set betweenaddresses in the tra
e remained present 18

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

S
iz

e
(K

B
)

Number of rulesFigure 11: Memory requirements with large pa
ket �lters.Figure 11 shows the result of the s
alability experiments by showing thesize of the MTIDD when loaded by the pa
ket
lassi�
ation prototype as afun
tion of the number of rules in the �lters. Overall we see a logarithmi
growth rate. Initially growth rate is rather large, but as the �lters in
rease insize the more e�
ient the MTIDD data-stru
ture be
omes at representing the�lters. An important point to these experiments is that the generated �ltersonly represent MTIDDs with the poli
ies permit and deny. If more poli
ies areadded, then the size of the MTIDDs will in
rease. The worst-
ase situation,when adding more poli
ies, is that ea
h new poli
y introdu
ed is representedentirely by it's own subtree, thus
ausing linear in
rease of memory usage as afun
tion of the number of poli
ies in the MTIDD.Before
on
luding, we brie�y dis
uss the
ompilation times for transformingan rule-based �lter to an MTIDD. The
ompile times, measured on a 1.1GHzAMD AthlonTM, are shown in rightmost
olumn of Table 1. From these we seea

eptable
ompilation times for our real-life �lters, however,
ompiling larger�lters su
h as those shown in Figure 11 takes una

eptably long. For instan
e,the largest �lter (50.000 rules) took several days to
ompile. Thus we
on
ludethat to make our s
heme truly s
alable, te
hniques for improving the
ompiletime needs to be developed.In this limited evaluation of the pa
ket
lassi�
ation prototype, the empir-i
al eviden
e shows that: 19

• The memory requirements of MTIDDs for representing real-life pa
ket �l-ters has proven to be quite small. Our largest example used only 24.8KBwhen loaded.
• When using MTIDDs for des
ribing the headers of ba
kbone tra�
, wefound that the spa
e requirements were logarithmi
 in the number ofrules of the �lter.
• Compilation time is a

eptable with real-life �lters, but di�erent opti-mization possibilities need to be explored for making the
ompilationtime a

eptable with larger �lters.In total, our evaluation suggests that the use of MTIDDs for representingpa
ket �lters is e�e
tive and
ompetitive. However, it should be noted thatthe evaluation is not
omplete in any way. For instan
e, we have not exploredthe potential gain of variable reordering our IDD stru
tures, su
h as des
ribedin [And97℄. Neither have we made attempts to measure the speed of the
lassi�
ation algorithm when �ltering tra�
.6 Network A

ess Veri�erA problem when working with �lters spe
i�
ations su
h as those used on �re-walls is to ensure that the poli
y implemented in the spe
i�
ation
orrespondsto the intended poli
y. An even more di�
ult problem is to understand the
umulative e�e
t of two �lters separated onto di�erent routers or �rewalls.In this se
tion we outline a tool
alled a Network A

ess Veri�er (NAV) that
an be used to explore the a

ess properties of a
omplex network by takingadvantage of the �lter spe
i�
ations as being �rst-order logi
 expressions. Aspreviously, the �rst-order logi
 formulas are represented as IDDs.To illustrate the idea,
onsider the model of a network as a bidire
tionalgraph as shown in Figure 12. The network
onsists of a set of
omputers,denoted from A to E, that have one or more interfa
es that
onne
ts the
omputer to one or more of its neighbors. Network a

ess is
ontrolled throughin inbound and an outbound �lter for ea
h interfa
e. The �lters are a booleanexpressions that either permit (True) or deny (False) pa
kets to pass throughbased on values in the header �elds. To in
lude aspe
ts of routing in the modelwe transform the routing table into a set of boolean expressions, one for ea
h�lter. Ea
h boolean expression is given by the routing table entries for thatparti
ular interfa
e, thus the boolean expression des
ribes the set of headersthat are forwarded on that interfa
e.Using this model we derive a matrix des
ribing the �lter between any ofpair of
omputers in the network. As an illustration of this prin
iple Table 2shows the �lters in the example network. Ea
h of the �lters in the matrix is20

A B C
D EIAB

IBA

IBC

IBD

ICB

ICE

IDB

IDE

IEC

IED

IAB = IA,outB ∧ IB,inAFigure 12: Example of a Network Graph Representation.found by
ombining the �lters on ea
h link between the sour
e and destination.A sequen
e of �lters are
ombined by
onjun
tion, and if alternative paths existthen the �lters for ea
h path are
ombined with a disjun
tion. For instan
ethe �lter for any pa
kets passing from
omputer A to
omputer B is given by
IAB = IA,outB∧IB,inA

thus
ombining the outbound �lter from A to destination
omputer B and Bs inbound �lter for tra�
 from A. An other example it the�lter between the two hosts A and E. Here tra�

an pass through either Cor D, so using disjun
tion we get IAE = IAB ∧ (IBC ∧ ICE ∨ IBD ∧ IED).Destination
A B C D E

A × IAB IAC IAD IAE

B IBA × IBC IBD IBESour
e C ICA ICB × ICD ICE

D IDA IDB IDC × IDE

E IEA IEB IEC IED ×Table 2: Matrix of �lters in example network.The matrix immediately give the rea
hability analysis of the network. Infa
t, if an element IST of this matrix is the IDD node False, the sour
e node S
annot send any pa
ket to the target node T without being �ltered out. Thisrea
hability test is really wide. Indeed it
over also IP-spoofed pa
kets.A more reasonable query would be to ask if the ma
hine S
an rea
h thema
hine T with pa
kets su
h that the sour
e-IP is set to the IP of S. Thisoperation is, a
tually, very easy to perform. It is enough to
ompute the
onjun
tion of IST and the IDD des
ribing the set of headers su
h that thesour
e-IP �eld is equal to the IP address of S.More generally, the user
an spe
ify a set of headers (Iquery) and
he
k if21

some of them (Iresult)
an be sent from S to T (IST):
Iquery ∧ IST = Iresult (7)If Iresult is equal to False, none of the headers des
ribed in Iquery
an rea
h Tfrom S.In this se
tion we have brie�y des
ribed a tool for network a

ess veri�
a-tion whi
h test for pa
ket rea
hability into a, possibly,
omplex network. Theoverall strength the tool lies in the fa
t that the tests are exhaustive. Mean-ing that all
ases are
overed by the
omputation, thus improving the overallse
urity of the network being analyzed. Moreover, the
omputational powerneeded to perform su
h veri�
ation is really low and
an be performed on anypersonal
omputer.7 Con
lusionIn this paper we have fo
used on pa
ket �ltering on Internet �rewalls, andespe
ially on improving both aspe
ts of performan
e and se
urity. As a resultwe have proposed a formalized framework for pa
ket
lassi�
ation and throughtwo appli
ations we demonstrate that both performan
e and se
urity
an beimproved.The
entral idea of this paper
onsists of transforming the traditional or-dered rule based �lter spe
i�
ations into �rst order logi
 formulas on integervariables, and representing these using a Multi Terminal Interval De
ision Di-agrams (MTIDDs). Performing this transformation results in several advan-tages. First of all, the representation is sound and
omplete essentially pro-viding a strong platform for building tools for testing and verifying propertiesof �lter spe
i�
ations. Se
ondly, the worst
ase
lassi�
ation time when usingMTIDDs is O(1) making the
lassi�
ation time independent of the size of the�lter spe
i�
ation. Thirdly, the
on
ept of Interval De
ision Diagrams is easyto understand and provides a natural representation of �lter spe
i�
ations.Finally the algorithms for optimizing and manipulating IDDs are simple.For purposes of demonstrating the strength of the framework, we havedes
ribed two appli
ations: a pa
ket �ltering prototype and a network a

essveri�er (NAV).The purpose of the pa
ket �ltering prototype is to demonstrate the perfor-man
e issues related to using a de
ision diagram representation of pa
ket �ltersand suggesting an ar
hite
ture for a pa
ket �ltering toolkit. The main bene�tsof the suggested ar
hite
ture is that, when using this framework, the majorityof the
omplexity runs in user spa
e, while the pa
ket
lassi�er, running inkernel spa
e, is very simple. In terms of performan
e we have presented a pre-liminary study spa
e-usage issues. Most interesting is the empiri
al eviden
eshowing that the memory requirements for representing �lters as MTIDDs are22

very promising. In the set of real-life �lter spe
i�
ations tested the largestused only 25KB. In a test of large pa
ket �lters we saw logarithmi
 spa
eusage as a fun
tion of the number of rules, where the largest �lter required3.1MB of memory for 50.000 rules. A se
ond study fo
used on the pa
ket �l-ter
ompilation time. Here we found a

eptable
ompilation times for real-life�lters, however with larger �lters
ompilation times are quite long. Severalissues remains open for further study, this in
ludes measurements of a
tual
lassi�
ation times, and exploring ways to minimize the size of the MTIDDstru
tures.The se
ond appli
ation, whi
h is only outlined, demonstrates a potentialuse of our framework for improving network se
urity. The idea is to modela network and all the �lters. Then by issuing queries we
an explore thea

ess properties of the network. For instan
e, exploring the rea
hability ofIP spoofed pa
kets from one hosts to any of the destinations. The strength ofsu
h a tool is that the tests are exhaustive and performed o�-line. Moreover,the
omputational
omplexity of exploring the network is quite low.In total, this paper demonstrates that the use of IDDs for pa
ket �ltering
an both improve performan
e and se
urity of Internet �rewalls.The most immediate extension to this work is a more elaborate analysis ofthe performan
e issues related to using this framework for pa
ket
lassi�
ation.Espe
ially exploring possibilities of minimizing pa
ket
lassi�
ation time andspa
e requirements. Long term extensions in
ludes using the framework on ana
tual �rewall, and implementing the Network A

ess Veri�er. More gener-ally, an interesting aspe
t is to study the possibilities of using the frameworkin
ontext of related appli
ation areas. For instan
e, routing and Di�erenti-ated servi
es. However this may involve extending the framework to supportdynami
 updates.8 A
knowledgementsWe would like to a
knowledge the DIRT group at University of North Carolina,and in parti
ular Felix Hernandez-Campos, for providing a

ess to relevantnetwork tra
es.Referen
es[AH02℄ A. Attar and S. Hazelhurst. Fast Pa
ket Filtering Using N-ary De
i-sion Diagrams. Te
hni
al report, S
hool of Computer S
ien
e, Uni-versity of Witwatersrand, 2002.[And97℄ H. R. Andersen. An Introdu
tion to Binary De
ision Diagrams.Le
tures Notes, 1997. 23

[BMG99℄ A. Begel, S. M
Canne, and S. L. Graham. BPF+: Exploiting GlobalData-Flow Optimization in a Generalized Pa
ket Filter Ar
hite
ture.In Pro
eedings of ACM SIGCOMM, pages 123�134, Cambridge, MA,USA, August 1999.[Bry86℄ R. E. Bryant. Graph-based Algorithms for Boolean Fun
tion Ma-nipulation. IEEE Transa
tions on Computers, C�35(8):677�691, Au-gust 1986.[BV01℄ F. Baboes
u and G. Varghese. S
alable Pa
ket Classi�
ation. InPro
eedings of ACM SIGCOMM, pages 199�210, San Diego, CA,USA, August 2001.[EZ01℄ P. Eronen and J. Zitting. An Expert System for Analyzing FirewallRules. In Pro
eedings of the 6th Nordi
 Workshop on Se
ure ITSystems, pages 100�107, Copenhagen, Denmark, November 2001.[FM00℄ A. Feldmann and S. Muthukrishnan. Tradeo�s for Pa
ket Classi-�
ation. In Pro
eedings of IEEE INFOCOMM, pages 1193�1202,Tel�Aviv, Israel, Mar
h 2000.[GM99℄ P. Gupta and N. M
Keown. Pa
ket Classi�
ation on Multiple Fields.In Pro
eedings of ACM SIGCOMM, pages 147�160, Cambridge, MA,USA, August 1999.[HAS00℄ S. Hazelhurst, A. Attar, and R. Sinnappan. Algorithms for improv-ing the dependability of �rewall and �lter rule lists. In Pro
eedings ofthe International Conferen
e on Dependable Systems and Networks,pages 576�585, New York, NY, USA, June 2000.[Haz99℄ S. Hazelhurst. Algorithms for Analysing Firewall and Router A

essLists. Te
hni
al Report TR-WitsCS-1999-5, Department of Com-puter S
ien
e, University of the Witwatersrand, South Afri
a, 1999.[HSP00℄ A. Hari, S. Suri, and G. Parulkar. Dete
ting and Resolving Pa
ketFilter Con�i
ts. In Pro
eedings of IEEE INFOCOMM, pages 1203�1212, Tel�Aviv, Israel, Mar
h 2000.[LS98℄ T. V. Lakshman and D. Stiliadis. High Speed Poli
y-basedPa
ket Forwarding Using E�
ient Multidimensional Range Mat
h-ing. In Pro
eedings of ACM SIGCOMM, pages 203�214, Van
ouver,Canada, September 1998.[nes℄ Nessus Proje
t Homepage. http://www.nessus.org.[Sed02℄ R Sedgewi
k. Algorithms in C, Part 5: Graph Algorithms. Addison-Wesley, third edition, 2002.24

[Sri01℄ V. Srinivasan. A Pa
ket Classi�
ation and Filter Management Sys-tem. In Pro
eedings of IEEE INFOCOMM, An
horage, AK, USA,April 2001.[ST98℄ K. Strehl and L. Thiele. Symboli
 Model Che
king Using IntervalDiagram Te
hniques. Te
hni
al Report 40, Computer Engineeringand Networks Lab, Swiss Federal Institute of Te
hnology, Glorias-trasse 35, 8092 Zuri
h, Switzerland, 1998.

25

Recent BRICS Report Series Publications

RS-02-43 Mikkel Christiansen and Emmanuel Fleury. Using IDDs for
Packet Filtering. October 2002. 25 pp.

RS-02-42 Luca Aceto, Jens A. Hansen, Inǵolfsdóttir Anna, Jacob
Johnsen, and John Knudsen. Checking Consistency of Pedi-
gree Information is NP-complete (Preliminary Report). October
2002. 16 pp.

RS-02-41 Stephen L. Bloom and Zolt́an Ésik. Axiomatizing Omega and
Omega-op Powers of Words. October 2002. 16 pp.

RS-02-40 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir. A
Note on an Expressiveness Hierarchy for Multi-exit Iteration.
September 2002. 8 pp.

RS-02-39 Stephen L. Bloom and Zolt́an Ésik. Some Remarks on Regular
Words. September 2002. 27 pp.

RS-02-38 Daniele Varacca. The Powerdomain of Indexed Valuations.
September 2002. 54 pp. Short version appears in Plotkin, ed-
itor, Seventeenth Annual IEEE Symposium on Logic in Com-
puter Science, LICS ’02 Proceedings, 2002, pages 299–308.

RS-02-37 Mads Sig Ager, Olivier Danvy, and Mayer Goldberg.A Sym-
metric Approach to Compilation and Decompilation. August
2002. To appear in Neil Jones’s Festschrift.

RS-02-36 Daniel Damian and Olivier Danvy. CPS Transformation of
Flow Information, Part II: Administrative Reductions. August
2002. 9 pp. To appear in theJournal of Functional Program-
ming. This report supersedes the earlier BRICS report RS-01-
40.

RS-02-35 Patricia Bouyer. Timed Automata May Cause Some Troubles.
August 2002. 44 pp.

RS-02-34 Morten Rhiger. A Foundation for Embedded Languages. Au-
gust 2002. 29 pp.

RS-02-33 Vincent Balat and Olivier Danvy. Memoization in Type-
Directed Partial Evaluation. July 2002. 18 pp. To appear in
Batory and Consel, editors,ACM SIGPLAN/SIGSOFT Confer-
ence on Generative Programming and Component Engineering,
GPCE ’02 Proceedings, LNCS, 2002.

