
 1

Umbrella
Security Framework

Emmanuel Fleury
fleury@cs.aau.dk

Kristian Sørensen
ks@cs.aau.dk

Aalborg University
Department of Computer Science

Denmark

 2

Outline

● Motivations
● Umbrella Security Framework
● Process-Based Access Control (PBAC)
● Digitally Signed Binaries (DSB)
● Conclusions & Further Work
● Live Demonstration (Kristian Sørensen)

 3

Motivations

 4

Security Threats over Internet

● Complexity of Internet, Protocols and
Applications are all increasing

● Source Code isn't required to find flaws
(i.e. Microsoft Windows & Internet Explorer)

● Attacker tools are:
– Increasingly sophisticated

– Easy to use

– Designed to perform large scale attacks

 5

Total Vulnerabilities Reported

 6

Total Incidents Reported

 7

Attacker Technology

 8

Attacks Evolution

 9

Future Of the Security Over Internet ?

● Expertise of Attackers is increasing

● Sophistication of Attacks is increasing

● Ergonomy of Attack Tools is increasing

● Expertise of people on Internet is decreasing

● Sophistication of Counter-measures is increasing

● Ergonomy of Counter-measure Tools is stable
Highly Explosive

 Situation !!!

 10

Threats over Consumer Electronics

What does all these things
have in common ???

They have an
Operating System !!!

So, they are sensitive
to the same risks as
a real computer !!!

 11

Caribe: A Virus for Mobiles

 12

Caribe: Technical Facts
● Released in June 2004 by the group 29A
● Just a Proof of Concept
● Innovations ?

● Flaws Exploited ?
None !

None !

Where is the Challenge, then ???

 13

Why is it Challenging ?
● Need Specific Hardware
● Need Highly Technical Documentations
● Need Reverse-Engineering Work
● Need Cross-compilers
● There Are No Standards
● No Open Community of Coders
● ...

 14

In the Future ?
● Hardware will be Standardized
● Documentation will be Simplified
● Reverse-Engineering will be Published
● Cross-compilers will become easy to use
● Standards will come (have to !)
● Open Community of Coders will be formed
● ...

 15

Where Are We Now ? (1)

 16

Where Are We Now ? (2)

 17

Future Of the Security Over CE ?

● Expertise of Attackers will increase

● Sophistication of Attacks will increase

● Ergonomy of Attack Tools will increase

● People using mobile phone are computer illiterates

● Sophistication of Counter-measures will increase

● Ergonomy of Counter-measure Tools will be stable
Highly Explosive

 Situation !!!

 18

What OS would suit ?
● Multi-users (Fine Grained Access Control)
● Multi-tasking (Advanced Scheduler)
● Standardization of the Programming Interface

(POSIX-like ?)
● Separation of Kernel and User memory
● Strictly Follow the Standards For Network

Protocols
●
Hey !!! It's UNIX !!!

 19

Final Thought ?

You have to understand what the
primary objective of an OS is:

To create a virtual environment that is
simple and sane to program against....

Have you learned nothing at all from
DOS and Windows ?

 -- Linus Torvalds

 20

Umbrella
Security Framework

 21

Umbrella: Don't get wet !

The Umbrella Team:
● Søren Nøhr Christensen (student)
● Emmanuel Fleury (assistant professor)
● Kristian Sørensen (student)
● Michel Thrysøe (student)

http://umbrella.sourceforge.net/

 22

Project Background
● 2003

– Project start in September at Aalborg (Denmark)
– Goal: Improve security on handhelds

● 2004
– Umbrella launched in February
– Master's Thesis completed in June
– Continued in September with TDC (Denmark Telecom)

● 2005
– Continue with Panasonic Research

 23

Project Partners
● September – December 2004

– CISS (Center for Embedded Software Systems)

– TDC (Denmark Telecom)
● Prototype for alarm box

● January – June 2005
– CISS (Center for Embedded Software Systems)

– Panasonic
● Implement kernel keyring, Testing and optimization
● Other features

 24

Umbrella Goals

● Easy to deploy and to maintain
● Transparent to the user
● Avoid global configuration of the security policy
● Can handle the restrictions process by process

A combination of process-based
access control and signing of binaries

targeting Consumer Electronics

 25

Umbrella Context

Hardware
Provider

Service
Provider

Software
Provider

Attacker

Legal User

Device

Device

Service

Software
Trojan

Process Hijacking

Usage

(Exploiting Flaws)

 26

Top Level Design

PBAC DSB

File
SystemWifi Bluetooth

Software
Provider

Legal User

Soft

Sign

Umbrella ?

exec
?

Kernel

PBAC = Process-Based Access Control
DSB = Digitally Signed Binary

? ? ?

Attacker

Exploiting
Software Flaws

 27

Top Level Design

PBAC DSB

File
SystemWifi Bluetooth

?

Attacker

Legal User

Trojan

Sign

exec
?

Umbrella

Kernel

PBAC = Process-Based Access Control
DSB = Digitally Signed Binary

 28

Roadmap
● 0.3 Process-based restrictions

– Restrictions can be set using restricted fork

● 0.5 Execute restrictions
– Restrictions can be embedded and applied when executing

● 0.6 Integration with GNU Privacy Guard
– Authenticate binaries and check restrictions integrity

● 0.7 Implement keyring
– Hold public keys of several vendors

● 0.8 Feature complete
● 0.9-1.0 Bug fixing and optimization

 29

Process-Based
Access Control

(PBAC)

 30

Related Projects
● Security-Enhanced Linux (SE Linux)

– Combination of different security mechanisms
● Role-Based access control

● Type-enforcement

● Multi-level security

– Extreme fine granularity
● Administrators can configure it extremely precisely

● Complex to understand and maintain

 31

Other Related Projects
● SubDomain

– Least privilege mechanism based on programs
– Easy to understand Security-Enhanced Linux
– Closed source owned by Immunix

● Medusa DS9
– Virtual Space Model
– Security decision center in user space

● Rule Set Based Access Control (RSBAC)
● Linux Intrusion Detection System (LIDS)
● Grsecurity
● ...

 32

What is Access Control About ?

Data

Attacker

Legal User

Capacities

SystemLeast
 Privi

lege Principle

 33

Discretionary Access Control
Object

Owner

Administrator

User/Group

Access to an Object is left
to the Discretion of the owner

?

 34

Mandatory Access Control

Executable
Trust Level 1

Owner

Administrator
(operation context)

User/Group
Trust Level 4

Object
Trust Level 1

?

?
OK!

Access to an object is granted depending on the owner decision,
the trust level of the subject accessing it and the operation context

 35

Mandatory Access Control

Owner

Administrator
(operation context)

User/Group
Trust Level 4

Object
Trust Level 3

?

?
No!

Executable
Trust Level 1

Access to an object is granted depending on the owner decision,
the trust level of the subject accessing it and the operation context

 36

Mandatory Access Control

Owner

Administrator
(operation context)

User/Group
Trust Level 4

Object
Trust Level 1

?

?
No!

Executable
Trust Level 1

Access to an object is granted depending on the owner decision,
the trust level of the subject accessing it and the operation context

 37

Role-Based Access Control
A super-set of Mandatory Access Control
where access is granted based on:

● Object's Owner decision

● User's Role(s) (lattice over roles)

● Object's Trust Level (lattice over objects)

● Operation Context (relations between objects)

 38

What's Wrong ?
● Discretionary Access Control:

Not fine grained enough
(cannot stop trojans within the user environment)

● Mandatory Access Control:
Operation's context is complex to configure
(An end-user cannot deal with this)

● Role-Based Access Control:
If MAC was already too complex, RBAC is as well.

 39

Process-Based Access Control
● Combined with Discretionary Access Control
● File-system & Capacity restrictions:

– Access to /home/john/addressbook
– Access to the Network

● Restrictions at Process Level
(use process hierarchy to define a global security policy)

● Setting new restrictions through syscalls:
– exec() (embedded restrictions)
– rfork() (restricted fork)

 40

File-system Restrictions
● Overlap Discretionary Access Control
● Binary restrictions (Access/No Access)
● You can only add restrictions
● Mimic dentry data-structure
● Restrictions stored in a tree masking the file-

system

/
etc passwd

home user
foo file

directory

 41

Capacity Restrictions
● Binary restrictions (Access/No Access)
● You can only add restrictions
● Implemented as a 32 bit binary vector
● Checks are performed by masking

1 0 1 1 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

Bit vector
Mask

Restricted !

 42

Capacity Restrictions

Restrictions
SIGKILL
SIGTERM
SIGQUIT
SIGHUP
SIGTRAP

SIGCHLD
IPNET
IRDA

Mediation
Kill signal

Termination signal
Quit signal

Hangup signal
Trap signal

Child stopped signal
IP socket creation
Infra-red device

SIGALRM Alarm signal

BLUETOOTH Bluetooth device
FORK Fork new process

 43

Global Security Policy

● Use the process hierarchy
● init is the least restricted process

(Umbrella can't ensure anything before init. For this, see TCG)

● Change ownership (setuid) does not help
(PBAC restrictions are still increasing)

● exec() can restrict further (see next slide)
● fork() duplicate the restrictions
● rfork() restrict further within a program

Every Child is at least as restricted as its father!

 44

Embedded Restrictions
● Every executable has its

restrictions embedded in
the ELF format

● When a process call exec():
– Restrictions from the calling

process are added to the
restrictions of the executable

– A new process is spawned and given
these new restrictions

binary

restrict

ELF Format

 45

Restricted Fork
● Within a program a coder can restrict a child

process by using the syscall rfork():

rfork(capacity_restrictions,
 file­system_restrictions);

Example:
rfork({IPNET, BLUETOOTH},
 {“/etc/”, “/protected/area”});

● When called rfork() spawn a process with the
restrictions specified in the rfork() added to
the restrictions of its father

 46

Restrictions & Ownership
init

inetd klogdbash

startx

gnome­session X

gnome­terminal

updatedb

thunderbird

thunderbird
(exec_attachement)

User

Root

exec
+

rfork

 47

Restrictions Inheritance

bin

/etc/boot

/boot,/etc

/boot,/etc,
abook,net

/boot,/etc

exec()

fork() rfork(abook,net)

 48

Mediation Through LSM
● PBAC as LSM based module
● Mediating creation of a process through:

– task_create()

– task_alloc_security()

● Mediating access to files through:
– inode_permissions()

– inode_unlink()

– ...

● Mediating access to network through:
– socket_create()

 49

Digitally Signed
Binaries
(DSB)

 50

Related Projects
● Bsign (Debian)

– Signed SHA1 inserted into ELF header

● DigSig (Ericsson Research Lab)
– Kernel module for checking BSign signatures

● Tripwire (Tripwire Inc.)
– Intrusion detection with file system hashes

 51

Why Signing Files ?

● How to ensure only trusted
binaries are executed ?

● How to ensure integrity of
the attached restrictions ?

 52

Signing Executables

binary

restrict

hash signature
crypt

(K_priv)
SHA1

binary

restrict

signature

binary

restrict

signature+

 53

Digitally Signed Binary Format

Binary

vendor_id

restrictions

signature

ELF header

offset to sign

● Append the needed data at the
end of the executable file

● Offset to the signature is
stored in the ELF header

● Keep track of:
– Vendor ID
– Restrictions of the executable
– Signature of the file

 54

Verification of Executables
1. Get vendor_id and fetch the vendor public key

2. If the key is not found go to 7

3. Decrypt the signature with the public key

4. Perform the hash of (binary+vendor_id+restrictions)

5. Compare the two hashes

6. If they match

1. Add restrictions to the new process

2.Run the executable and exit

7. Deny execution or sand-box

binary

vendor_id

restrict

sign

 55

Conclusion
&

Further Work

 56

Conclusion
● Goals achieved

– Simple API ensures easy deployment
– Almost maintenance free
– Signed files provide transparency
– No global security policy to define

● Umbrella is a patch to Linux 2.6.x
● Umbrella is GPL

 57

Further Work
● Finish the Digitally Signed Binary

● Design a secure way to handle the
key-ring from user-space

● Work on optimization of PBAC

● Try to tackle other problems ?
(Trusted paths, Stack scrambling, ...)

 58

Live Demonstration
by Kristian Sørensen

 59

Questions ?

