Umbrella
Security Framework

Emmanuel Fleury Kristian Serensen
fleury@cs.aau.dk ks@cs.aau.dk
Aalborg University
Department of Computer Science
Denmark

Outline

* Motivations

* Umbrella Security Framework

* Process-Based Access Control (PBAC)
* Digitally Signed Binaries (DSB)

* Conclusions & Further Work

* Live Demonstration (Kristian Sgrensen)

e

Motivations

Security Threats over Internet

* Complexity of Internet, Protocols and
Applications are all increasing

* Source Code isn't required to find flaws
(i.e. Microsoft Windows & Internet Explorer)

* Attacker tools are:

- Increasingly sophisticated
- Easy to use

- Designed to perform large scale attacks

Total Vulnerabilities Reported

5,000

4,500

4;000 !

3,500

: | | :
o 1_tha_l:_vt._ffge__r_atfﬂitg’es_\rgp_orted’_(_ 15{95;26{02): 962 | |
! : | | |
(R T I N St IS 1 O S S 4,129

3:000

2,500

2,000+

1,500 |

1,000 ¢

500

0 |

Q1 E‘ ESI 9% ai Gz aa

199

I1]'1' :

97 98 99 2000 01 02 03

© 1998-2003 by Carnegie Mellon University

é CELInUX Forum,

Total Incidents Reported

™
: =
o~
LT T ;
CEEEE ,
_ P (SRl B .M_mz
S
m ™~
................... {-==4---1—-1-¥1---}- ---13
lllllllllll = SR YLEEETE pe s S SRR SRE EEe SE VR - - - m
... 15
=
o
o
(3]
.. o] - | 1
m
--“ ... A e B
s N e e e s 5
—
3 g
| ™~
T :
||m”. ||||||| e e o RS ER PR PR, S SE S S RS SR e . g
=
- SN TR S URE S B S L B i e b | el e e -
I :
—_— —_—
g
N - SO O D= R) o me e L PR R e f---)--ls
m ... 5
L1 e R ;
— (<]
| .
K I
o -« g B Bl b el b e e e e e e e ~ilg
... 15
| 53
| gl | #
e S e EE S S R S e e e et EEE CEE PR EEEE R oif-18
_ --4- 18
................... e e e et S B B S B e S e B B o !m%
e
... ~)lg
SSSOENS [OOSR (I (SO | SOPR IIGpEy (S SOt IR0 S IS IS U ol W el | St L TP 52 iy
..... 5
n
S8
o~

100,000
95,0001
90,000
85,000
80,000

75,000
70,000
65,000
60,000
55,000

50,000
45,000
40,000
35,000
30,000

25,000
20,000
15,000
10,000

5,000
0

© 1998-2003 by Carnegie Mellon University

CELINUX FOrdm,

Attacker Technology

coordinate

~ propagate {==—=={ coordinate == f- =1 propagate

compromise compromise compromise compromise compromise
BEREEE! HRRERE HEERRED IR | ERREEY
scan = scan . = scan == scan scan == scan
TTTIITT T T T T |
il Pa A i Pl Jat
1997 1998 1999 2000 2001 2002

© 1998-2003 by Carnegie Mellon University

Attacks Evolution

DDoS Attacks :
email propagation | High
of majici[aus code increase in worms

‘stealm“! advar)ced sophisticated
scanning [echmques commang & control
widespread attacks using

NNTP to disltribute attack c
widespread attacks .2
on DNS 'rn{rastmcmre "6
executable code attacks .5
(against Frowsers) anti-forensic techniques .2
automated widespread home users targeted :

attiiicks

GUI interer tools

distributed lalttack tools

increase inlwide-scale
Trojan horse distribution

hijackingl sessions

Internet social

: s windows-based rlemote controllable
engineering attacks

Trojans (back orifice)
automated _ |
probes/scans techniques to analyse
. | code for vuls without source
sniffers packet spoofing
widespread
High Intruder Knowledge “""orserviee attacks Low

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
© 1998-2003 by Carnegie Mellon University

Future Of the Security Over Internet ?

Expertise of Attackers is increasing

Threats over Consumer Electronics

What does all these things
\\ have in common ???

to the same risks as
a real computer !l

10

Caribe: A Virus for Mobiles

Caribe: Technical Facts

* Released in June 2004 by the group 29A
* Just a Proof of Concept

* Tnnovations ?

None !
* Flaws Exploited ?

None |

Where is the Challenge, then ???
& WeznTEZ—— 12

Why is it Challenging ?

* Need Specific Hardware

* Need Highly Technical Documentations
* Need Reverse-Engineering Work

* Need Cross-compilers

* There Are No Standards

* No Open Community of Coders

13

In the Future ?

* Hardware will be Standardized

* Documentation will be Simplified

* Reverse-Engineering will be Published

* Cross-compilers will become easy to use
* Standards will come (have to |)

* Open Community of Coders will be formed

14

Where Are We Now ?

(1)

compromise &=

] i
lllll
I T

compromise

-1 command &

HERERE
II|III:
ot &5 = =

scan scan
IERBREEI _Hiii
Pl A

1857

LLLLLL

© 1998-2003 by Carnegie Mellon University

2000

propagate }:— propagate

- , | .|
LT [EE

< compromise E=== compromise
L EREEE
scan B3 scan

i
2001

Jrat
2002

U 8 el Form

15

Where Are We Now ? (2)

DDoS Attacks :
email propagation | High
of malicipus code increase Iin worms

‘stealm“! advanced sophisticated
scanning [echmques commang & control
widespread attacks using
NNTP to disltribute attack c
widespread attacks .2
on DNS 'rn{rastmcmre "6
executable code attacks Rty .5
(against Frowsers) anti-forensic techniques .2
automated widespread home users targeted :

attiiicks

GUI interer tools |

wiributed lalttack tools

. <=8
hijackingl sessions | 1!:0?;:13058 ! .de-‘i:n
I!'ltemgt socisl I - windows-based rlemote controllae
engineering attacks Trojans (back orifice)
automated _ |
probes/scans techniques to analyse
. il code for vuls without source
sniffers packet spoofing
widespread
denial-of-service attacks
High Intruder Knowledge Low

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
© 1998-2003 by Carnegie Mellon University

Future Of the Security Over CE ?

Expertise of Attackers will increase

* trgonomy of Counter-measure Tools will be stable

17

What OS would suit ?

* Multi-users (Fine Grained Access Control)
* Multi-tasking (Advanced Scheduler)

* Standardization of the Programming Interface
(POSIX-like ?)

* Separation of Kernel and User memory

* Strictly Follow the Standards For Network
Protocols

"Hey Il It's UNIX Il

e

18

Final Thought ?

You have to understand what the
primary objective of an OS is:

To create a virtual environment that is
simple and sane to program against....

Have you learned nothing at all from
DOS and Windows ?
-- Linus Torvalds

o

19

Umbrella
Security Framework

Umbrella: Don't get wet !

The Umbrella Team:

® Sgren Nohr Christensen (student)
* Emmanuel Fleury (assistant professor) o
* Kristian Segrensen (student)
* Michel Thrysge (student)

http://umbrella.sourceforge.net/
& WA 21

e

Project Background

* 2003
- Project start in September at Aalborg (Denmark)

- Goal: Improve security on handhelds

* 2004

- Umbrella launched in February
- Master's Thesis completed in June

- Continued in September with TDC (Denmark Telecom)
e 2005

— Continue with Panasonic Research

22

Project Partners

* September - December 2004
— CISS (center for Embedded Software Systems) Ci§ S
— TDC (Denmark Telecom) M

* Prototype for alarm box

* January - June 2005

— CISS (Center for Embedded Software Systems) CSS
- Panasonic Panasonic

* Implement kernel keyring, Testing and optimization
* Other features

23

Umbrella Goals

A combination of process-based
access control and signing of binaries

targeting Consumer Electronics

* Easy to deploy and to maintain
* Transparent to the user
* Avoid global configuration of the security policy

* Can handle the restrictions process by process

e

Umbrella Context

&

Hardware Device Usage Legal User

&

Provider
.

Serwce
Provuder'

Servuce

Device

Software

Process Hijacking
SofTware
Provider

Attacker

(Exploiting Flaws)

& eI 25

Top Level Design

PBAC = Process-Based Access Control
DSB = Digitally Signed Binary

Kernel Legal User

s)
Umbrella 5 \
PBAC DSB — /]
Bluetooth

J
Exploiting
Software Flaws ‘

Attacker

Software
Provider

@& eI 26

e

Top Level Design

PBAC = Process-Based Access Control
DSB = Digitally Signed Binary

&

Kernel Legal User

(

Umbrella 5
PBAC DSB —— /T __

exec ?

? File
Wifi Bluetooth
System

Attacker

27

Roadmap

* 0.3 Process-based restrictions

- Restrictions can be set using restricted fork

* 0.5 Execute restrictions

- Restrictions can be embedded and applied when executing

* 0.6 Integration with GNU Privacy Guard

- Authenticate binaries and check restrictions integrity
* 0.7 Implement keyring

- Hold public keys of several vendors

* 0.8 Feature complete

* 0.9-1.0 Bug fixing and optimization

28

Process-Based

Access Control
(PBAC)

Related Projects

* Security-Enhanced Linux (SE Linux)

- Combination of different security mechanisms
* Role-Based access control
* Type-enforcement

* Multi-level security
- Extreme fine granularity

* Administrators can configure it extremely precisely

* Complex to understand and maintain

& WeznTEZ—— 30

Other Related Projects

* SubDomain

- Least privilege mechanism based on programs
- Easy to understand Security-Enhanced Linux
- Closed source owned by Immunix

* Medusa DS9

- Virtual Space Model
- Security decision center in user space

* Rule Set Based Access Control (RSBAC)
* Linux Intrusion Detection System (LIDS)
* Grsecurity

dm

e

31

What is Access Control About ?

Ca es
P Attacker

& WeznTEZ—— 32

Discretionary Access Control

ObJec’r

6_’ -
User/ Group Owner]

AdmlmsTr'a’ror'

Access to an Object is left
to the Discretion of the owner

@& eI 33

e

Mandatory Access Control

> G

/. Owner

6_, . OK! E

User/Group ExecutableN Object

Trust Level 4 Trust Level 1 @ Trust Level 1

Administrator
(operation context)

Access to an object is granted depending on the owner decision,
the trust level of the subject accessing it and the operation context

@ ez = 24

Mandatory Access Control

> G

/. Owner

6_> 5 Nol E

User/Group ExecutableN Object

Trust Level 4 Trust Level 1 & Trust Level 3

Administrator
(operation context)

Access to an object is granted depending on the owner decision,
the trust level of the subject accessing it and the operation context

& WeznTEZ—— 35

Mandatory Access Control

> G

/7 Owner
. No! =~
= W
User/Group Executable ' Object
Trust Level 4 Trust Level 1 Trust Level 1

Administrator
(operation context)

Access to an object is granted depending on the owner decision,
the trust level of the subject accessing it and the operation context

& WeznTEZ—— 36

Role-Based Access Control

A super-set of Mandatory Access Control
where access is granted based on:

* Object's Owner decision
* User's Role(s) dattice over roles)
° ObjCCT'S Trust Level (lattice over objects)

° Opera’rion Context (relations between objects)

37

What's Wrong ?

* Discretionary Access Control:

Not fine grained enough
(cannot stop trojans within the user environment)

* Mandatory Access Control:

Operation's context is complex to configure
(An end-user cannot deal with this)

* Role-Based Access Control:
If MAC was already too complex, RBAC is as well.

& WeznTEZ—— 38

Process-Based Access Control

* Combined with Discretionary Access Control

* File-system & Capacity restrictions:
- Access to /home/john/addressbook

- Access to the Network

* Restrictions at Process Level
(use process hierarchy to define a global security policy)

* Setting new restrictions through syscalls:
- exec () (embedded restrictions)

- rfork () (restricted fork)

& WeznTEZ—— 39

File-system Restrictions

* Overlap Discretionary Access Control

* Binary restrictions (Access/No Access)
* You can only add restrictions

* Mimic dentry data-structure

* Restrictions stored in a tree masking the file-
system

I—e
/ ;fOO \file

Lhome ——UusSerxr «—directory

W 40

Capacity Restrictions

* Binary restrictions (Access/No Access)

* You can only add restrictions

* Implemented as a 32 bit binary vector

* Checks are performed by masking

1/0|/1/1]/0/0 1/0/0/ 0|00
o/lolo 1/000O0/00O0 O
Restricted !

Bit vector
Mask

e

41

Capacity Restrictions

Restrictions Mediation
SIGKILL Kill signal
SIGTERM Termination signal
SIGQUIT Quit signal
SIGHUP Hangup signal
SIGTRAP Trap signal
SIGALRM Alarm signal
SIGCHLD Child stopped signal
IPNET IP socket creation
IRDA Infra-red device
BLUETOOTH Bluetooth device
FORK Fork new process

Global Security Policy

Every Child is at least as restricted as its fafher'g

* Use the process hierarchy

* init is the least restricted process
(Umbrella can't ensure anything before i ni t. For this, see TCG)

* Change ownership (setuid) does not help
(PBAC restrictions are still increasing)

* exec() can restrict further (see next slide)
* fork() duplicate the restrictions

* rfork() restrict further within a program

& WA 43

e

Embedded Restrictions

* Every executable has its
restrictions embedded in
the ELF format

* When a process call exec():

- Restrictions from the calling
process are added to the
restrictions of the executable

— A new process is spawned and given
these new restrictions

restrict

%

ELF Format

44

Restricted Fork

* Within a program a coder can restrict a child
process by using the syscall rfork():

(ffork(capacity_restrictions,
file-system restrictions);

Example:
rfork ({IPNET, BLUETOOTH},
{“/etc/", “/protected/area”});

N\

* When called rfork() spawn a process with the
restrictions specified in the rfork() added to
the restrictions of its father

& WL -

e

45

Restrictions & Ownership

init

|\

bash inetd klogd

startx
User

gnome-session X

’/,,/" ‘\\\\\.

gnome- term1nal thunderbird
rfork

R
oo} thunderbird
updated (exec attachement)

exec

46

Restrictions Inheritance

. exec () %
—e— -
/etc

y [/onetta %ﬁ‘bo‘)k ynet)

[/boot, /et@ {/boot, /etc,}

abook,net

e

Mediation Through LSM

* PBAC as LSM based module

* Mediating creation of a process through:

- task _create()

- task _alloc security()

* Mediating access to files through:

- inode_permissions ()

- inode unlink()

* Mediating access to network through:

- socket create()

48

Digitally Signed
Binaries
(DSB)

Related Projects

* Bsign (Debian)

- Sighed SHA1 inserted into ELF header

* DigSig (Ericsson Research Lab)

- Kernel module for checking BSign signatures

* Tripwire (Tripwire Inc.)

- Intrusion detection with file system hashes

& WA 50

e

Why Signing Files ?

* How to ensure only trusted
binaries are executed ?

* How to ensure integrity of
the attached restrictions ?

e

51

Sighing Executables

« N
binary SHAI1 crypt
restrict
& /
s D
« D
MY ALY
aﬂ/;a/:;/f//
restrict
restrict
signature
A J
& WeznTEZ—— 52

e

Digitally Signed Binary Format

* Append the needed data at the
end of the executable file

* Offset to the signature is
stored in the ELF header

* Keep track of:
- Vendor ID
- Restrictions of the executable

- Signature of the file

a

ELF header

NN\
N\
N
N
W

N
W

vendor id

restrictions

signature

53

Verification of Executables

1. Get vendor_id and fetch the vendor public key
2. If the key is not found go to 7
3. Decrypt the signature with the public key
4. Perform the hash of (binary+vendor_id+restrictions)
5. Compare the two hashes
6. If they match o
1. Add restrictions to the new process e
2.Run the executable and exit restrict
7. Deny execution or sand-box & B

54

Conclusion

&
Further Work

Conclusion

* Goals achieved

- Simple APT ensures easy deployment
- Almost maintenance free

- Signed files provide transparency

- No global security policy to define

* Umbrella is a patch to Linux 2.6.x

* Umbrella is GPL

56

Further Work

* Finish the Digitally Signed Binary

* Design a secure way to handle the
key-ring from user-space

* Work on optimization of PBAC

* Try to tackle other problems ?
(Trusted paths, Stack scrambling, ...)

e

57

Live Demonstration

by Kristian Serensen

58

Questions ?

