
Process-Based Access Control (PBAC)

Søren Nøhr Christensen, Emmanuel Fleury,
Kristian Sørensen, Michel Thrysøe

Aalborg University – Computer Science Dept. & CISS,
Fredrik Bajers Vej 7, DK-9220 Aalborg Ø, Denmark.
{snc,fleury,ks,mthrysoe}@cs.aau.dk

Abstract
Access control mechanisms can be seen as the last line
of defense of an operating system when a flaw occurred.
Yet, Unix systems usually follow a Discretionary Access
Control (DAC) model whereas the security of this model
seems to reach its limits nowadays.

This article presents a new access control model called
Process-Based Access Control (PBAC) for embedded
Unix systems, using the process-hierarchy and embed-
ded restrictions on the executables to grant or deny ac-
cess to objects. This scheme has been coupled with a
public/private signing mechanism of executable files in
order to ensure the authenticity and integrity of the re-
strictions. We believe PBAC to be both easier to config-
ure than Mandatory Access Control (MAC) model and
with a more adequate granularity to fight most of the
usual security threats encountered in real-life.

The Umbrella Project1 is an implementation of the full
PBAC scheme as an open-source patch for the Linux ker-
nel 2.6 which is mainly targeting consumer electronics
ranging from mobile phones to settop boxes.
Keywords: Access Control, Discretionary Access Con-
trol, Mandatory Access Control, Digitally signed bina-
ries, Process-Based Access Control, Consumer electron-
ics, Security framework, Security, LSM.

1 Introduction

Access control [22, 20] is a central point in the security
of an operating system. Indeed, if for any reason the
system is flawed, the access control mechanism is the
last way to contain the attacker. Until now Unix systems
have been using the Discretionary Access Control (DAC)
model, where the user ID of the owner is used to mediate
access to objects. But, as the number of process hijack-
ing attacks has increased (buffer-overflow, format bugs,

1This work has been done with partial support of CISS (Center for
Embedded Software Systems) and TDC (Largest Danish Telecommu-
nications provider).

race conditions, etc.) this model seems to reach its limits
nowadays. In replacement of this mechanism, many oth-
ers have been proposed. The most famous is obviously
Mandatory Access Control (MAC, Bell-LaPadula [6]),
where the access rights are based on the sensitivity of
each object to the system and are managed by the ad-
ministrator. Or, also, the Role-Based Access Control
(RBAC) [10, 21] mechanism which restrict access based
on therole of each user.

This article introduce a new access control mechanism
for embedded systems, namely Process-Based Access
Control (PBAC), that we believe both easier to configure
compared to MAC and with a more adequate granularity
to fight most of the usual security threats encountered in
real-life. PBAC is a model using the process-hierarchy
and restrictions on executables to decide whether the
access to the object is granted or not. It can be com-
bined with DAC and can implement MAC, but it is also
more powerful as it provides arestricted forksystem call
which allow to change on demand the restrictions within
the execution of a program. As we will see in the fol-
lowing, the PBAC model is based on the belief that pro-
grammers know better than any administrator the needs
of their softwares and can embed restrictions for a PBAC
system in their binaries. This mean that, on the contrary
to MAC, most of the restriction is already coded and do
not need a very in-depth configuration.

At this point, you should note that it iscrucial that
the origin of the executable could not be faked nor the
restrictions embedded by the programmer in the binary
be modified by an attacker. In some specifically hostile
environments, we have to ensure that such a requisite is
met. Therefore, we introduced the possibility to sign a
binary with the private key of the programmer. At ex-
ecution time, the signature of the binary is checked in
kernel-space against the public key of the programmer.
Once a binary has passed such test, it is eithertrustedor
declareduntrustedand discarded or sandboxed.

Finally, the Umbrella project is a full implementation

1

of the PBAC scheme as an open-source Linux kernel 2.6
patch. The Umbrella Project is used to demonstrate the
capabilities and the power of such a scheme in different
consumer electronics domains.

The article is organized as follows, section 3 provides
a more in depth description of the PBAC model, Section
4 comes with a detailed view of the digitally signed bina-
ries mechanism, section 5 describes the implementation
of the PBAC scheme in Umbrella, section 6 provides dig-
itally signed binaries implementation details. Section 8
gives some benchmarks of the implementation and sec-
tion 9 discuss two case study which are namely a PDA
and an alarm box. Section 10 finally concludes this arti-
cles and gives further work and possible improvement of
the scheme and the implementation.

2 Related Work

Other projects have been exploring different access con-
trol mechanisms. For the example, the Medusa DS9
project implements MAC by using a virtual space model,
where a virtual space grants access to a resource and ac-
cess to the virtual space is enforced by a access vector
placed on objects and subjects in the system, as described
in [29].

The LOMAC project provides a two-level MAC im-
plementation with compile time policy, described in
[12, 11]. LOMAC divides the system into two integrity
levels; high and low. The high level contains critical sys-
tem components. The low level contains client and server
processes that read from the network, local user pro-
cesses and their files. Once the integrity level is assigned
to a file it is never changed, but high-level processes can
be demoted on run-time, if they read low-integrity data.
It is however not possible to increase the integrity level
of a process once it has been demoted.

The Linux Intrusion Detection System (LIDS) is a ker-
nel patch and administration tool for strengthening the
security in Linux. LIDS includes a reference monitor
and MAC and has furthermore a port scan detector, a file
protection system and a mechanism for protection of pro-
cesses; this is described in [28, 14].

The RSBAC project use the Generalized Framework
for Access Control (GFAC) by Abrams and LaPadula
[1]. All security relevant system calls are extended by
security enforcement code. This code calls the central
decision component, which in turn calls all active de-
cision modules and generates a combined decision [2].
RSBAC includes a Mandatory Access Control module,
a Malware Scanner that can detect Linux viruses and a
Process Jail that is a enhanced version of the chroot fea-
ture.

The general security framework, Linux Security Mod-
ules (LSM), is described in [27]. By itself, the LSM does

not provide any additional security. It adds void secu-
rity fields to kernel objects and framework of security
hooks to mediate access to these objects. It is the base
of many security systems for Linux including Security-
Enhanced Linux, DigSig and the Umbrella implementa-
tion described in this article.

Security-Enhanced Linux (SELinux) is developed by
NSA and is native in the vanilla Linux kernel source; the
system implements several different MAC schemes and
has the ability to exchange the security decision-making
code to implement another scheme. SELinux is based on
LSM and is described in [24, 25, 23].

Immunix has made a LSM based security mechanism
called SubDomain, presented in [7]. SubDomain pro-
vides a least privilege mechanism that is based on pro-
grams. The focus on programs as opposed to users min-
imizes performance, administration and implementation
costs.

In a similar manner, the digitally signed binaries have
also been implemented in projects such as the BSign
project which provide means of inserting a GPG [5]
signed SHA1 checksum [9] of a ELF binary file into the
ELF header; the project is hosted at the Debian Linux
web site.

Or, the DigSig project includes a LSM based kernel
module that can verify BSign signed files [26, 4]. Ver-
ification of binaries is a solution to the problem of ma-
licious executables like virus and other malware. Some
of the code for authentication in the Umbrella project is
inspired from the DigSig project.

3 Process-Based Access Control

The concept ofprocess-based access controlis a new ac-
cess control scheme where the security policy is enforced
on individual process. Processes are the lowest entity on
which it makes sense to perform access control. Taking
the access control one level deeper, to threads, would not
make sense, since threads share memory space. When
threads share memory space, access control cannot be
used to protect threads against each other. The level
of granularity obtained by enforcing access control on
a process level is very fine, and has excellent possibili-
ties. A good example of this is an email client, where
the process that handles attachments can be sandboxed,
with the result, that execution of an email borne virus
also would be sandboxed. Software that handles insecure
or untrusted data, can use this scheme to handle unsafe
data in a safe manner.

The design is based on restrictions as opposed to per-
missions. A restriction is a rule on a process that denies
the process access to the a given resource. On the con-
trary to many other security scheme the PBAC scheme
contains onlyonefixed global security policy.

2

Global Policy 1 Given thatp1 andp2 are nodes in the
process treeP andp1 has the restriction setr1 andp2

has the restriction setr2. r1 and r2 are sub-sets ofR
which is the set of all possible restrictions.

If p1 is a descendant ofp2 thenr1 is a superset ofr2.

This policy implies that all processes are always at
least as restricted as their parent and it ensures that the
ownership of processes does not affect the process-based
restrictions. It ensures that an attacker does not gain ac-
cess to the entire system, if he hijacks a process owned
by a superuser. The global policy ensures that the least
privilege principle is enforced on the system.

For example, on the figure 1 we can see the three ways
of starting a new process and the impact of the PBAC in
each case. First, theparent processis starting anemail
client via anexec() system call. As a consequence of
the PBAC scheme, the resulting process is inheriting of
the restrictions of the parent (access denied on/boot)
and the restrictions attached to the executable (access de-
nied on/etc). Theemail clientcan then eitherfork
and clone the restrictions in the resulting process or per-
form a restricted forkand restrict further the child. For
example, executing an evil mail attachment can be sand-
boxed by denying the access to the address book and the
network (see figure 1).

parent
process

/boot

exec()

e-mail
client

process

/boot,/etc

fork()

address
book

process

/boot,/etc

rfork(abook,net)

attachment
process

/boot,/etc
abook, network

Figure 1: Process Execution and Restricted Fork.

PBAC works in combination with DAC instead of re-
placing it. PBAC does not differentiate between read,
write and execute restriction, but provides access granted
or access denied. If PBAC grants access to an object,
DAC is used to decide what kind of access is permitted,
possibly none. That is, if either DAC or PBAC denies
access to a given object, access is denied. DAC does not
provide any defense against process hijacking, where a

hijacker gains the access rights of the attacked processes
owner. PBAC can contain such attacks by restricting in-
dividual processes to least privilege. A webserver of-
ten runs with the privileges of the superuser. To contain
possible attacks, several techniques are used, some pro-
cesses change owner and are run using chroot. If the
webserver is properly restricted using PBAC, all of these
different measures could be avoided and still the attacker
would not have access to anything besides the resources
that the individual webserver processes may access.

3.1 Restricting a Process

Examples of restrictions are:

• no access to network,

• no access to /foo/bar,

• not permitted to create processes,

• . . .

There are tree ways for setting restrictions on a new
process exists; namely inheritance of restrictions, exe-
cute restrictions and a restricted fork.

Inheritance Enforce the Global Policy. This policy
ensure that the security policy of a program is not cir-
cumvented by forking new processes, a hijacked process
cannot raise its privileges. It isnot possible to change the
restrictions of a running process, as this could be used to
violate the Global Rule.

Execute restrictions A set of restrictions attached to a
binary file. When the binary is executed the execute re-
strictions are applied to the resulting process. This option
provides transparency, in that all programs can contain
their on security policy as a set of execute restrictions.

Restricted fork Is a wrapper for the normal fork sys-
tem call, which allows the parent process to set additional
restrictions for the child process. This enables a very
fine granularity of the security policywithin the program,
where a child process handling dangerous data can be
sandboxed. Sub-processes which are intended for a very
specific task, e.g. rending a document, could be easily
sandboxed to least privilege.

Process-based access control provides a transparent
access control mechanism with a granularity fine enough
to design security policy for individual processes.

3

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

+ =

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

+
Binary

=
Id + restrictions

Binary with id + restrictions

=
Checksum

KprivEncrypt () =

Digitally Signed Binary

Signed Checksum

Checksum ()

Figure 2: Creating a DSB.

4 Digitally Signed Binaries

Digitally signed binaries (DSB) provides two features,
namely authentication and integrity. Authentication of
binaries to verify the origin of binaries on a system and
integrity to prevents execution of binaries that have been
tampered with.

Authentication of binaries is a way to control what is
executed on a system and without it the user is able to
execute software that is a threat to the system. Authen-
tication can be obtained using public key cryptography
[18]. The vendor of a given piece of software computes a
signature from the software, using his private key. When
executed, the vendor’s public key can be used in perform-
ing the authentication.

Ensuring the integrity of binaries is important to pre-
vent execution of software that has been tampered with
and it is done using a checksum. This does not prevent
that malicious code is injected into software, but it pre-
vents the execution of such software. The procedure for
signing a binary is seen in Figure 2.

Using authentication and integrity checking allow to
separate binaries in to two categories, namelytrustedand
untrusted. Trusted binaries are binaries that can be pos-
itively checked for authenticity and integrity. Untrusted
binaries are binaries with an invalid or no signature at all,
binaries with no corresponding public key on the system
or authenticated binaries with invalid checksum. Figure
3 shows how a trusted binary is executed, while an un-

Succes!

Succes!

Process with restrictions

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

Checksum

���
���
���
���

���
���
���
���

���
���
���

���
���
���

KpubDecrypt () =

SHA1_check(,)

Succes!

Fail!

Kpub = Fetch public key (id)

Binary with id + restrictions

Reject / Sandbox

Digitally Signed Binary

Signed Checksum Checksum

Figure 3: Authenticating and executing a DSB.

trusted is denied execution or sandboxed.
Using the DSB scheme jointly with the PBAC scheme,

provides the possibility for distributing the access con-
trol policy with the binaries in a secure way, which is
also seen in Figure 3. Tampering with the set of exe-
cute restrictions can be effectively prevented using the
integrity check. Together the two concepts can provide
tamper free software with a secure embedded security
policy, and which origin can be authenticated.

4.1 Key Management

The DSB scheme requires that only public keys from
trusted vendors are available in the kernel. Two ap-
proaches to this are possible.

One way of handling this is to compile the public keys
of trusted vendors into the kernel itself, making it im-
possible to tamper with them nor add new keys. This
approach is feasible if the provider of the device knows
what vendors should deliver software to the device at
time of roll out. This approach is very easy to imple-
ment, but also very inflexible. Another issue is that if the
private key of one or more vendors is exposed, it will be
possible for an attacker to become trusted, and keys can
only be changed by changing the entire kernel.

4

On the system public keys most be protected from
tampering and substitution. This is done by storing them
in a kernel ring protected by the kernel. The kernel writes
the key ring to disk, to ensure persistent storage. To pro-
tect the public keys from unauthorized access on disk,all
processes will be restricted from this resource. A pow-
erful feature of inheriting restrictions from parent pro-
cesses to children, now shows its strength: It is enough
to restrict the top level process from accessing the key
ring on disk, and this will automatically be inherited by
all other processes.

From Linux 2.6.10 an option for including digital keys
in the kernel was added. This feature can be used to build
a keyring by a searchable sequence of keys. By default
each process is equipped with access to five standard key
rings: UID-specific, GID-specific, session, process and
thread. It is believed that this new feature can be used to
implement the keyring in a Linux implementation.

The key management scheme is future work and this
section described ideas for the future design.

5 PBAC Implementation

Two data structures are used to store restrictions in Um-
brella. A bit-vector for the capability restrictions and a
tree structure for the file system restrictions. Both struc-
tures are stored in asecurity_struct bound to ev-
ery process.

1 s t r u c t security_struct {
2 bitvector cap_res;
3 bitvector child_cap_res;
4 s t r u c t fsr *file_system_res;
5 char *child_file_system_res[];
6 };

child_cap_res andchild_file_system_res
are two fields used by therfork() wrapper to tem-
porary store the restrictions for the next child process.
This partition of the design in two parts, gives a neces-
sary combination of performance and flexibility.

5.1 Capability Restrictions

The capability restrictions are implemented in a bit-
vector of 32 bit, where each bit represents a capability
restriction. The bit-vector library used in Umbrella has
been made specifically this project and it is implemented
with simplicity and performance as goals. The simple
interface is as follows.

1 bitvector bv_create(vo id);
2 vo id bv_destroy(bitvector bv);
3

4 vo id bv_bit_on(bitvector bv, i n t index);
5 vo id bv_or(bitvector result, bitvector a,
6 bitvector b);
7 vo id bv_reset(bitvector bv);
8

Restriction Enforcing hook

Ability to send signals task_kill()
All networking socket_create()
Fork new processes task_create()

Table 1: Capability restrictions in Umbrella and the LSM
hooks used for enforcing them.

9 i n t bv_testbit(bitvector bv, i n t index);

The functionsbv_create() andbv_destroy()
are memory handling functions. Thebv_bit_on()
function is used to set a bit, to denote that the re-
striction associated with the given bit is set for the
process in question. Checking if a restriction is set
is done throughbv_testbit(). When a new pro-
cess has been forked usingrfork() the parent pro-
cess’child_*_restriction fields must be reset
andbv_reset() is used to do this. For combining re-
strictions from inheritance,rfork() and binaries the
function bv_or() is used to quickly create the new
child’s capability bit-vector.

The list of capability restrictions implemented in Um-
brella is shown in Table 1 together with the LSM hook
used to enforce this restriction. The hooks are defined
in include/linux/security.hand an example is
thesocket_create hook.

1 i n t (*socket_create) (i n t family, i n t type,
2 i n t protocol, i n t kern);

The nature of the LSM framework ensures, that this
hook is called with four parameters to check permis-
sions prior the creation of a new socket. Thefamily
contain one of the currently 32 supported protocol fam-
ilies defined ininclude/linux/socket.h. The
type variable holds the requested communications type,
protocol contains the requested protocol andkern
defines if its a kernel socket which is being created. Be-
low is the actual implementation from Umbrella.

1 s t r u c t security_struct *s = current->security;
2

3 swi tch (family) {
4 case 2:
5 decision = bv_testbit(s->cap_res, NOIP);
6 break;
7

8 case 23:
9 decision = bv_testbit(s->cap_res, NOIRDA);

10 break;
11

12 case 31:
13 decision = bv_testbit(s->cap_res,
14 NOBLUETOOTH);
15 break;
16 }
17

18 i f (decision != 0)
19 decision = -EPERM;
20

21 return decision;

5

/

home
bin

ls

usr

Figure 4: An example of a tree offsr structures, where
a particular process is restricted from file/bin/ls and
the directories/home/,/usr/bin/ and/usr/lib/
and everything below them.

In the Umbrella implementation,socket_create
supports setting restrictions on access to IP, infrared and
bluetooth address families. First the security structure
from the current process is fetched and stored in
the variablesecurity. Then thefamily variable is
checked and if a supported family is found, the function
bv_testbit is used to check, if a restriction is set for
that family on the current process. If needed the granular-
ity of Umbrella can be increased by implementing more
of the socket families or adding a check of the protocol
used.

The code for the signal restrictions is build after
the same scheme and implemented in thetask_kill
hook. Asignal variable is used to see what signal is
sent.

The hooktask_create is called before any new
process is forked, and can therefore be used to mediate
the creation of new processes. The implementation is
very simple, it checks the corresponding bit in the current
process usingbv_testbit.

Other possible capability restrictions include hard and
soft linking and creation of device nodes.

5.2 File System Restrictions

The file system restrictions are implemented in a tree
structure. This data structure ensures fast restriction
checking and it is conceptually simple to understand.
Figure 4 shows an example of a file system restriction
tree.

The file system restriction trees are created from in-
stances of this simple structure.

1 s t r u c t fsr {
2 char *name;
3 s t r u c t fsr **successors;
4 };

Below is the interface to the file system restriction
trees.

1 s t r u c t fsr *fsr_create(vo id);
2 vo id fsr_destroy(s t r u c t fsr *target);
3

4 i n t fsr_insert(s t r u c t fsr *root, char **path);
5 s t r u c t fsr *fsr_copy(s t r u c t fsr *source);
6

7 i n t fsr_check(s t r u c t fsr *root, char **path);

Functionsfsr_create() andfsr_destroy()
are for memory handling. In the case of inheritance, the
parent’s file system restriction tree must be copied to the
child, and the functionfsr_copy() is implemented
to this purpose. Since each “layer” in the tree is imple-
mented as an array, copying a tree can be done efficient
usingmemcpy().

The most important and interesting functions in the file
system restrictions interface arefsr_insert() and
fsr_check(). Especially thefsr_check() func-
tion most be efficient since it is called every time an in-
ode is accessed. Thefsr_insert() function must
prune the tree if a wider covering restriction is inserted.
If the restriction/bin is inserted in the tree in Fig-
ure 4, the node with the namels must be freed. Be-
low is the algorithm that is implemented in the function
fsr_check().

1 whi le (path is not empty) do {
2 i f (successors != NULL) {
3 extract the first name_i and remove it from

the path;
4 compare name_i to each the successors;
5

6 i f (none of the successor match name_i)
7 return allowed;
8 }
9 e l s e

10 return denied;
11 }
12 }
13 return allowed;

The algorithm iterates overpath, which is the path to
the accessed resource. Each individual directory or file of
the path is compared to the corresponding level in the file
system restriction tree. The access is denied if a match is
found for a node with no successors. In the worst case,
the algorithm runs in linear time, over the length of the
path.

The LSM hooks used in Umbrella for protecting the
file system areinode_permission, inode_link,
inode_unlink, inode_rename, inode_mkdir,
inode_setattr andinode_create.

All the LSM hooks which are intercepting calls to the
file-system are implemented in one simple and generic
file_hook_wrapper, which is listed below. The call
that makes a lookup in the processes FSR tree is done in
line 6 using the algorithm outlined above.

1 s t a t i c inline i n t file_hook_wrapper(s t r u c t
dentry *dentry) {

6

2 i f (parse_path(dentry, path) == -EOVERFLOW)
3 ss_decision = -EOVERFLOW;
4

5 e l s e {
6 ss_decision = fsr_check(cur_security->fsr,

path);
7 i f (ss_decision)
8 ss_decision = -EPERM;
9 }

10 return ss_decision;

The purpose of this function is to find the right
dentry structure. Thedentry structure (Directory
ENTRY) is defined ininclude/linux/dcache.h.
Once thedentry is found, the file-system path is ex-
tracted via theparse_path() function. The file sys-
tem path is checked against the current process’ fsr tree
usingfsr_check to see if the current process is re-
stricted from this particular path.

5.3 Setting Restrictions

Each of the three ways for setting restrictions on a new
process, in the Umbrella implementation, are closely
connected to a system call. POSIX is an international
standard with an exact definition and a set of assertions
which can be used to verify compliance [15].

The POSIXexec() family of calls is used to re-
place the current process image, essentially executing a
binary. PBAC introduces execute restrictions, and these
must be set on the process that is a result of theexec()
call. This is done by implementation of the LSM hook
bprm_check_security(), in which also handles
issues regarding digitally signed binaries and this is de-
scribed in detail in Section 6.

The POSIXfork() call is used to create a new pro-
cess, that is a copy of the parent except that it has its own
process id. The inheritance of restrictions introduced by
PBAC does nothing to change this, since the child gets a
copy of the parents restrictions. However, due to the im-
plementation of LSM, Umbrella most actively copy the
restrictions, and this is implemented in the LSM hook
task_alloc_security(), called whenever a new
process is created.

The Umbrella implementation addsrfork(), which
is a user space wrapper for thefork() system call. The
purpose ofrfork() is to give developers the possibility
to sandbox certain processes in a program. It makes it
possible to handle insecure data in a secure manner by
restricting to least privilege. For testing purposes mainly,
a proc file system interface have been developed for this,
it is elaborated in Section 7.

6 DSB Implementation

Digitally signed binaries in Umbrella have the layout
seen in Figure 5. They carry a vendor id to ensure a

execute
restrictions

Kpriv
Vendor

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������

������
������
������
������

data

vendor id

hash }

offset to hash} ELF header

Figure 5: Layout of a digitally signed binary.

fast lookup of the vendors public key in the kernel. A
checksum of the binary is signed using the vendors pri-
vate key to ensure integrity and authentication. If the
DSB scheme is used together with the PBAC scheme, the
digitally signed binaries also include the security policy
for the binary, stored as a set of restrictions.

6.1 Signing a Binary

Creating a signed binary is elaborated in section 7.2. The
checksum (SHA1 [9]) is computed from the binary data,
the vendor id and the restrictions if any. The checksum
is the signed using the vendors private key, ensuring au-
thentication. This is done using the RSA algorithm [18].
Signing the binary data prevents that an attacker can hide
malicious code in a legitimate binary. If existing, the re-
striction set is signed as well, to prevent that an attacker
lowers the security by removing or tampering with the
restrictions on a binary. Signing the checksum is very
much faster than signing the entire binary, yet still pro-
viding the security needed.

6.2 Executing a Signed Binary

Mediation of binaries execution is used to perform two
security related tasks; integrity checking of the exe-
cutable and the transfer of execute restrictions from
the executable to the new process. The LSM hook
bprm_check_security is called whenever a file is
executed and is therefore used for this purpose. More
precisely this hook is called whenever theexecve sys-
tem call is searching for a binary handler. If the security
checks succeeds, the functionload_elf_binary()
is called to load the binary into memory, see Figure 6.

7

Userspace

Kernelspace

sys_execve

do_execve

search_binary_handler

load_elf_binary

. . .
binary is executing

bprm_check_security

Figure 6: Control flow of a binary execution.

1 i n t umb_bprm_check_security (s t r u c t
linux_binprm * bprm) {

2 return umb_handle_signature(bprm);
3 }

The LSM hookbprm_check_security is call-
ing umb_handle_signature to handle authentica-
tion and the assignment of execute restrictions. As the
function is the entry point for the signature part of Um-
brella, all other functions in this part, will only be evoked
as a result of statements in this function.

1 i n t umb_handle_signature(
2 s t r u c t linux_binprm *bprm) {
3 ...
4 elf_hdr = umb_read_elf_header(file);
5 ...
6 elf_shdata =
7 umb_read_section_header(file, size,
8 elf_hdr->e_shoff);
9 file_sig =

10 umb_find_signature(elf_hdr, elf_shdata,
11 file, &signature_offset);
12 ...
13 retval =
14 umb_check_signature(elf_shdata, file_sig,
15 file, signature_offset);
16 ...
17 i f (retval == 0) {
18 parsed_usig =
19 umb_parse_usig(bprm,file_sig->usig);
20 ...
21 set_execute_res(parsed_usig);
22 ...
23 }
24 ...
25 return retval;

In the first part of the function the ELF data is read into
memory. The functionumb_read_elf_header()
returns anelfhdr struct containing the actual ELF
header stored in the variableelf_hdr. Then, the func-
tion umb_read_section_header() is called to

transfer all entries in the section header table of the ELF
to elf_shdata. If umb_read_section_header
fails, the ELF is invalid and-EPERM is returned to deny
execution or sandbox the resulting process.

The functionumb_find_signature() is called
to extract the signature. The function takes four param-
eters;elf_hdr is an ELF header,elf_shdata holds
all entries in the section header table of the ELF,file
is the file handler of the binary andsh_offset is the
offset of the signature section in the ELF binary. The re-
turn type is adsig struct, which holds the BSign and
Umbrella signature.

1 s t r u c t dsig {
2 char *bsig;
3 char *usig;
4 };

The functionumb_check_signature() checks
the BSign signature using the appropriate public key
and fetches the public key if not already loaded. When
the key is loaded the actual authentication is initi-
ated usingumb_verify_signature() and the re-
turn value is passed toumb_handle_signature().
If the verification of the BSign signature is success-
ful, the Umbrella specific signature parts (ID and
execute restrictions) are extracted using the func-
tion umb_parse_signature() which returns a
parsed_sig struct containing the Umbrella signature.

If the signature was parsed successfully and the cur-
rent process has a security field the execute restrictions
found in the signature are transferred to the current pro-
cesses’ childcapability and fsr fields using the
functionset_execute_res(). Currently the imple-
mentation does not include the caching of restrictions in
the LSM security fields on inode structures.

6.3 RSA vs. Elliptic Curves

Two schemes were considered for the public key algo-
rithms, RSA Public key Cryptosystem [18] and Ellip-
tic Curve Cryptosystem (ECC) [16, 17]. Elliptic curve
cryptography can provide the same level of security with
smaller keys, compared to the RSA scheme and other
conventional discrete algorithms. According to [13] and
[8] RSA is faster at verifying a signature but slower
at signing. To the scheme of digitally signed binaries,
verifying the signature is more important. As the Um-
brella implementation is aimed at handhelds and embed-
ded systems space is also a consideration, which is why
ECC is interesting. For the Umbrella implementation,
however, performance was chosen over space considera-
tions, which is why RSA was used.

8

6.4 Optimization Issues

In the scheme presented the digital signature must be ver-
ified every time a binary is executed. This is a point
for major optimization. This can be solved by using the
LSM security field associated with each inode. This field
is protected by the kernel and therefore secure but is not
persistent and thus perfectly suited for the task. The idea
is to attach a structure like the one below, to every inode.

1 s t r u c t inode_security_struct {
2 i n t trusted;
3 bitvector cap_res;
4 s t r u c t fsr *file_system_res;
5 };

All files areuntrustedat first and must be reset to this
whenever they are modified and this can be done using
the all ready implemented inode mediation hooks. When
a binary is executed, thetrusted field is checked and
if set, the binary is executed without further. If the
trusted field is not set, the DSB scheme is followed as
in Figure 3 and thetrusted field is set if verification
was successful.

If the PBAC scheme is in use as well, thecap_res
andfile_system_res fields are used to cache the
restrictions associated with the binary.

After a reboot the security fields are reset and the pro-
cedure for first time execution must be performed again.
This scheme is especially efficient for systems that are
seldom rebooted.

Currently the implementation does not include the
caching of restrictions in the LSM security fields on in-
ode structures, this is a major pending optimization.

7 Using Umbrella

In the following, two examples of how to use Umbrella
in practice. First we will explore the use of the restricted
fork and then see how to sign binaries and how this pro-
cess may be incorporated into e.g. a Make file.

7.1 Restricting Processes

The Umbrella kernel patch is accompanied by a library
libumbrella, which is a small library that imple-
ments therfork wrapper for thefork system call.

The code snippet below illustrates use of the restricted
fork. We importumbrella.h in line 1, we define the
non filesystem restrictions in line 5 and the filesystem
restrictions in line 6. Instead of making a normalfork
in theswitch statement at line 8 we callrfork.

The child process created by the restricted fork is
now restricted as specified. When it breaks out of the
switch structure it executes a terminal in line 17, which
inherit the restrictions.

1 # inc lude <umbrella.h>
2

3 i n t main() {
4 i n t pid;
5 i n t cr[] = {IPNET, BLUETOOTH};
6 char *fsr[] = {"/boot", "/foo", NULL};
7

8 swi tch (pid = rfork(cr, fsr)) {
9 case 0: /* child */

10 break;
11 case -1:
12 printf("rfork ERROR\n");
13 return -1;
14 d e f a u l t: /* parent */
15 exit (0);
16 }
17 system("/usr/bin/xterm");
18 return 0;
19 }

This example demonstrates the ease and simplicity of
adapting programs to utilize the possibilities Umbrella.
The only effort required by developers is to consider and
set appropriate restrictions before forking children. If at-
tachments is allowed executed from an email client, this
attachment could be denied access to e.g. network and
address book. This would limit the spreading of worms,
that we have seen on personal computers through the last
years.

The compiled Umbrella library is also of the ELF for-
mat, which enables signing. Thus, if an attacker ex-
changes the binary umbrella library, and this is not signed
with a key present within the kernel keyring, the library
will not be loaded into memory during runtime, and thus
the program calling the umbrella will fail.

7.1.1 Using the proc Interface

An interface to set restrictions on new processes have
been implemented through the proc file system. This is
mainly for testing and developing purposes, and it of-
fers a limited interface compared to using therfork()
wrapper. Note, the current implementation of the procfs
interface only offers the possibility for setting the capa-
bility restrictions. The following Python example shows
how to make use of it.

1 >>> import os, s t r u c t
2 >>> pfd=os.open(’/proc/umbrella’, os.O_WRONLY)
3 >>> deny_ipnet = s t r u c t .pack(’iii’, 1, 8, -10)
4 >>> os.write(pfd, deny_ipnet)
5 12
6 >>> command = os.popen(’ping localhost’)
7 Operation not permitted

In line 3 the binary data are prepared to be written
to the proc filesystem. All commands have the same
basic layout, namely the command ID followed by the
arguments. The command ID is a 32 bit integer and
the arguments naturally depend on the command. Here,
pack() comes with the command 1 (setting capability
restrictions) and with the restrictions 8 (IPNET) and -10

9

(list termination). There are two commands available,
namely for setting the capability restrictions (command
1) and debugging by printing the current process’ secu-
rity structure to the kernel log (command 4). Rely totally
on the procfs interface for setting restrictions has been
discussed in Section 5.3.

7.2 Signing Binaries

The process of signing binaries is depicted in Figure 2 on
page 4. To automate this process Umbrella provides a
small Ruby script. As arguments, it takes the vendor
ID, which is an ID for finding the appropriate public key
in the kernel, the capability- and file system restrictions.
From this, a string is created and appended directly to
the end of the binary file. Now, to make the SHA1 hash,
sign it and place it in the ELF header, the tool BSign (de-
veloped by Debian Linux) is used. BSign requires that
GNU Privacy Guard is present together with the private
key of the user signing the file.

The process can be incorporated into Make files, like
the following example shows.

1 LDFLAGS=-lumbrella
2

3 all: compile sign
4

5 compile: program_to_be_signed
6

7 sign:
8 sign_file.rb --id=UmbrellaInc \
9 --cr=BLUETOOTH:IPNET \

10 --fsr=/etc/shadow:/var/keys \
11 --file=program_to_be_signed

When the above Make file is initiated, the program is
compiled as normal and further the script for signing the
file is called.

Running an Umbrella signed binary on a system with-
out the Umbrella patch applied, would not be noticeable
as long as the Umbrella library is present (the program
links to this). The kernel simply ignore unknown sys-
tem calls (rfork) and also the extra ELF header and the
appended restrictions is ignored.

8 Umbrella Benchmarks

The Umbrella implementation has been benchmarked
for performance. One requirement of an access control
mechanism is that it does not introduce an unacceptable
slowdown on the system. The following presents some
benchmarks that has been done to investigate the over-
head of Umbrella. The benchmarking is run on a ma-
chine with the following specifications.

• Intel Pentium 4 1.8 GHz

• CPU cache 512 KB

• 512 MB RAM

• Red Hat Linux 9

• Linux-2.6.9

8.1 Benchmark Details

Four different benchmarks has been performed, each ran
five times, on a system running an Umbrella patched
Linux and one that ran a clean Linux.

1. Process creation – 40k processes

2. File system access – unpacking Linux-2.6.9

3. Interactive simulation – compilation of Linux-2.6.9

4. DSB benchmark – compilation with signed and un-
signed tools

The process creation benchmark (1) will stress the
functions involved in assigning security information,
namely allocation of memory for security structure and
inheritance of restrictions. The benchmark is done by
timing the execution of a script that creates 40.000 pro-
cesses. This is done for different sets of restrictions. The
results can be found in Table 2.

The file system access benchmark (2) is aimed at the
performance of the functions involved in checking file
system restrictions. This benchmark will also be per-
formed for different settings of restrictions. The bench-
mark is performed by unpacking a Linux kernel tree,
which will create approximately 19.000 files. The results
can be found in Table 3.

The interactive simulation benchmark (3) is a com-
bination of benchmark 1 and 2. This benchmark will
compile the Linux 2.6.9 kernel, which will create a large
number of processes and access a large part of the 19.000
files in the kernel tree. This benchmark simulates inter-
active behavior, where files, process and I/O wait is in-
volved. The results can be found in Table 4.

The benchmark of the DSB part (4) of the implemen-
tation will show the overhead of using signed binaries as
opposed to unsigned binaries. The benchmarks is done
by comparing the compilation of a Linux kernel on a
clean system, with a compilation on a system with Um-
brella, where the toolsgcc,as, ld, bash andmake are
signed. The results can be found in Table 5.

8.2 Discussion

The Umbrella implementation is done, but not yet opti-
mized, which makes us believe that the above results can
be improved on a final system. The preliminary results
show that Umbrella will not suffer from major perfor-
mance issues.

10

System Time Overhead
Clean 15.8s N/A

No restrictions 16.2s 2.4%
Only cap. restr. 16.1s 2.1%

5 fsr restr. 16.4s 3.7%
10 fsr restr. 16.5s 4.4%
20 fsr restr. 16.6s 4.9%
40 fsr restr. 16.8s 6.3%

Table 2: Results of process creation benchmark (1).

System Time Overhead
Clean 45.8s N/A

No restrictions 46.3s 1.1%
Only cap. restr. 45.9s 0.1%

5 fsr restr. 46.3s 1.1%
10 fsr restr. 45.4s -0.8%
20 fsr restr. 46.1s 0.5%
40 fsr restr. 46.0s 0.3%

3 levels deep 59.0s 28.8%
5 levels deep 58.7s 27.9%
10 levels deep 61.2s 33.2%

Table 3: Results of unpacking benchmark (2).

System Time Overhead
Clean 386.0s N/A

No restrictions 385.4s -0.1%
Only cap. restr. 390.3s 1.1%

5 fsr restr. 390.8s 1.2%
10 fsr restr. 391.1s 1.3%
20 fsr restr. 391.1s 1.3%
40 fsr restr. 391.5.0s 1.4%

Table 4: Results of compilation benchmark (3).

Unsigned Signed % Overhead
396s 408s 3%

Table 5: Compiling with unsigned and signed tools.

Instead of going through the results from one end to
the other, the most interesting results will be discussed in
the following.

In the process creation benchmark the performance of
the inheritance of restrictions is put to the test. Creat-
ing such a large number of processes that does nothing,
stresses the algorithms for inheritance and inserting re-
strictions. The results in Table 2 clearly shows the over-
head imposed by these algorithms. As the number of re-
strictions is enlarged the overhead rises to more than 6%.
This overhead is somewhat large, but with normal sys-
tem use, this amount of processes will never be created
without any intermediate computation or I/O-wait.

The overhead introduced by the access control func-
tions is investigated in the second benchmark. As Table
3 shows the overhead does not rise with the number of
restrictions. It does, however, rise when the depth of the
restrictions is increased. This overhead rises to more than
30%. This is a suitable place for optimization.

In the third benchmark the overhead of Umbrella is
minimal. The main reason for this, is that once the com-
piler is working, no files are accessed and no further pro-
cesses are forked. We believe that this benchmark is a
good approximation to ordinary use of the system, since
both process creation, file system access and a plain com-
putation is performed.

The benchmark of the DSB implementation reveals a
rather large overhead, as expected. Every time a signed
file is executed the signature is decrypted and the check-
sum is calculated. When the Linux kernel is compiled
using a set of signed tools, the overhead of is 3%. This is
believed to be an acceptable overhead that can be further
improved by implementing caching on the LSM security
fields, as described in 6.

9 Case Studies

The concepts of PBAC and DSB are very well suited for
embedded systems and handheld devices like PDAs and
mobile phones. In this section twoproof of conceptcases
are presented, showing the versatility of the concepts.
Umbrella has been adapted for both cases.

9.1 TDC Alarmbox

The largest telecommunications provider in Denmark,
TDC2, has requested a proof of concept implementation
of Umbrella for a Linux based alarmbox. The alarmbox
is used to fire alarms, transmission of technical data, dan-
ish army NATO POL system, banks and other high risk
intrusion targets. It is based on an Intel compatible AMD
ELAN SC520 processor and is supplied by the Danish

2www.tdc.com

11

company Linux In A Box (LIAB). The alarmbox has a
potential market of 65,000 units in Denmark alone.

Following is the main requirements to a security solu-
tion for TDC’s alarmbox.

• The box should only boot TDC’s own kernel

• The box should only be able to execute software
provided by TDC

• The security system should be able to function with-
out interaction from a security administrator

The second and the third requirement can be meet by
the scheme of digitally signed binaries. The first require-
ment can be meet by deployment of a system like those
presented in [3, 19] and implemented in e.g. Trusted
Computing Groups Trusted Platform Module. The com-
bination of a trusted boot and Umbrella to protect the
running system, would yield a very powerful security
system.

One of the most likely attack scenarios on the alarm-
box, is a situation where a customer with bad intentions
installs malicious software on an alarmbox and thereafter
returns it to TDC. In this case there is a possibility that
the compromised box will be installed at another cus-
tomer and where the malicious software may be able to
deactivate the alarm systems of e.g. a bank. Umbrella
can prevent the execution of software that is not signed
by TDC or signed software that has been tampered with.
This would effectively prevent the execution of software
not provided by TDC and software that a customer has
tampered with.

The alarmbox case shows that the concepts of digitally
signed binaries can be used to prevent attacks from a ma-
licious user trying to run his own software on the device.
It is also an example of a system, where the absence of
a security administrator rises a demand for software that
has its security policy embedded – and digitally signed
binaries meet this demand.

9.2 Handheld Devices

Umbrella has been implemented on a HP iPAQ 5550 run-
ning Linux. The security requirements in this case are
different to the requirements of the alarmbox.

The platform is a handheld device with communica-
tions features like bluetooth, infrared, GPRS and wire-
less networking. These communication features com-
bined with the flexibility of this type of devices make ex-
ploits, like the ones found on desktop computer, migrate
to this new platform. Prime examples are the new worms
and trojans for mobile phones, like Skulls3, Mosquitos4

3www.sophos.com/virusinfo/analyses/trojskullsa.html
4www.sophos.com/virusinfo/articles/mosqit.html

and Cabir5, which all have emerged recently.
Mobile phones are, as most mobile devices, designed

to be single user systems. Typically, a mobile phone
would be used by the owner exclusively. The recent ad-
dition of the ability to use the Internet and display mul-
timedia contents like games, music and movie clips have
greatly increased the number of possible threats to such
devices.

The Mosquitos trojan, which is disguised as a cracked
version of the game “Mosquitos”, is an example of the
kind of threats that modern mobile phones face. If ex-
ecuted, the trojan attempts to send expensive SMS text
messages to premium rate number. This behavior resem-
bles the dialer schemes found on ordinary desktop sys-
tems where a malicious dialer program is installed and
automatically calls expensive premium services in other
countries. The malicious program is only installed after
the user has seen several warnings about possible dan-
gers of installing unsigned applications. However, users
are not always to be trusted. The Mosquitos trojan shows
an example of how vulnerable mobile phones are to the
viruses, spyware and adware, that plagues desktop sys-
tems today. This is mainly because no way of controlling
access to system resources currently exist in the operat-
ing systems used on the majority of handheld devices.

Another example is the Cabir worm. Once the worm
is installed it runs every time the device is booted and
constantly attempts to send itself to other bluetooth en-
abled devices found in the proximity of the infected mo-
bile phone. The original Cabir worm does nothing ma-
licious but already more harmful descendants like the
Lasco worm has emerged. This is an important reminder
that a worm with a malicious payload spread easily.

To counter these new threats, a number of require-
ments must be met.

• Determine the origin of binaries

• Verify the correctness of binaries

• Limit the privileges of unknown binaries

• Protection of critical system areas

Handheld devices in general are characterized by the
fact the user is normally also the security administrator.
However, as countless examples show, the users cannot
be expected to be proficient in system administration and
the security decisions should not be left to the user.

The first three requirements are met by the digitally
signed binaries in combination with the PBAC scheme.
The signature of a binary is verified every time the bi-
nary is executed, which is accomplished by verifying
the signature against the keys of the “trusted vendors”,

5www.sophos.com/virusinfo/articles/cabirhi.html

12

which are present in the kernel keyring. If the origin of
the binary is unknown, it can be denied execution or the
resulting process can be placed in a sandboxed environ-
ment. The second requirement is satisfied by the (signed)
checksum in the binary ELF header, which is used to de-
tect any tampering with the binary or the embedded re-
strictions.

The combination of authentication and verification
would have prevented the Mosquitos trojan or Cabir
worm from carrying out their primary purposes, namely
the sending of premium rate SMS messages and spread-
ing via bluetooth, simply by restricting from accessing
the GSM and bluetooth network.

10 Conclusion

This paper presented PBAC, which is a novel approach
to access control, that works on processes and uses the
process hierarchy to maintain the global security policy
that child processes are at least as restricted as their par-
ent. By using security policies embedded in binary files
and a restricted fork to set the policy for individual pro-
cesses within a program, this scheme becomes transpar-
ent to the user and requires no security administrator. To
ensure the validity of the embedded restrictions and the
authenticity of the executable files the scheme have been
combined with public key cryptography mechanism in
the form of DSB. The result is a scheme that is easier to
configure than the MAC model and with a more adequate
granularity than DAC to fight most of the current security
threats.

The scheme is used in combination with DAC. The
PBAC scheme is used to ensure system integrity by pro-
tection vital areas from tampering, while normal DAC
rules apply if access is granted. This combination is
transparent to the user, because DAC is an integrated part
of UNIX and any PBAC policies are embedded within
the binary itself, thereby eliminating the need for addi-
tional configuration.

The access matrix, we believe, is the weak point for
current MAC implementations, because adding a new
object or subject, would require that a policy forall other
objects and subjects is specified. This is a very demand-
ing task even though some other MAC schemes support
some degree of automation of this.

One of the foundations of PBAC is the belief that pro-
grammers are more aware of the needs of their programs
than an administrator or an ordinary user. This allows the
programmer to set additional restrictions, using restricted
fork, in the software, whenever the program is handling
input which could potentially be dangerous. An example
this could be the rendering of an image, where a mal-
formed image could possibly trigger a buffer overflow, a
number of restrictions could be set to prevent the render-

ing thread from accessing any vital parts of the system.
The result of this that unlike MAC, the restrictions are al-
ready present within the program itself and do therefore
not need an in-depth configuration.

The Umbrella Project is developed as an open source
project hosted on SourceForge.net. The Umbrella web
site have had more than 50,000 visits since the public
launch in February 2004, which is an indication of the
level of interest in the subject.

The completed parts of the implementation covers re-
strictions on processes, which are implemented together
with the intended functionality, i.e. inheritance, the re-
stricted fork and setting restrictions from digitally signed
binaries. Authentication of digitally signed binaries is in
the final implementation phase.

The Umbrella implementation has been benchmarked
for performance and the results are very promising. The
overhead introduced by Umbrella is currently acceptable
and pending optimizations is expected to improve these
results further.

The future work on the Umbrella implementation in-
cludes the design and implementation of a kernel keyring
that can be accessed in a secure manner from user space.
This includes a scheme for deciding and controlling who
should be able to manipulate the keyring. Furthermore
the current implementation need to be stabilized and op-
timized for practical use.

The combination of process-based access control and
digitally signed binaries yields a completely new security
scheme for consumer electronics, which we believe is a
step in the right direction toward stopping an increasing
rain of attacks on CE devices.

11 Acknowledgments

The authors would like to thank the following people and
organizations.

TDC for sponsoring four months of development of
the Umbrella project and especially Jakob Bjerggaard,
Frank Larsen, Arne Larsen and Per Lydholm for input
and practical support when working with the alarmbox
implementation.

CISS at Aalborg University, especially Kim G. Larsen
for practical support and for sponsoring traveling. Arne
Skou and Mikkel Christiansen for initial arrangements
and contact to TDC.

Magnus Therning from Phillips, Eindhoven and
Katherine Guo, I.P. Park and Steven Johnson from Pana-
sonic, N.J. USA, for ideas, feedback and great discus-
sions on the topic.

CE Linux Forum for showing great interest in the
project and for interesting discussions during the secu-
rity working group meeting in October 2004 and CELF
plenary meeting January 2005.

13

References

[1] M. D. Abrams, L. J. LaPadula, K. W. Eggers, and I. M.
Olson. A Generalized Framework for Access Control:
An Informal Description. InProc. of the 13th National
Computer Security Conference, pages 135–143, October
1990.

[2] M. D. Abrams, L. J. LaPadula, and I. M. Olson. Building
Generalized Access Control on UNIX. InProc. of the
2nd USENIX Security Workshop, pages 65–70, Portland,
August 1990.

[3] T. Alves and D. Felton. Trustzone: Integrated hardware
and software security.ARM White Paper, July 2004.

[4] A. Apvrille, D. Gordon, S. Hallyn, M. Pourzandi, and
V. Roy. DigSig: Runtime authentication of binaries at
kernel level. InProc. of the 18th USENIX Large
Installation System Administration Conference
(LISA’04), 18th, pages 59–66, Atlanta, November 2004.

[5] M. Ashley. The GNU Privacy Handbook.
http://www.gnupg.org/gph/en/manual.html, May 2004.

[6] D. Bell and L. J. LaPadula. Secure Computer Systems:
Unified Exposition and Multics Interpretation. Technical
report, MITRE Corp., Bedford, Mass., March 1976.

[7] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu,
P. Wagle, and V. Gligor. SubDomain: Parsimonious
Server Security. InProc. of the 14th USENIX Large
Installation System Administration Conference
(LISA’00), pages 355–367, New-Orleans, December
2000.

[8] E. Cronin, S. Jamin, T. Malkin, and P. McDaniel. On the
performance, feasibility, and use of forward-secure
signatures. InProc. of the 10th ACM conference on
Computer and communications security (CCS’03), pages
131–144. ACM Press, 2003.

[9] D. Eastlake and P. Jones. US Secure Hash Algorithm 1
(SHA1). RFC 3174, Internet Society (ISOC), September
2001.

[10] D. Ferraiolo and R. Kuhn. Role-Based Access Controls.
In Proc. of the 15th NIST-NCSC National Computer
Security Conference, pages 554–563, Baltimore, USA,
October 1992.

[11] T. Fraser. LOMAC: Low water-mark integrity protection
for cots environments. InProc. of the 2000 IEEE
Symposium on Security and Privacy (SP’00), page 230.
IEEE Computer Society, 2000.

[12] T. Fraser. LOMAC: Mac you can live with. InProc. of
the FREENIX Track: 2001 USENIX Annual Technical
Conference, pages 1–13. USENIX Association, 2001.

[13] V. Gupta, S. Gupta, S. Chang, and D. Stebila.
Performance analysis of elliptic curve cryptography for
ssl. InProc. of the ACM workshop on Wireless security
(WiSE’02), pages 87–94. ACM Press, 2002.

[14] B. Hatch. An Overview of LIDS.
http://www.securityfocus.com/infocus/1496, November
2003.

[15] L. Johnson, B. Needham, C. Severence, L. Ambuel, and
C. Schaufler. POSIX 1.e. InIEEE Standard 1003.1e,
1999.

[16] N. Koblitz. Elliptic Curve Cryptosystems.Mathematics
of Computations, 48:203–209, 1987.

[17] V. Miller. Uses of Elliptic Curves in Cryptography.
Advances in Cryptology - Crypto ’85, 218:417–426,
1986.

[18] R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key
cryptosystems.Commun. ACM, 21(2):120–126, 1978.

[19] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design
and Implementation of a TCG-Based Integrity
Measurement Architecture. Technical report, IBM
Research, 2004.

[20] R. S. Sandhu. Access Control: The Neglected Frontier.
In 1st Australian Conference on Information Security
and Privacy, volume 1172 ofLecture Notes in Computer
Science, pages 219–227, Wollong, Australia, 1996.
Springer-Verlag.

[21] R. S. Sandhu, J. E. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models.IEEE
Computer, 29(2):38–47, 1996.

[22] R. S. Sandhu and P. Samarati. Access Control:
Principles and Practice.IEEE Communications
Magazine, 32(9):40–48, September 1994.

[23] S. Smalley. Configuring the SELinux Policy. Technical
report, NSA, February 2002.

[24] S. Smalley, C. Vance, and W Salamon. Implementing
SELinux as a Linux Security Module. Technical report,
NAI Labs, May 2002.

[25] R. Spencer, P. Loscocco, S. Smalley, M. Hilbler,
D. Andersen, and J. Lepreau. The Flask Security
Architecture: System Support for Diverse Security
Policies. Technical report, Secure Computing
Corporation and NSA and University of Utah, 1998.

[26] The DSI Team. DSI: secure carrier-class linux.Linux J.,
2002(99):6, 2002.

[27] C. Wright, C Cowan, S Smalley, J. Morris, and
G. Kroah-Hartman. Linux Security Modules: General
Security Support for the Linux Kernel. InProc. of the
11th USENIX Security Symposium, pages 17–31.
USENIX Association, 2002.

[28] H. Xie, P. Biondi, Y. Wilajati Purna, and S. Klein. Linux
Intrusion Detection System.

[29] M. Zelem and M. Pikula. ZP Security Framework.
Technical report, Faculty of Electrical Engineering and
Information Technology Slovak University of
Technology in Bratislava, 2000.

14

