
Building Debuggers and Other Tools: We Can “Have it All”
Position Paper ICOOOLPS ‘15

Michael L. Van De Vanter
Oracle Labs

michael.van.de.vanter@oracle.com

Abstract
Software development tools that “instrument” running programs,
notably debuggers, are presumed to demand difficult tradeoffs
among performance, functionality, implementation complexity, and
user convenience. A fundamental change in our thinking about such
tools makes that presumption obsolete.

By building instrumentation directly into the core of a high-
performance language implementation framework, tool-support
can be always on, with confidence that optimization will apply uni-
formly to instrumentation and result in near zero overhead. Tools
can be always available (and fast), not only for end user program-
mers, but also for language implementors throughout development.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Debuggers, Interpreters, Optimization, Run-
time environments

Keywords Virtual Machine, Instrumentation, Optimization, De-
bugging, Tools

1. Introduction
A time-honored lament among users of new programming lan-
guages is that supporting tools (profilers, debuggers, coverage an-
alyzers, etc.) typically arrive late, if ever. Moreover, the tools that
finally arrive are likely to exhibit design compromises that cost pro-
ductivity, for example:

• Compilers running at high optimization levels are unlikely to
support tools, making it difficult to observe bugs and other
phenomena in long-running or production environments.

• Tools that do operate at higher optimization levels are likely to
suffer functional limitations and may become unreliable.

• Dedicated compiler support is often required, increasing ex-
pense and decreasing tool portability (and thus availability).

• Tools may only be available in compromised runtime modes,
for example the JVM’s performance-limiting -Xdebug option,
making them unavailable in routine situations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICOOOLPS ’15, July 6, 2015, Prague, Czech Republic.
Copyright c� 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

2. Roadblocks
Why is it so difficult to have tools that are as good and timely as
our programming languages? Why can’t we “have it all”?

2.1 Tribes
One perspective is historical and cultural. Concerns about program
execution speed (utilization of expensive machines) came long be-
fore concerns about software development rate and correctness (uti-
lization of expensive people).

Our legacy is that people who write compilers and people who
build developer tools essentially belong to different tribes, each
with its own technologies and priorities1. More significantly, each
has its own mindset: one trafficks in small performance improve-
ments, the other in human nature. A good metaphor would be that
tool builders are the user interface designers for the technologies
built by compiler/runtime specialists: in other words front-end vs.
back-end technologies.

Another legacy is that the tribes tend to be organizationally
distant, often not even in the same companies.

2.2 Technology
Tribal distinctions aside, front-end and back-end technologies
could most politely be described as “not well aligned”. For ex-
ample, a typical compilation pipeline immediately abstracts away
the information least relevant to execution: comments, whitespace
(i.e. layout), variable names, etc. This is done in the name of both
performance and convenience for language implementors. How-
ever, these are precisely the most important things about code that
human readers rely upon [7].

This example points at a larger observation at the heart of the
problem. Much of the information needed by developer tools is
necessarily related to the human programmer perspective, and this
is often the information most difficult to extract from a highly
optimized running program.

3. Two Strategies
Tools do manage to get built, however, and the approaches taken for
access to runtime information fall predictably into the two camps:
one where performance is paramount, and the other where tools
matter most.

3.1 Reengineering Execution State
Conventional performance-focused implementations require that
tools, debuggers in particular, reengineer the execution state of a
halted program from a highly optimized runtime representation.

1 Any provocative dichotomy has exceptions, in this case the creators of
languages/environments such as Self, Smalltalk, Lisp and others. They are
in fact exceptional and are the intellectual ancestors of much of this work.

This usually requires additional information, typically provided
through a side-channel in the name of efficiency, and that raises
issues of availability, consistency, and (expensive) complexity.

Especially in the realm of debugging, we find a deep, long-
standing, and much studied tension in the disconnect between per-
formance optimization and the increasingly complex and expen-
sive task of reengineering state. In the limit, debugging becomes
less functional, then less reliable, and finally impossible. This is
the legacy of a “speed first, tools later” mindset.

Research underway will lighten the burden on the compiler
writer [5], but the task remains burdensome, and the resulting
information is restricted to what’s explicitly produced during static
compilation.

3.2 Generated Tools
Tool builders approach the problem from the opposite perspective.
Contemporary “language workbenches” expedite the development
of languages (often small and domain-specific) and their supporting
tools together, usually driving the development from grammars and
other formal descriptions.

For example, Wu et al. propose a framework for source level de-
bugging that includes shared, language-agnostic code together with
description-driven generation of language-specific features [10].
Unfortunately the technique only applies to a particularly limited
language implementation technique.

The Spoofax language workbench generates debuggers in a
more general way and is also description-driven [4]. Following an
approach with some precedent [3], additional code (call-outs to
the debugging support library) is added to each program before
compilation. This technique, potentially expensive, requires that
the decision to debug be made before any compilation.

4. Opportunity
“Having it all” clearly calls for different thinking, perhaps a com-
plete break with the established tribal disconnect. A language im-
plementation platform under development at Oracle Labs embodies
a new way of thinking about dynamic language optimization, and
this opens the door for new ways of thinking about tool develop-
ment.

4.1 Truffle/Graal
Truffle is a platform under development by the Labs’ Virtual Ma-
chine Research Group (VMRG) for constructing high performance
implementations of dynamic languages. A Truffle-based imple-
mentation is expressed as an abstract syntax tree (AST) interpreter
written in Java2, to which the framework (including the Graal com-
piler) applies aggressive dynamic optimizations that include type
specialization, inlining, and many other techniques [11].

4.2 Deoptimization
Central to Truffle/Graal is the ability to optimize code, through par-
tial evaluation and inlining, based on speculation: carefully man-
aged assumptions about the future behavior of a program that are
likely, but not guaranteed, to remain true. The critical companion
to speculation is the ability to revert to AST interpretation when an
assumption ceases to hold, and in particular to do so without loss of
program execution state. So-called “deoptimization” was first de-
veloped to support builtin debugging in the Self language [3].

Deoptimization is not completely free: the information needed
to reconstruct execution state and the guards that check assump-
tions both incur costs. However, mature and efficient techniques

2 Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners.

for these have been developed during the years since Self, for ex-
ample in both in the Graal compiler [1] and its predecessor in the
VMRG’s Maxine VM [9]. Although scenarios remain where the
ability to deoptimize precludes some kinds of optimizations, the
compromise has proven more than worthwhile.

4.3 Truffle Instrumentation
The development of Truffle’s instrumentation support represents a
break with tradition. It is designed for generality, to expedite the
construction of any tools that require dynamic access to runtime
execution state [8] [2] and for any Truffle-implemented language.
More importantly, it has also been designed in close collaboration
with the Truffle team so that it has both minimal impact on program
optimization and maximum exposure to those same optimizations.

Such close alignment does not come easily; adjustments on
both sides have been (and continue to be) needed as the platform
evolves. For example, until the addition of one particular optimiza-
tion in 2014, the instrumentation nodes attached to a particular
method’s AST could be shared automatically by all clones of the
AST. That changed, precipitating a complete reimplementation of
the instrumentation framework, as well as an API redesign.

The outcome is a productive synergy between the two aspects
of the platform: optimization enables instrumentation at near-zero
cost, and early tool support helps other aspects of platform devel-
opment.

4.4 Instrumentation Events
The client model for Truffle instrumentation is the interception
of execution events at particular program locations, for example
the event “the AST node implementing a statement is about to be
executed”. Instrumentation is dynamic: any number of tools can
independently register and unregister interest in any events at any
number of important program locations.

The current (but still evolving) event API offers three levels of
access to execution state:

• The simplest notification reports that an AST node implement-
ing some piece of program syntax is about to be executed, or
has just completed executing with a resulting value. Some tools
need nothing more, for example a simple code coverage ana-
lyzer.

• A more complex notification carries references to the event’s
AST node and current frame. With these references, Truffle
APIs make available additional aspects of program execution
state. This is sufficient for many tools, including most aspects
of a language-independent debugger, to be described below.

• A third API permits a client tool to attach an AST fragment at a
program location with the guarantees that it will be executed
upon certain execution events and that it will be subject to
full optimization. This is not intended to interact directly with
program execution, but rather to enable optimized execution
of tool-related code that has traditionally been expensive, for
example trace functions and breakpoint conditions.

The platform code under development to support instrumenta-
tion is largely shared, requiring only that specific adapters be sup-
plied with each language implementation. An early example is a
mechanism for identifying the AST nodes that correspond to syn-
tact constructs of interest to programmers, such as statements, as-
signments, exceptions, etc. Another example is a suite of methods
for printing language-specific information, such as program values
and field or method names.

4.5 The Truffle Debug Engine
Although early versions of Truffle instrumentation have been used
for profiling and code coverage, the most ambitious client to date
is the Truffle “debug engine”. Using the instrumentation API, the
engine can set breakpoints of various flavors, can step (In, Out, and
Over), navigate up and down the stack, inspect frame contents, and
evaluate expressions.

Most of the debugging code is shared across languages, with
some debugging-specific adapters needed for each. These currently
include identification of nodes where stepping should halt, as well
as methods for starting program execution and evaluating expres-
sions in a halted context. The Debug Engine itself includes no spe-
cial facilities for examining detailed execution state such as object
contents, but relies at present on the (also evolving) Truffle runtime
API.

Specializations of the debug engine have been created for
JavaScript, Ruby, R, and a simple demonstration language. A sim-
ple client/server framework is available to test these specializations,
using a language-agnostic command line client. An experimental
branch of the NetBeans IDE uses the engine for debugging Truffle-
implemented JavaScript code.

5. Status
Results to date are encouraging. An early experiment with a very
limited form of instrumentation convinced us that close cooperation
with Truffle optimization could lead to extremely low overhead [6].
The framework continues to be built out in many directions, along
with bug fixes, adaptations to optimization changes, and extensions
to client functionality.

A notable aspect of Truffle instrumentation is the part of the API
that is not present: anything having to do with optimized execution.
The API and most of the framework implementation deal with
runtime state only as if the AST interpreter were executing as
ordinary Java code.

The paramount goal for the framework and most client-supplied
code is that it be optimized fully by Truffle, together with the
program ASTs, until such time as access is required to state un-
available in optimized code. When that occurs, the instrumentation
framework triggers the same kind of deoptimization that Truffle
uses when a speculative assumption ceases to be true. Other than
managing occasions for deoptimization, the instrumentation frame-
work and clients never interact with optimized code.

Adding a breakpoint, for example, triggers deoptimization on
a method since it modifies instrumentation code attached to the
method’s AST. Should that code run long enough to be optimized,
then the breakpoint (along with a conditional expression) will be
Truffle-optimized and might continue executing optimized until
the breakpoint is activated and the program halts under debugger
control.

We have yet to find any reason why Truffle instrumentation
cannot be always on.

6. Conclusions
We aim to “have it all”. Language implementations will be de-
livered to programmers with a robust, dynamic, instrumentation
framework that can be available for debugging or other tools at any
time, without serious compromise. Language implementors will
have functional debuggers, profilers, and other tools available con-
tinuously from “hello world” status through to completion.

Acknowledgments
I am indebted to members of the Virtual Machine Research Group
at Oracle Labs and the Institute of System Software at the Johannes

Kepler University Linz for creating the language implementation
technologies that make this work possible. Very helpful comments
on early versions of this paper were contributed by Michael Haupt,
Chris Seaton, Mario Wolczko, and Thomas Würthinger. Yuval Pe-
duel and the anonymous reviewers contributed addtional comments
of great value.

References
[1] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck.

Speculation without regret: reducing deoptimization meta-data in the
Graal compiler. In Proceedings of the 2014 International Conference on
Principles and Practices of Programming on the Java platform: Virtual
machines, Languages, and Tools (PPPJ ’14). ACM, New York, NY,
USA, 187-193.

[2] Michael Haupt and Hans Schippers. A Machine model for Aspect-
Oriented Programming. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP) 2007. Lecture Notes in
Computer Science Volume 4609, 2007, pp 501-524, Springer Verlag.

[3] Urs Hölzle, Craig Chambers, and David Ungar. Debugging Optimized
Code with Dynamic Deoptimization. In Proceedings of the ACM
SIGPLAN ‘92 Conference on Programming Language Design and
Implementation, 1992.

[4] Ricky Lindeman, Lennart CL Kats, and Eelco Visser. Declaratively
defining domain-specific language debuggers. In ACM SIGPLAN
Notices. Vol. 47. No. 3. ACM, 2011.

[5] Sukyoung Ryu and Norman Ramsey. Source-Level debugging for
multiple languages with modest programming effort. Proceedings of
the 14th international conference on Compiler Construction. Springer-
Verlag, 2005.

[6] Chris Seaton, Michael L. Van De Vanter, and Michael Haupt.
Debugging at Full Speed. In Proceedings Workshop on Dynamic
Languages and Applications DYLA ‘14. Edinburgh, (June 2014)

[7] Michael L.Van De Vanter. The Documentary Structure of Source Code.
Information and Software Technology, Volume 44, Issue 13, 1 October
2002, pp. 767-782.

[8] Michael L. Van De Vanter, Chris Seaton, Michael Haupt, Thomas
Würthinger, and David Leibs. A Flexible, High-Performance, Multi-
Language Instrumentation Framework. In Preparation 2015.

[9] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick
Jordan, Laurent Daynès, and Douglas Simon. Maxine: An approachable
virtual machine for, and in, Java. ACM Transactions on Architecture and
Code Optimization 9, 4, Article 30 (January 2013).

[10] Hui Wu, Jeff Gray, and Marjan Mernik. Grammar–driven generation
of domain-specific language debuggers. Software: Practice and
Experience 38.10 (2008): 1073-1103.

[11] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, Mario
Wolczko. One VM to Rule Them All. In Proceedings of Onward!, ACM
Press, 2013.

