
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 0000; 00:1–33
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Perfect class hashing and numbering
for object-oriented implementation

Roland Ducournau∗and Floréal Morandat

LIRMM – Université Montpellier II and CNRS, France

SUMMARY

Late binding and subtyping create run-time overhead for object-oriented languages, especially in the context
of both multiple inheritance and dynamic loading, for instance for JAVA interfaces. In a previous paper, we
proposed a novel approach based on perfect hashing and truly constant-time hashtables for implementing
subtype testing and method invocation in a dynamic loading setting. In this first study, we based our
efficiency assessment on Driesen’s abstract computational model for the time aspect, and on large-scale
benchmarks for the space aspect. The conclusions were that the technique was promising but required further
research in order to assess its scalability. This article presents some new results on perfect class hashing that
enhance its interest. We propose and test both new hashing functions and an inverse problem which amounts
to selecting the best class identifiers in order to minimize the overall hashtable size. This optimizing approach
is proven to be optimal for single inheritance hierarchies. Experiments within an extended testbed with
random class loading and under cautious assumptions about what should be a sensible class loading order
show that perfect class hashing scales up gracefully, especially on JAVA-like multiple-subtyping hierarchies.
Furthermore, perfect class hashing is implemented in the PRM compiler testbed, and compared here with
the coloring technique, which amounts to maintaining the single inheritance implementation in multiple
inheritance. The overall conclusion is that the approach is efficient from both time and space standpoints
with the bit-wise and hashing function. In contrast, the poor time efficiency of modulus hashing function
on most processors is confirmed.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: object-oriented programming, dynamic loading, multiple inheritance, late binding,
subtype test, perfect hashing

1. INTRODUCTION

The implementation of object-oriented languages is an important issue in the context of both
multiple inheritance and dynamic loading. Object-oriented implementation concerns a few basic
mechanisms that are invoked billions of times during a 1-minute program execution. Very high
efficiency is necessary to ensure this intensive use, and it is arguable that all implementations
of object-oriented languages, especially in this context, should fulfill the following requirements:
(i) constant-time, (ii) inlining and (iii) linear-space. Constant time is the only way to bound the
worst-case behaviour. Whereas it is essential in a real-time setting, it remains highly preferable
in all settings. Moreover, the basic mechanisms must be implemented by a short sequence of
instructions that is inlined, thus saving a function call and reducing the time constant. Finally,
space linearity ensures that the implementation will scale up gracefully with the program size; we
shall see, however, that linearity must be understood with a slightly specific meaning. This general

∗Correspondence to: LIRMM – Université Montpellier II and CNRS, 161 rue Ada, 34000 Montpellier, France
E-mail: Roland.Ducournau@lirmm.fr

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2 R. DUCOURNAU AND F. MORANDAT

implementation issue is exemplified by the two most used languages that support both features,
namely C++ and JAVA. When the virtual keyword is used for inheritance, C++ provides a fully
reusable implementation, based on subobjects, which however implies a lot of compiler-generated
fields in the object layout and pointer adjustments at run-time† [1]. Moreover, it does not meet the
linear-space requirement and, until recently, there were no known efficient subtype tests available
for this implementation. JAVA provides multiple inheritance of interfaces only but, even in this
restricted setting, the current implementations are not constant-time (see for instance [2]). The
present research was motivated by this observation—though object-oriented technology is mature,
scalable implementations are urgently needed due to the ever-increasing size of object-oriented class
libraries and there is still considerable doubt about the scalability of existing implementations.

In a previous work, the first author proposed a new technique, called perfect class hashing (PH),
for subtyping tests and method invocation [3]. To our knowledge, this is the first and only technique
that fulfils all these requirements in the multiple inheritance and dynamic loading context. However,
our experiments only concluded that the technique was promising and the need for further research
was stressed. Two hashing functions were actually considered, namely modulus, i.e. the remainder
of integer division, and bit-wise and. These two functions involve a tradeoff between space and
time efficiency, and the space efficiency of bit-wise and needs to be further improved and assessed.

In this article, we present the results of more in-depth studies and experiments that show that a
variant of perfect hashing, called perfect class numbering, provides a very efficient object-oriented
implementation, even with bit-wise-and and from the space standpoint.

1.1. Object-oriented implementation and perfect hashing

One typical implementation issue of object-oriented languages is late binding, which is also referred
to as the message sending metaphor. The underlying principle is that the address of the actually
called procedure is not statically determined at compile-time, but depends on the dynamic type of
a distinguished parameter known as the receiver. An issue similar to message sending arises with
attributes (aka fields, instance variables, slots, data members according to the languages), since their
position in the object layout may depend on the object’s dynamic type. Subtyping introduces a last
feature, i.e. run-time subtype checks, which amounts to testing whether the value of x is an instance
of a class C or, equivalently, whether the dynamic type of x is a subtype of C. This is the basis
for so-called downcast operators. Object-oriented implementation represents the data structures and
algorithms that are required for these three mechanisms, namely method invocation, attribute access
and subtype testing.

When static typing is coupled with single inheritance of classes and types—we call it single
subtyping—the standard implementation of object-oriented languages allows for direct access to
the desired data at an invariant position. This optimizes the implementation. Otherwise, dynamic
typing or multiple inheritance make it harder to retain such direct access, especially in a dynamic
loading setting.

Perfect Class Hashing‡ represents an alternative implementation in the context of static typing,
multiple inheritance and dynamic loading. The position of all data required for implementing a
class is no longer invariant with respect to the dynamic type of the object; it is instead determined
by a collision-free hashing function which depends on the dynamic type. Such functions are called
perfect hashing functions [4, 5].

Perfect class hashing was first applied to subtype testing. It can be formalized as follows. Let
(X,�) be a partial order that represents a class hierarchy, namely X is a set of classes and �
the specialization relationship that supports inheritance. The subtype test amounts to checking at
run-time that a class c is a superclass of a class d, i.e. d � c. An efficient implementation of this

† When the virtual keyword is omitted, the implementation is more efficient but no longer fully reusable because
it yields repeated inheritance. The language is thus no longer compatible with both multiple inheritance and dynamic
loading. In the following, we only consider C++ for the virtual semantics and implementation.
‡ The technique was originally called ‘perfect hashing’. As this name generates confusion between the general hashing
technique and its application to object-oriented languages, we now prefer to call it ‘perfect class hashing’.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 3

test amounts to precomputing a data structure that allows for constant time. Dynamic loading adds
a constraint, namely that the technique should preferably be incremental. Classes are loaded at
run-time in a total order such that superclasses are loaded before subclasses. With an incremental
technique, the data structure for the newly loaded class is computed from the data already computed
for previously loaded classes, and no recomputation is needed. The perfect class hashing principle
is as follows. When a class c is loaded, a unique immutable identifier idc is associated with it and the
set Ic = {idd | c � d} of identifiers of all its superclasses is known. Thus, c � d iff idd ∈ Ic. This
set Ic is immutable, hence it can be hashed with some perfect hashing function hc, that is, a hashing
function injective on Ic. The previous condition becomes: c � d iff htc[hc(idd)] = idd, whereby
htc denotes the hashtable of c, i.e. a simple array. The technique is obviously incremental since all
hashtables are immutable and the computation of htc only depends upon Ic. In the same article, an
application to method invocation in the restricted case of JAVA interfaces was also proposed.

1.2. Limitations of previous work

In our previous work, we considered one-parameter collision-free hashing functions such that
hc(x) = hash(x,Hc), whereby Hc is the hashtable size. Two functions were considered for
hash, namely modulus (denoted mod hereafter) and bit-wise and (the exact function maps x to
and(x,Hc − 1)). In both cases, Hc is defined as the least integer such that hc is injective on the
set Ic. The resulting techniques are respectively denoted PH-mod and PH-and. Both functions
involve a single machine instruction. However, whereas bit-wise and is a 1-cycle instruction, the
latency of integer division is commonly more than 20 cycles, hence markedly higher than the total
cycle count of each mechanism with the standard single-subtyping implementation. Therefore, the
time efficiency of PH-mod is expected to be rather low, while that of PH-and should be high. In
the aforementioned article, we computed the Hc parameters on a set of large-scale benchmarks
commonly used in the object-oriented compilation community. Our requirement for space-linearity
means that the memory occupation for these tables should be linear in the cardinality of the
specialization relationship �. The results of our tests were encouraging but not perfect—namely,
PH-mod required a little more than twice the cardinality of �, but PH-and appeared to be much
more greedy, especially in the single case of a very large benchmark. Hence, the scalability of PH-
and was not certain, and the main point at issue is the memory occupation of PH-and.

Our assessment of time-efficiency relied on an abstract processor model borrowed from [6];
though we believe in the model validity, it should obviously be complemented by empirical time
measurement. Later, we tested perfect hashing along with a variety of implementation techniques in
the PRM testbed [7]. The results mostly confirm our earlier abstract evaluation.

These first experiments left, however, a number of issues open. PH parameters depend on the
class IDs which are assigned to classes as they are loaded, hence they should vary according to
class loading orders. However, only a single arbitrary order was considered, and it was likely a
top-down depth-first linear extension that might be far from representative of actual class loading
orders. Efficient variants have also been sought. A variant based on quasi-perfect hashing (qPH)
[8], which yields a 2-probe test, was proposed; it gives more compact tables at the expense of less
efficient code. Another variant might be based on a 2-parameter hashing function, but we could
not find a function that would reduce the table size while keeping the time overhead smaller than
with modulus. We also proposed to optimize the identifier of the currently loaded class, but the
technique, called perfect class numbering (PN), yielded strange results, so we did not include them
in the article.

1.3. Contributions and plan

This article provides answers to these different issues:

• The testbed used for our previous experiments was extended in order to randomly generate
class loading orders. Potentially, any order can be generated, although the complete
combinatorics is intractable. However, all class loading orders are likely not sensible, and

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

4 R. DUCOURNAU AND F. MORANDAT

the statistics are also restricted to concrete class loading orders, according to the assumption
that only leaf classes can have instances—“make all non-leaf classes abstract” [9].

• Perfect class numbering is now tested in this new setting which better explains the observed
odd behavior of PN-and. Several 2-parameter functions have also been proposed and tested,
but only a single one is retained.

• Finally, all of these experiments are repeated with benchmarks of JAVA hierarchies that include
precise information about interfaces and abstract, concrete and inner classes.

Furthermore, we present some mathematical properties of PH and PN that are the basis of simple
and efficient algorithms, and also prove that PN is optimal in single-inheritance situations.

Overall, these new tests overcome all of our previous reservations about the use of perfect hashing
for implementing object-oriented languages. In a dynamic loading setting, we now consider that the
technique is efficient, under its PN-and form, from both space and time standpoints. In contrast,
we also think that modulus is too inefficient in terms of time to be further considered. Therefore,
although we developed the same formal and empirical framework for modulus, here we only present
the bit-wise and results. Thus, perfect hashing should be considered by language implementers (i)
for subtype testing in all languages with multiple inheritance, (ii) for implementing interfaces in
all languages with multiple subtyping (e.g. JAVA, C#, ADA 2005, etc.). However, further research
and tests are required before using perfect hashing for attribute access, hence complete object
implementation.

The article is structured as follows. The next section presents the question of object-oriented
implementation in a static typing setting. The standard single-subtyping implementation is described
and several possible extensions to multiple inheritance are discussed: (i) the subobject-based
implementation used by C++; (ii) the coloring approach which amounts to maintaining single-
subtyping invariants in a global setting; and finally (iii) the perfect class hashing approach.
Section 3 presents definitions and simple mathematical results which provide efficient algorithms
and lower bounds that are proven to be the PN value in case of single inheritance. Section 4
presents experiments and statistical results in the context of full multiple inheritance, and then in
the context of JAVA interfaces. All these experiments concern space-efficiency. Section 5 briefly
describes experiments that have been done in the PRM compiler and summarizes this first empirical
assessment of the PH run-time time-efficiency. Related works and current interface implementations
are discussed in Section 6. Finally, Section 7 presents conclusions and prospects. An appendix
describes algorithms for computing PH parameters.

This article is the continuation of [3]. We tried to make it as self-contained and short as possible,
but we sometimes refer to the original article—hereafter it will be abbreviated PHAPST (Perfect
Hashing as an Almost Perfect Subtype Test). Interested readers are referred to PHAPST for a more
in-depth presentation and discussion of subtype testing and all related topics, and to [10] for a review
of object-oriented implementation.

2. FROM SINGLE SUBTYPING TO MULTIPLE INHERITANCE

Single subtyping, i.e. single inheritance and static typing, allows for a straightforward constant-time
implementation of the basic object-oriented mechanisms. We first describe this implementation,
then explain why it does not easily generalize to multiple inheritance or dynamic typing. Finally,
we present some alternatives, namely C++ subobjects, coloring and perfect hashing.

2.1. Single subtyping

2.1.1. Method invocation and object layout. In separate compilation of statically typed languages,
late binding is generally implemented with tables that are called virtual function tables in C++
jargon. An object is laid out as an attribute table, with a header pointing at the class table
which contains method addresses. Method calls are then reduced to calls to pointers to function
through two extra indirections. With single inheritance, the class hierarchy is a tree and the tables
implementing a class are straightforward extensions of those of its single superclass. Each class

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 5

// attribute access
load [object + #attOffset], attVal

// method invocation
load [object + #tableOffset], table
load [table + #methOffset], methAddr
call methAddr

// subtype test
load [object + #tableOffset], table
load [table + #classOffset], id
comp id, #targetId
bne #fail
// succeed

meth

Offset

att

Offset

methAddr

class

Offset

object

object

method table

attVal

table

id

Code sequences for the 3 basic mechanisms and the corresponding diagram of object layout and method table. Pointers
and pointed values are in Roman type with solid lines, and offsets are italicized with dotted lines.

Figure 1. Single-subtyping implementation: data structure and code sequences.

adds, to (a copy of) the tables of its direct superclass, the entries required for implementing
the properties, i.e. attributes or methods, that are introduced by the considered class (a class A
introduces a property if A defines it as a new signature that does not correspond to any property of
its superclasses). Figure 1 presents a diagram of the object layout and method table in this setting,
together with the corresponding code sequences in an intuitive pseudo-code borrowed from [6].

This implementation respects two essential invariants: (i) a reference to an object does not depend
on the static type of the reference; (ii) the position of attributes and methods in the tables does not
depend on the dynamic type of the object. Therefore all accesses to objects are straightforward,
but this simplicity requires both static typing and single inheritance. From a spatial standpoint, the
object layout is optimal, since there is one field per attribute, with a single extra pointer to the
method table, which shares the data common to all direct instances of the considered class. The
method tables are not very small, but they are also somewhat optimal. Based on the assumption
that the method introduction is uniformly distributed over all classes, the total size of method tables
is linear in the size of the class specialization relationship, which is assumed to be reflexive and
transitive. In the worst case, this is however quadratic in the number of classes.

2.1.2. Subtype tests. The subtype test amounts to checking at run-time that a class c is a superclass
of a class d, i.e. d � c. Usually d is the dynamic type of an object, and the programmer or compiler
wants to check that this object is actually an instance of c. In the single-inheritance context, several
techniques have been proposed and are commonly used. We present only one of the simplest ones
that provides a basis for further generalizations. The technique is known as Cohen’s display and
was first described in [11]. It consists of assigning two integers to each class, a unique ID and a
non-unique offset. Let the ID of class C be idC and the offset of C be δ(C). Each subclass of a
class C has idC stored in its method table at δ(C). Thus, an object is a direct or indirect instance
of a class C if and only if offset δ(C) in its method table (tab) contains idC . This is equivalent to
testing that the class, say D, that has instantiated the considered object is a subtype of C:

D � C ⇔ tabD[δ(C)] = idC (2.1)

Originally, Cohen’s display required a set of tables separate from the method tables, and δ(C) was
the depth of C in the class hierarchy. However, in a statically typed language, these tables can be
merged within method tables. Class offsets are ruled by the same position invariant as methods and
attributes. This can be thought of as giving each class C a method for checking whether an object
is an instance of C, i.e. such that its instances can check that they are. The test fails when this
pseudo-method is not found. When inlining Cohen’s display in the method table, some precautions
are required to avoid bound checks and possible confusion between class IDs and method addresses
without consuming unnecessary memory. This is discussed in PHAPST.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

6 R. DUCOURNAU AND F. MORANDAT

C

A

B

D

Figure 2. The diamond example of multiple inheritance

2.2. Multiple inheritance

With multiple inheritance, both invariants of reference and position cannot hold together, at least
if compilation—i.e. computation of positions—is to be kept separate. For instance, in the ABCD
diamond hierarchy of Figure 2, if the implementations of B and C simply extend that of A, as
in single subtyping, the same offsets might be occupied by different properties in B and C, thus
prohibiting a sound implementation of D. Therefore, invariants or separate computation must be
dropped.

2.2.1. Multiple inheritance with static typing and dynamic linking. The ‘standard’ implementation
of multiple inheritance in a static typing and separate compilation setting (i.e. that of C++) is based
on subobjects. The object layout is composed of several subobjects, one for each superclass of the
object’s class. Each subobject contains attributes introduced by the corresponding class, together
with a pointer to a method table which contains methods known by the class. Both invariants are
dropped, as both reference and position now depend on the current static type. This is the C++
implementation when the virtual keyword annotates each superclass. It is time-constant and
compatible with dynamic loading, but method tables are no longer space-linear. Indeed, the number
of method tables is exactly the size of the specialization relationship. Hence, the worst-case total
table size of a class is now quadratic in the number of superclasses, and the total size for all classes is
cubic in the class number. Furthermore, all polymorphic object manipulations—i.e. assignments and
parameter passing, when the source type is a subtype of the target type—require pointer adjustments
between source and target types, as they correspond to different subobjects. These adjustments can
be done with offsets in method tables or explicit pointers in the object layout.

A detailed presentation of this implementation is beyond the scope of this paper. Interested readers
are referred to [1] for C++ itself, [10] for a language-independent analysis of the implementation,
and [12] for an analysis of multiple inheritance. Anyway, there are three main drawbacks: (i)
pointer adjustments represent ubiquitous overhead throughout programs; (ii) subobjects add many
compiler-generated fields in the object layout; (iii) the total size of method tables is now, in the
worst case, cubic in the number of classes, instead of quadratic. Overall, this seems to be the
price to be paid for multiple inheritance in a static typing and separate compilation setting. Finally,
the main drawback of this implementation family is that its overhead remains even when multiple
inheritance is not used. Therefore, language designers have provided alternative specification and
implementation, known as non-virtual inheritance, when omitting the virtual keyword. Non-
virtual inheritance gives exactly the same implementation as single subtyping in the case of
single-inheritance hierarchies, but it provides degraded semantics of general multiple inheritance,
hence preventing sound reusability—for instance, in the ABCD diamond example, the attributes
introduced by A would be duplicated in the object layout of D.

2.2.2. Coloring for multiple inheritance with global linking. The general idea of coloring is to
keep the two invariants of single inheritance, i.e. reference and position. An injective numbering
of attributes, methods and classes verifies the position invariant, so this is clearly a matter of
optimization for minimizing the size of all tables—or, equivalently, the number of holes, i.e. empty
entries. However, this optimization must be done globally, at compile- or link-time. Thus, the
technique is not incremental and not directly compatible with dynamic loading. Coloring has been
independently proposed for the three mechanisms that underlie object-oriented implementation.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 7

//preamble for both mechanisms
load [object + #tableOffset], table
load [table + #hashingOffset], h
and #interfaceId, h, hv
sub table, hv, htable

//subtyping test
load [htable+#htOffset-fieldLen], id
comp #interfaceId, id
bne #fail

//method invocation
load [htable +#htOffset], itable
load [itable +#methOffset], method
call method

h

method tablehashtable

offset
method

hashing
offset

table

hv

htOffset

itableid

methAddr

fieldLen represents the integer size, e.g. 4 if 32-bit integers are used. In practice, all numbers (i.e. H and class ID’s)
must be multiplied by 2*fieldLen. Of course, it works (i.e. it commutes with and) because it is a power of 2. The
grey rectangle denotes the group of methods introduced by the considered interface.

Figure 3. PH-and for JAVA interfaces, code sequence and object representation

Method coloring was first proposed by [13] under the name of selector coloring. Coloring was
applied to attributes by [14] and to classes by [15] (under the name of pack encoding). Interested
readers are referred to [16] which reviews the approach.

2.2.3. Perfect class hashing for object implementation. So far, the current situation of object-
oriented implementation is as follows: (i) single-subtyping implementation meets all requirements,
is compatible with dynamic loading but not with multiple inheritance; (ii) coloring, which represents
its extension to multiple inheritance, is no longer compatible with dynamic loading; (iii) subobject-
based implementation is compatible with both multiple inheritance and dynamic loading; however
its space requirements are cubic in the number of classes and ubiquitous pointer adjustments imply
marked runtime overhead.

Perfect class hashing represents an alternative approach, first applied to subtype testing. Its
principle is as follows. Classes are loaded at run-time in some total order that must be a linear
extension (aka topological sorting) of (X,�)—that is, when d ≺ c, c must be loaded before d. As
an alternative view, when a class is loaded, its yet unloaded superclasses are recursively loaded.
Anyway, when a class c is loaded, a unique and immutable identifier idc is associated with it and
the set Ic = {idd | c � d} of the identifiers of all its superclasses is known. Thus, c � d iff idd ∈ Ic.
It is worth noting that the class ID is some arbitrary integer. Any injective class numbering can work,
but the overall implementation may constrain class IDs to be a specific integer subset. Actually, as
we shall see, the most promising scheme involves computing the ID of a class according to the IDs
of its superclasses. For the moment, let us consider a simple numbering, starting from 0.

The set Ic is immutable and can be hashed with some perfect hashing function hc, i.e. a hashing
function that is injective on Ic [4, 5]. The previous condition becomes: c � d iff htc[hc(idd)] = idd,
whereby htc denotes the hashtable of c. The hashing function family hc is parametrized by
the hashtable size Hc, such that hc(x) = hash(x,Hc), where hash is some low level operation.
In PHAPST, we considered modulus (mod) and bit-wise and. Both involve a single machine
instruction. The technique is obviously incremental since all hashtables are immutable and the
computation of htc only depends upon Ic. It is also time-constant and inlinable. The only point
might be space-linearity, but the conclusions of PHAPST were rather positive if not definitive.

In a static typing setting, the technique can also be applied to method invocation and we proposed,
in the aforementioned article, an application to JAVA interfaces. For this, as hashing method
identifiers appeared to be over space-consuming, the hashtable associates, with each implemented
interface, the address (or offset) of the group of methods that are introduced by the interface.
Figure 3 recalls the precise implementation in this context and the corresponding code sequence.
The method table is bidirectional. Positive offsets involve the method table itself, organized as with
single subtyping. Negative offsets consist of the hashtable, which contains, for each implemented

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

8 R. DUCOURNAU AND F. MORANDAT

// preamble
load [object + #tableOffset], table
load [table + #ctableOffset], ctable
load [#interfaceColor], color
add ctable, color, ctable

// subtyping test
load [table + #ctableOffset+4], clen
comp color, clen
bgt #fail
load [ctable], id
comp #interfaceId, id
bne #fail

// method invocation
load [ctable +#fieldLen], itable
load [itable +#methOffset], method
call method

method

meth

Offset

interface

Color

color

table

id

color
clen

clen

ctable

method table

color table

itable

When coloring is incremental, the method table itself (pointed by table) is constant but color tables (ctable) and
colors (color) may be recomputed at load-time. Hence three disconnected memory areas are involved and a bound
check is required for subtype testing (see PHAPST for an in-depth discussion of this implementation).

Figure 4. Incremental coloring of JAVA interfaces

interface, a two-fold entry. The object header points at its method table via the table pointer.
#hashingOffset is the position of the hash parameter (h) and #htOffset is the beginning of
the hashtable. At a position hv=and(h,#hashingOffset) in the hashtable, a two-fold entry
is depicted that contains both the implemented interface ID, that must be compared to the target
interface ID (#interfaceId), and the address itable of the group of methods introduced by
the interface that introduces the considered method. The table contains the address of the function
that must be invoked, at the position #methodOffset determined by the considered method in
the method group. This method invocation technique requires static typing. However, it does not
require a method to be introduced by a single class. If a method is introduced by several classes (or
interfaces, as is possible in JAVA), the method entry will be replicated in each method group, with
the same method address.

With rooted hierarchies, a slight optimization is possible. The position of the group of methods
introduced by the root can me made invariant, and invoking such a method only requires the
SST code sequence. The root can even be removed from the hashtable. Indeed, when the target
is statically known, subtype testing is useless if it is the root. In contrast, when the target is not
statically known (e.g. for implementing covariance), the test will just require an extra equality test
against the root ID.

2.2.4. Incremental coloring (IC). Although coloring is not inherently incremental, its use for
subtype testing has been proposed in the context of JAVA interfaces [17]. We called it incremental
coloring (IC) in PHAPST, and extended its use to method invocation in the same way as for perfect
hashing. This use of coloring with both dynamic loading and multiple inheritance yields marked
overhead at load-time, since some recomputation may be required, and at run-time, since these
possible recomputations increase the number of memory accesses, while degrading their locality
(Figure 4). Overall, our abstract estimation was that incremental coloring should not be better than
perfect hashing, or at least not sufficiently better to offset the expected load-time overhead.

2.2.5. Accessor simulation (AS). Some techniques, like perfect hashing and incremental coloring,
apply only to method invocation and subtype testing. Accessor simulation is a way of applying them
to attribute access. An accessor is a method that either reads or writes an attribute. Suppose that all
accesses to an attribute are through an accessor. Then the attribute layout of a class does not have to
be the same as the attribute layout of its superclass. A class will redefine accessors for an attribute if
the attribute has a different offset in the class than it does in the superclass. True accessors require
a method call for each access, which can be inefficient. However, a class can simulate accessors by

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 9

// attribute access
load [object + #tableOffset], table
load [table + #classOffset+fieldLen], aGrOffset
add object, aGrOffset, attgr,
load [attgr + #attrOffset], value

Offset

attr

aGrOffsetid
class

Offset

class

aGrOffset

method table

table

valueobject

object layout

The object representation with accessor simulation coupled with class and method coloring must be compared with
Fig. 1. The offset of the group of attributes introduced by a class (aGrOffset) is associated with its class ID in the
method table, and an attribute position is now determined by an offset (#attrOffset) relative to this attribute group.

Figure 5. Accessor simulation with method coloring

replacing the method address in the method table with the attribute offset. This approach is called
field dispatching by [18]. Another improvement is to group attributes together in the method table
when they are introduced by the same class. Then one can substitute, for their different offsets, the
single relative position of the attribute group, stored in the method table at an invariant position,
i.e. at the class color with coloring (Fig. 5) [19, 10]. With PH and IC, the attribute-group offset is
associated with the class ID and method-group address in the hash- or color-table, yielding 3-fold
table entries.

Accessor simulation is a generic approach to attribute access which works with any method
invocation technique; only grouping can be conditioned by static typing, since attributes must be
partitioned by the classes which introduce them.

3. PERFECT CLASS HASHING AND NUMBERING

In this section, we formally define perfect class hashing (PH) and numbering (PN) and present
simple theoretical results which are the basis for efficient algorithms.

3.1. Definitions

Definition 3.1 (Perfect hashing)
Let I be a non-empty set of integers, and hash : N×N→ N be a function such that hash(x, y) < y
and hash(x, y) ≤ x for all x, y ∈ N. Then, the perfect hashing parameter of I is the least H ∈ N
such that the function h that maps x to h(x) = hash(x,H) is injective on I , i.e. for all x, y ∈ I ,
h(x) = h(y) implies x = y.

The definition is extended to empty sets by considering that H = 1 when I = ∅.

This least integer exists for mod and and (the exact function maps x to and(x,H − 1)), but likely
not for any hash function. Moreover, H ≥ n, where n is the cardinality of I .

Perfect class hashing (PH). Let (X,�) be a class hierarchy equipped with some injective class
identifier id : X → N. Then, perfect hashing applies to each class c in X by considering the set
Ic = {idd | c � d}. The resulting parameter Hc is the size of the hashtable (a simple array) that
implements class c, and for each superclass d, this table contains idd at position hc(idd). All other
positions j contain any integer l such that hc(l) 6= j. The hash(x, y) ≤ x constraint is not strictly
necessary, but it is verified by all the tested functions. It also implies that hc(0) = 0 for all c. With
rooted class hierarchies, 0 is thus a convenient identifier for the root, and it is also a convenient
value for empty entries at offset j > 0. Conversely, with unrooted hierarchies, any non-null integer
can represent an empty entry at offset 0, but this integer must not be used as a class ID.

In the following, the notations I , H , h and n will be implicitly used in reference to Definition 3.1,
with a subscript indicating that set I actually consists of class identifiers.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

10 R. DUCOURNAU AND F. MORANDAT

Proposition 3.2 (Monotonicity)
Perfect hashing is monotonic, that is, if I ⊂ I ′, then H ≤ H ′.

The perfect class hashing definition holds for any injective class identifier, for instance a
consecutive numbering as classes are loaded. An optimization of perfect class hashing amounts to
optimizing the class identifier idc in order to minimize theHc parameter. Thus, instead of numbering
classes as they are loaded, by incrementing a counter, the Hc parameter is first computed from the
superclass identifiers, before computing the best idc that fits the resulting hashtable.

Definition 3.3 (Perfect numbering)
Let I ′ be a set of integers, and F be a set of free integers, disjoint from I ′. Then the perfect
numbering parameter is defined as the least H ∈ N such that: (i) there is a free integer id in F ,
and (ii) H is the perfect hashing parameter for the set I = I ′] {id}.

Perfect class numbering (PN). Then, perfect numbering applies to each class c in X by
considering the set I ′c = {idd | c ≺ d}, and F is the set of integers that are not identifiers of
previously loaded classes. In practice, F is large enough to ensure that H does not depend on
F . The resulting parameter Hc is the size of the hashtable that implements class c and idc can be
defined as the least number in F such that Hc is the perfect hashing parameter for Ic = I ′c] {idc}.
The code generated for PN is exactly the same as that for PH (Figure 3), so they have the same
time-efficiency. The only difference involves computation of the Hc and idc parameters, and this
computation involves only a slight overhead over that of PH (see Appendix A.2). Hence, PN must
be preferred to PH if the expected space improvement is effective.

As loading a class triggers the loading of yet unloaded superclasses, it is interesting to extend this
definition to the allocation of several identifiers.

Definition 3.4 (Perfect k-numbering)
Let k > 0 be an integer, I ′ be a set of integers, and F be a set of free integers, disjoint from I ′. Then
the perfect k-numbering parameter is defined as the least H ∈ N such that: (i) there is a set of k free
identifiers I ′′ ⊂ F , and (ii) H is the perfect hashing parameter for the set I = I ′] I ′′.

Perfect class k-numbering. Now, perfect numbering applies to each class c in X as follows. Let
X ′ ⊂ X be the current subset of already loaded classes, id : X ′ → N an injective class identifier
function, and F = N\id(X ′) the set of free identifiers. Let c ∈ X\X ′ be some unloaded class,
with X ′c = {y ∈ X ′ | c ≺ y} and X ′′c = {y ∈ X\X ′ | c � y}. Then, I ′c = id(X ′c) and k ≥ 1 is the
cardinality of X ′′c . Hc and I ′′c are successively computed, and the numbers in I ′′c are finally assigned
to classes in X ′′c .

The resulting parameter Hc is the size of the hashtable that implements c, and it is uniquely
determined. There are, however, many ways to define I ′′c as a “minimal” set and to map I ′′c to newly
loaded superclasses. Moreover, only Hc is optimized, not other Hx parameters when c ≺ x and
x is not already loaded. It might be desired if c is a concrete class, while x is abstract and does
not require a method table. However, an optimization of Hx might improve the space occupation
of other concrete subclasses of x. Therefore, the optimization of each Hx would be better. The
previous notations are extended as follows: for each x ∈ X ′′c ,X ′x andX ′′x represent, respectively, the
sets of previously loaded and yet unloaded superclasses of x, and Hx is the perfect |X ′′x |-numbering
parameter of id(X ′x).

Conjecture 3.5 (Optimal perfect class k-numbering)
There is an injective mapping f : X ′′c → F such that the PH parameter of id(X ′x) ∪ f(X ′′x) is Hx

for each x ∈ X ′′c .

3.2. Application to bit-wise and

We now focus on the case where hash(x, y) = and(x, y − 1). The effects of bit-wise hashing are
not always intuitive, and we present some very simple results that might help readers. Furthermore,
perfect class hashing involves a simple lower bound along with a fine optimality condition. Let I

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 11

be a set of n positive or null integers, m be an integer that serves as a bit-wise mask in the function
h(x) = and(x,m), and H = m+ 1 the perfect hashing parameter, i.e. the hashtable size.

Definition 3.6 (Minimal mask)
Given a set I of integers, a mask m is minimal for I if m provides a h function injective on I and if
switching any 1-bit in m makes h non-injective.

The mask corresponding to Definition 3.1 is minimal but all minimal masks do not yield perfect
hashing in the sense of this definition.

The next two propositions give lower and upper bounds to the number of 1-bits in the mask, as a
function of n. Of course, they yield a lower bound but no upper bound to the mask itself.

Proposition 3.7 (PH-and lower bound)
Hashing n > 0 integers requires a mask with at least log2 n 1-bits, hence 2dlog2 ne ∈ [n, 2n[is a
lower bound for the H parameter.

The proof follows from the fact that a mask with k 1-bits can discriminate exactly 2k integers. ut
The point is that the hashtable capacity depends on the 1-bit count of the mask, not on the 1-bit

positions, which determine its magnitude, that is, the hashtable size. Therefore, with PH-and, a
hashtable may have a lot of empty entries, while being full in the sense that no other number can
be hashed within it. In contrast, with mod, a hashtable of size H could hash H integers. In other
words, with and and unlike mod, h is not surjective in the [0, H − 1] range. This certainly accounts
for the different behaviors of both hashing functions and, in practice, it prevents us from using the
same algorithms for both.

Proposition 3.8 (PH-and 1-bit count upper bound)
A mask m minimal for a set I with cardinality n has at most n− 1 1-bits, and this upper bound is
reachable.

The proof is by induction. It is trivial for n = 1. Suppose now that it is true for any set of
cardinality n− 1. Let I be a set of n integers and x be the maximum element of I . Suppose that a
mask m with n 1-bits is minimal for hashing I . Consider now the set I ′ = I\{x}. According to the
recurrence assumption, m is not minimal for I ′ and two 1-bits in m can be switched—let m′ be the
resulting minimal mask for I ′. As m′ does not make a perfect hashing function on I (otherwise we
get the proof), there is a single y ∈ I ′ that agrees with x on all 1-bits of m′. Hence, x and y must
differ on the two bits that are 1 in m and 0 in m′ but only one is required to make a perfect hashing
mask since y is unique. Hence, m is not minimal. The upper bound is reachable when each number
differs from all others by exactly one 1-bit—for instance, if I = {2i | i = 0..n− 1}. ut

The following proposition gives an upper bound as a function of the maximum element of I .

Proposition 3.9 (PH-and magnitude upper bound)
A minimal mask m is strictly less than 2dlog2(max(I)+1)e ≤ 2 max(I) and the (2 max(I)− 1) bound
is reachable.

The minimal mask is bounded by the integer formed by all the 1-bits of all integers in I . Thus,
an upper bound is formed by a chain of k consecutive 1-bits, where k − 1 is the rank of the leftmost
1-bit in max(I). In the worst-case, all these 1-bits are required to form the mask—for instance, if
k = n− 1 and I = {0} ∪ {2i | i = 0..n− 2}. ut

Proposition 3.10 (PH-and global upper bound)
Let X be a class hierarchy with N classes and an injective identifier id : X → [0, N − 1], then∑

i=1..N 2dlog2(i+1)e is an upper bound of
∑

cHc.

This is a corollary of Proposition 3.9. However, as 2dlog2(i+1)e is strictly greater than i, this upper
bound is in range [N(N + 1)/2, N(N + 1)], hence it is too high to be useful.

Given a mask m, the m+ 1 hashtable entries can be partitioned into three sets: the entries
occupied by the input numbers I; unusable entries that do not fit with the mask m and can
be allocated for any data; free entries that could be occupied by new numbers. The next two
propositions explain it.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

12 R. DUCOURNAU AND F. MORANDAT

Proposition 3.11 (PH-and unusable entries)
Let m be a mask and k be the number of 1-bits of m. Then the corresponding hashtable contains
m+ 1− 2k entries in which no number can be hashed.

Let m′ be the mask formed by complementing the significant bits of m, i.e. 1-bits of m are 0 in
m′, and 0-bits of m are 1 in m′ if they are on the right of some 1-bit. Then, for any j ∈ [1..m− 1]
such that and(m′, j) 6= 0, h−1(j) = ∅. ut
Proposition 3.12 (PH-and completion)
Let I be a set of n integers and m be a mask that forms a perfect hashing function on I . Let k be
the number of 1-bits of m. When n < 2k, there is an infinity of sets J of cardinality 2k − n, disjoint
from I , such that m forms a perfect hashing function on I] J .

This is a direct consequence of Proposition 3.7. Among the 2k combinations of 1-bits of m, only
n are used by I and the remaining is free and can be used for integers in J . ut

This means that any set can be completed to reach a 2k cardinality while keeping the same optimal
bit-wise mask. The perfect numbering algorithm follows from the next proposition.

Proposition 3.13 (Unbounded PN-and)
Let I ′ be a set of integers of cardinality n′, and F = N\I ′ be the set of free integers. Let m′ be the
PH mask of the set I ′. Then the PN mask m is m′ if the bit-wise mask m′ has at least log2(n′ + 1)
1-bits. Otherwise, n′ = 2k and m is m′ with its least-weight 0-bit switched to 1. As a corollary,
H ≤ 2H ′, whereby H ′ is the perfect hashing parameter of the set I ′.

The first part is a straightforward consequence of Proposition 3.12. The corollary is implied by
the fact that, in the worst-case, the least-weight 0-bit is just after the leftmost 1-bit. ut

This ensures that there is a subset of 1-bits in m that forms the offset of an empty entry in the new
table. This proposition holds if the set F of free numbers is large enough, for instance for any finite
class hierarchy with an initial set of free integers which consists of all 16- or 32-bit integers. It is
worth noting that both and and mod functions present the same H ≤ 2H ′ upper bound.

Moreover, PN-and has an interesting property—namely it is optimal, i.e. Hc = 2dlog2(nc)e, for
all classes c in single inheritance, that is, such that c and all its superclasses have a single direct
superclass. This is a limited converse of Proposition 3.7.

Proposition 3.14 (PN-and optimum)
Perfect numbering is optimal, i.e. Hc = 2dlog2(nc)e, for every class c in single inheritance, i.e. such
that c and all its superclasses have a single direct superclass.

This means that, in single inheritance, all masks are formed by a chain of 2dlog2(nc)e rightmost
consecutive 1-bits. The proof is by induction on nc, i.e. class depth. Let c be the considered
class, and c′ be its single direct superclass, with nc′ = nc − 1. By induction, Hc′ = 2dlog2(nc−1)e. If
nc = 2k + 1, Hc′ = 2k and the mask is full, then an extra bit is required and Hc = 2k+1. Otherwise,
according to Proposition 3.12, the mask has some free room for an extra identifier and it can be
inherited by c, hence Hc = Hc′ = 2dlog2(nc)e. ut

This proposition holds under the same condition as Proposition 3.13 on the set F of free integers.
The interesting point is that this perfect class 1-numbering optimum does not depend on the exact
class identifiers, as any greedy choice provides a global optimum. Intuitively, all 1-bits of the mask
form a rightmost prefix of the mask and are “inherited”. With multiple inheritance, when a class c
has two direct superclasses c1 and c2, each one with a mask formed by a chain of, respectively, k1

and k2 1-bits with k1 ≤ k2, the k2 1-bits of the highest mask cannot always discriminate between the
extra identifiers inherited from c1, either because there are not enough 1-bits, or because there are
some multiple inheritance conflicts, that is, the same 1-bits are used by each class for discriminating
its proper ancestors. Hence, extra bits are required, that can be much more leftward and yield an
exponential increase in the mask. This explains why PN and PH can be erratic with bit-wise and in
multiple inheritance. Proposition 3.14 is important because all multiple inheritance class hierarchies
are mostly in single inheritance—see, for instance, the statistics in [16]. Hence, PN-and should be
optimal on a large part of each hierarchy and this should counterbalance its worst-case behaviour
on the multiple inheritance core.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 13

Finally, the optimality of PN-and with single inheritance yields formal space-linearity.

Proposition 3.15 (Space linearity)
For any single-inheritance hierarchy, the PN-and ratio ρ =

∑
cHc/

∑
c nc is in interval [1, 2[. The

upper bound is asymptotically reachable, that is, for all ε > 0, there are single-inheritance class
hierarchies such that ρ > 2− ε.

Consider, for instance, a chain A2k ≺ A2k−1 ≺ ... ≺ A1 of 2k classes, with A2k having x direct
subclasses. For any such subclass c, nc = 2k + 1, dlog2 nce = k + 1 and Hc = 2k+1. So, in this
framework, x can be large enough to make ρ > 2k+1/(2k + 1) ut

In practice, the optimal ratio
∑

c 2dlog2(nc)e/
∑

c nc is always lower than 1.5 in our multiple
inheritance benchmarks, and

∑
cHc/

∑
c nc can be very close to it in the best cases, but markedly

higher in the worst cases (see Table II).

Discussion on perfect numbering. Its mathematical definition (Definition 3.3) corresponds to a
simple algorithm (Proposition 3.13) which does not depend on the set F of free integers. In practice,
class identifiers are bounded by the underlying integer implementation, e.g. 16- or 32-bit integers,
and it might happen that both mathematical and algorithmic definitions differ when no free integers
fit the hashtable in the algorithm. However, such a situation would be very unlikely, as the greatest
allocated ID is never greater than 3 times the class number N in our tests.

Whereas the perfect class hashing definition (Definition 3.1) results in a
∑

cHc value which is
uniquely determined by the input class numbering, perfect numbering does not provide the same
overall determinism, apart from the single-inheritance optimum. Indeed, the perfect numbering
parameter provides only a step-by-step optimal Hc, and there are several possible ids for the
newly loaded class c. Selecting the least id amounts to a greedy optimization that does not ensure
any formal minimization of

∑
cHc. The point is even more complicated with k-numbering, since

Proposition 3.13 no longer provides a step-by-step optimum. Conjecture 3.5 is quite attractive, since
it relies on computation of the PH optimum for each currently loaded class.

Proposition 3.16 (Optimal perfect class k-numbering)
Conjecture 3.5 does not hold for bit-wise and.

Although it may work for some class loading orders of very large hierarchies (e.g. the Eclipse
hierarchy in Table VII), we found simple counter-examples of the existence of a solution. ut

In the general case, the perfect class k-numbering problem is over-constrained and has no optimal
solution, i.e. regardless of the classes that might be loaded afterwards. Only greedy optimizations
can thus be considered. Moreover, while PN is markedly better than PH on average, we also
observed some class loading orders where PH was better than PN. Hence, the heuristics might
well be improved by further research.

3.3. Other hashing functions

Without loss of generality, the perfect hashing approach might be improved with small variations
such as: (i) 2-probe tests, (ii) other 1-parameter 1-operation hash functions, or (iii) 2-parameter
2-operation functions. In PHAPST, we tested 2-probe quasi-perfect hashing (qPH-and); the space
improvement was not marked enough to offset the expected time overhead. We could not imagine
other 1-parameter operations than mod and and. Two-parameter hash functions might be an
improvement from the space standpoint, but the extra instruction would likely degrade the time
efficiency even if it takes a single cycle. Overall, the only efficient combination that we could
imagine is bit-wise andwith rightward shift, in order to truncate the mask and remove all trailing
zeros. This is denoted by PH-and+shift.

Definition 3.17 (PH-and+shift)
Let I be a non-empty set of integers. Then, the PH-and+shift parameters are defined as the pair
(H1, H2) such that H1 is the least integer such that there is H2 such that the function h that maps x
to h(x) = and(shift(x,H2), H1 − 1) is injective on I .

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

14 R. DUCOURNAU AND F. MORANDAT

class number avg nc
IBM-SF 8793 9.2
JDK1.3.1 7401 4.4
Java.1.6 5933 4.3
Orbix 2716 2.8
Corba 1699 3.9
Orbacus 1379 4.5
HotJava 736 5.1
JDK.1.0.2 604 4.6
Self 1802 30.9
Geode 1318 14.0
Vortex3 1954 7.2
Cecil 932 6.5
Dylan 925 5.5
Harlequin 666 6.7
Unidraw 614 4.0
PRMcl 479 4.6
Lov-obj-ed 436 8.5
SmartEiffel 397 8.6
Total 38784 7.3

Table I. Statistics on class and superclass numbers

An algorithm is proposed in Appendix A.3. Moreover, and and shift can also be combined
with perfect numbering. The technique, denoted PN-and+shift, amounts to substituting PH-
and+shift for PH-and in the algorithm for PN-and, with the only difference that the switched
0-bit is selected between existing 1-bits, if possible, instead of being the least-weight 0-bit.

4. SPACE-EFFICIENCY TESTS

Our original testbed consists of a set of large-scale benchmarks that are commonly used in the
object-oriented compilation community, together with a set of programs for computing various
parameters that are either characteristics of the class hierarchies or the size requirement of various
implementation techniques. This testbed thus simulates the memory occupation of these various
techniques. The simulation is exact and reproducible, except for techniques that rely on heuristics
like coloring or depend on some hidden run-time inputs, for instance class-loading orders. Besides
PHAPST, this testbed has been used in different simulations [10, 16].

For this article, we have extended this testbed in several directions, by computing random class
loading orders; by testing the new perfect hashing variants described in Section 3; by restricting
class loading orders to leaf or concrete classes; finally, by extracting a set of new JAVA benchmarks
that retain all class modifiers, unlike the benchmarks that are commonly used in the literature.

4.1. Class loading at random

First of all, we computed various perfect hashing parameters while loading classes at random, with
the same benchmarks as in PHAPST. They represent full-multiple-inheritance hierarchies that have
been extracted from real libraries of different languages. Only the class specialization relationship
is considered here. With JAVA hierarchies, classes and interfaces are not distinguished from each
other. Table I presents, for each hierarchy, its class number N , then the average value of nc, the
number of superclasses of c, per class (i.e. | � |/N).

The precise testbed involves generating a random class loading order by selecting a class at
random from the set of �-maximal yet unloaded classes until all classes are loaded. Then, for each
class loading order, all PH parameters are computed. This is repeated thousands of times.

The statistics presented in Tables II and IV present minimum, average and maximum values
over randomly generated class loading orders. All these numbers are normalized ratios ρ =∑

cHc/
∑

c nc that represent the space-linearity factor, since
∑

c nc = |�|. The order of magnitude

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 15

103445 lower PN-and+shift PN-and PH-and+shift PH-and
0.12 bound min µ σ max min µ σ max min µ max ref min µ max

IBM-SF 1.42 2.0 3.8 1.5 61.2 3.4 8.5 5.4 120.3 3.3 6.6 84.8 10.4 9.4 19.3 221.3
JDK1.3.1 1.24 1.3 1.6 0.2 23.0 1.8 3.4 1.9 57.0 1.8 2.4 27.0 11.7 6.4 10.6 239.1
Java.1.6 1.27 1.4 1.6 0.2 27.3 1.9 3.6 1.8 52.9 1.8 2.3 26.1 8.0 5.9 10.5 163.3
Orbix 1.13 1.1 1.3 0.1 15.5 1.2 1.9 1.1 34.2 1.3 1.7 33.0 4.4 4.0 6.0 103.1
Corba 1.19 1.3 1.8 0.4 24.5 1.6 2.9 1.4 41.0 1.7 2.7 67.4 5.1 4.4 7.2 93.8
Orbacus 1.20 1.4 2.0 0.5 18.2 1.9 4.0 1.9 43.3 2.0 3.2 36.0 5.3 4.9 8.7 52.4
HotJava 1.31 1.4 2.1 0.7 24.4 1.7 3.5 1.8 33.9 2.1 3.7 33.2 6.4 4.4 8.1 34.9
JDK.1.0.2 1.30 1.3 1.4 0.2 10.8 1.3 1.8 0.8 12.2 1.7 2.9 21.4 7.4 3.8 7.1 36.6
Self 1.30 1.9 3.9 0.5 8.2 2.1 4.0 0.2 8.2 5.5 9.2 21.2 5.9 5.8 9.2 21.2
Geode 1.48 2.9 6.4 2.0 31.0 3.6 8.9 2.8 32.3 5.2 10.6 34.8 11.5 7.4 14.9 40.3
Vortex3 1.33 1.7 2.7 0.7 15.7 2.3 4.7 1.4 18.0 3.0 5.0 27.9 11.0 6.9 12.2 64.0
Cecil 1.28 1.5 2.4 0.6 12.2 1.7 3.7 1.3 18.2 2.5 4.4 33.3 8.3 5.3 9.4 37.0
Dylan 1.35 1.4 1.6 0.4 9.6 1.4 1.6 0.4 9.6 4.2 6.9 36.0 4.6 4.2 6.9 36.0
Harlequin 1.32 1.8 2.9 0.5 10.1 2.2 4.0 0.8 11.0 2.9 4.9 14.7 5.9 5.1 9.0 23.3
Unidraw 1.27 1.3 1.3 0.0 2.9 1.3 1.3 0.1 3.1 1.6 2.4 21.2 4.2 3.7 6.1 34.8
PRMcl 1.31 1.3 1.5 0.2 8.2 1.4 2.0 0.6 12.5 1.8 2.7 11.2 4.4 3.8 6.3 22.1
Lov-obj-ed 1.38 2.2 3.8 0.8 12.6 2.8 5.2 1.1 13.4 3.5 6.0 14.2 6.3 5.1 8.7 17.9
SmartEiffel 1.41 1.4 1.9 0.9 12.2 1.4 1.9 0.9 12.2 4.2 7.0 17.2 4.6 4.2 7.0 17.2
Total 1.33 1.8 3.1 30.0 2.4 5.4 55.2 3.4 5.9 43.9 8.6 6.8 12.6 125.7

The top-left numbers represent, respectively, the total sample count (i.e. the number of class-loading orders that have
been generated at random) and an estimation of the growth rate of the maximum values, expressed as the number
of new maximal records per thousand. The first column presents the lower bound for bit-wise hashing, as a ratio∑
c 2
dlog2(nc)e/

∑
c nc ∈ [1, 2[. All other numbers are ratios ρ =

∑
cHc/

∑
c nc, whereby the sum is obtained for

all classes, Hc is the hashtable size and the denominator is the cardinality of �. The minimum, average (µ) and
maximum values of ρ are presented for each technique, and the standard deviation σ is also displayed for PN-and
and PN-and+shift. The ‘PH-and ref’ column recalls the tests presented in PHAPST. Italic type represents “bad” PN
behaviour, namely PN avg or max that are respectively greater than the corresponding PH min or avg. In contrast, bold
type represents “good” behaviour, namely PN max that are less than PH min. Line ‘Total’ represents, for all columns, the
same ratios as for each benchmark, but computed from the sum of the corresponding parameters on all benchmarks, i.e.
when a column depicts some pb/qb ratio for each benchmark b, the last line is

∑
b pb/

∑
b qb.

Table II. Statistics on random class loading orders

of ρ can be analyzed in several ways. Of course ρ ≥ 1 for all hashing functions, and the∑
c 2dlog2(nc)e/

∑
c nc lower bound of PH-and ranges between 1 and 2 (Section 3.2). Moreover,

as a hashtable occupation ratio, ρ = 2 ensures a good average efficiency for usual hashtables based
on linear probing [20, 21, 22]. According to the statistics presented in [10], the nc average is less
than 10% of the average number of methods per class, hence ρ = 2 also corresponds to a hashtable
size that is less than half the method table itself. Finally, a difference of 1 in the ρ value represents
less than 2% of the 900 KB stripped executable of the PRMcl benchmark which is an actual program
(see Section 5.2).

We tested the following variants: (i) PH-and perfect class hashing, in its original variant
with consecutive class numbering; (ii) 2-parameter perfect class hashing, with PH-and+shift;
(iii) PN-and perfect class numbering; and (iv) 2-parameter perfect class numbering, with PN-
and+shift. We also tested quasi-perfect hashing (qPH-and), but we do not present the results,
as it is not better than PN-and. Table II presents the statistics of all kept variants, in a left to right
order that roughly corresponds to increasing ρ ratios.

The first conclusion is that simple perfect hashing with consecutive numbering is really bad.
In most benchmarks, the results presented in PHAPST (column ‘PH-and ref’) are close to the
PH-and minimum values, hence rather optimistic. This is disappointing, since we expected some
average behavior when taking an arbitrary order. Moreover, the PH-and variations are marked, as
the max/min ratio is greater than 20 for the five largest benchmarks. In the worst cases, PH-and can
be dramatically inefficient—ρ can be greater than 200—and it only depends on the class loading
order which is a problem input.

In contrast, perfect numbering produces markedly better results. The PN-and average is always
lower than the PH-and minimum, except again in a few cases; however, the PN-and maximum

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

16 R. DUCOURNAU AND F. MORANDAT

class number leaf number avg nc
IBM-SF 8793 6001 8.8
JDK1.3.1 7401 5806 4.5
Java.1.6 5933 3825 4.8
Orbix 2716 2440 2.7
Corba 1699 1473 3.7
Orbacus 1379 954 4.7
HotJava 736 525 5.6
JDK.1.0.2 604 445 4.9
Self 1802 1134 31.9
Geode 1318 732 14.7
Vortex3 1954 1216 7.4
Cecil 932 601 6.8
Dylan 925 806 5.6
Harlequin 666 371 7.5
Unidraw 614 481 4.0
PRMcl 479 294 5.1
Lov-obj-ed 436 218 9.9
SmartEiffel 397 311 8.9
Total 38784 27633 7.0

Table III. Statistics on class, leaf and superclass numbers

is generally higher than the PH-and average, though markedly lower than its maximum. PN-and
and PH-and+shift yield similar results but PN-and+shift improves on both, especially in the
worst cases (maximum values); however, for many benchmarks, the worst-case size remains more
than twice that of the PH-and estimation in PHAPST.

These results are rather negative. Even when considering the most compact variant, i.e. PN-
and+shift, worst cases (column ‘max’) remain over space-consuming for many benchmarks
(especially IBM-SF and Geode). As PN-and and PN-and+shift are certainly the most promising
techniques, we produced more statistics for them. The positive point is that their standard deviations
σ is rather low. For all benchmarks but IBM-SF and Geode, σ is indeed less than 2 for PN-and, and
than 1 for PN-and+shift. As an empirical verification of the Bienaymé-Chebyshev inequality, we
also observed that, for each benchmark, the proportion of class loading orders that exceed µ+ 2σ is
less than 5%, for both PN-and and PN-and+shift.

In PHAPST, we did not conclude on PN because our first results seemed erratic. Actually PH-and
itself is erratic, and PN is always a marked improvement over PH. However, the technique remains
space-inefficient with bit-wise and in the worst-case class loading orders, even though these worst
cases are not frequent. But now, the PN-and average is always better than the PH-and number in
PHAPST. Therefore, restricting class loading orders might make PN-and acceptable in all cases.
Indeed, all linear extensions are not sensible class loading orders. Thus, modelling class loading
orders and testing perfect hashing on “sensible” class loading orders are still open issues.

4.2. Random leaf-class loading

The main issue with these first tests is that the bit-wise and hashing function appears to be highly
dependent on the class loading order. Class loading depends on precise implementation of runtime
systems like virtual machines, and the class loading order depends on the considered program
behavior. However, without loss of generality, one may assume that class loading is always triggered
by the need to instantiate a yet unloaded class, as all other uses of yet unloaded classes could be
made lazy. Hence, only concrete, i.e. non-abstract, classes must be ordered and abstract classes
are only inserted when needed in concrete-class orders, in such a way that superclasses are always
loaded before subclasses.

4.2.1. Principle. As our benchmarks do not record whether a class is abstract or concrete, we
consider an assumption that is often advocated, namely “make all non-leaf classes abstract” [9].
This is indeed a common methodological recommendation; see for instance [23]. Table III presents

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 17

136170 lower useful PN-and PN-and PH-and+shift PH-and
0.16 bound min µ σ max min µ σ max min µ max min µ max

IBM-SF 1.43 1.6 2.0 0.2 4.2 2.0 3.4 0.6 9.6 6.8 9.2 20.3 7.4 9.9 57.9
JDK1.3.1 1.24 1.3 1.4 0.1 2.0 1.5 2.1 0.4 8.1 3.7 5.6 22.0 5.9 8.3 41.2
Java.1.6 1.29 1.3 1.5 0.1 2.1 1.5 2.3 0.4 10.9 4.1 6.5 21.9 5.8 8.5 24.6
Orbix 1.11 1.1 1.2 0.0 1.3 1.1 1.3 0.2 6.6 1.6 2.3 8.9 3.8 4.8 36.6
Corba 1.18 1.2 1.3 0.1 1.8 1.2 2.0 0.7 9.8 2.4 3.7 12.1 4.0 5.5 31.4
Orbacus 1.20 1.2 1.5 0.2 3.1 1.2 2.1 0.8 15.5 3.2 5.2 18.5 4.3 6.5 30.6
HotJava 1.33 1.3 1.6 0.1 3.0 1.4 2.0 0.3 5.0 3.3 5.0 8.8 4.1 6.0 11.4
JDK.1.0.2 1.32 1.3 1.4 0.1 2.6 1.3 1.5 0.2 4.8 2.6 4.7 10.4 3.6 5.7 11.9
Self 1.33 1.3 1.4 0.1 2.8 1.3 1.5 0.1 2.8 4.9 6.1 13.5 4.9 6.1 13.5
Geode 1.48 1.7 2.2 0.3 5.9 1.9 2.9 0.8 15.0 5.1 7.9 26.3 5.2 8.1 26.5
Vortex3 1.33 1.4 1.8 0.2 4.1 1.5 2.5 0.4 6.5 5.0 7.7 14.7 5.6 8.3 15.0
Cecil 1.27 1.3 1.6 0.2 3.6 1.4 2.2 0.4 5.5 4.1 6.4 12.9 4.5 7.0 13.9
Dylan 1.37 1.4 1.4 0.1 1.8 1.4 1.7 0.6 15.1 3.8 5.7 22.6 3.8 5.7 22.6
Harlequin 1.33 1.5 1.9 0.2 3.3 1.5 2.3 0.3 5.5 3.9 6.3 12.3 4.4 6.8 13.2
Unidraw 1.27 1.3 1.3 0.0 1.4 1.3 1.3 0.0 1.9 2.3 3.6 7.1 3.5 4.9 11.4
PRMcl 1.32 1.3 1.4 0.1 2.0 1.3 1.6 0.2 5.7 2.8 4.5 11.4 3.5 5.4 12.7
Lov-obj-ed 1.41 1.5 2.0 0.2 3.4 1.6 2.6 0.4 5.2 4.0 5.9 9.4 4.1 6.1 9.6
SmartEiffel 1.42 1.4 1.4 0.0 2.0 1.4 1.5 0.1 2.9 4.0 5.2 8.0 4.0 5.2 8.0
Total 1.34 1.4 1.7 3.1 1.6 2.3 8.0 4.8 6.8 17.8 5.7 7.8 32.8

All numbers have the same meaning as in Table II, but
∑
c sums are now restricted to leaf classes, and the useful part

of PN-and is presented instead of PN-and+shift. In the lower bound and PN ‘min’ columns, bold type also indicates
that the optimum value is reached.

Table IV. Statistics on random concrete-class loading orders

the leaf number and the average nc per leaf for all benchmarks. On average, according to this
assumption, there would be a little more than one abstract class to four classes. This is an upper
bound of the actual ratio, since it is meaningless for a leaf class to be abstract, and a little more than
the ratio of one to six advocated by [24] (however, at a time when class hierarchies were markedly
smaller).

An informal algorithm is as follows. An unloaded leaf c is selected at random, and the set Xc =
{x | c � x} is partitioned into two subsets X ′c and X ′′c , that contain, respectively, already loaded
and yet unloaded superclasses, including c. X ′′c is then ordered in a top-down linear extension. For
each class x ∈ X ′′c , in this order, idx and Hx are computed according to the considered algorithm
(PH or PN). In the PN case, instead of considering each class in X ′′c separately, an alternative
is a global optimization of X ′′c numbering, with perfect k-numbering (Definition 3.4). There are
actually pros and cons for both approaches, since PN-and is optimal for single-inheritance classes
(Proposition 3.14) and the simple optimal problem (Conjecture 3.5) has no solution in the general
case. However, our experiments show that global optimization gives slightly better results.

There is however a huge number of linear extensions, namely factorial of the number of leaves,
which may be as many as 6000 in the largest benchmarks (Table IV). The number of orders is
thus above 1020000; obviously, the point cannot be to compute exact statistics. It is possible to
somewhat reduce this combinatorial explosion by partitioning the set of leaves according to their
parents; indeed, the way leaves with the same parents are ordered with each other is not significant.
Therefore, a two-step selection avoids equivalent orders. Sets are represented as lists, and a set of
equivalent leaves is first selected at random, then the first element in this set is picked. The number
of orders is now fact(

∑k
i=1 pi)/

∏k
i=1 fact(pi), instead of fact(

∑k
i=1 pi), whereby k is the number

of equivalence classes and pi the cardinality of each of them. In this way, the combinatorics reduces
to about 1012000 orders; this is better but still exhaustively intractable (1030 nanoseconds represent
a round upper bound for the solar system life). Though we were unable to prove that there were no
frequent worse cases, our experiments tended to quickly converge, that is, after some thousands of
tests, the rate of new maximal records was rather low, i.e. less than one to a thousand, the average
remained stable and the growth of the maximum extremely slow. Leaf partition is also used for the
statistics in Table II.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

18 R. DUCOURNAU AND F. MORANDAT

fraction 60% 40% 30% 20%
sample size 246680 237830 230690 230690

IBM-SF
JDK1.3.1
Java.1.6
Orbix
Corba
Orbacus
Self
Geode
Vortex3
Cecil
Dylan
Harlequin
Total

min µ σ max
2.1 3.2 0.4 5.9
1.6 2.4 0.4 6.4
1.5 2.3 0.4 5.9
1.2 1.4 0.3 9.5
1.3 2.3 1.0 11.8
1.3 2.1 0.5 7.9
1.4 1.6 0.1 3.4
2.1 3.1 0.4 5.9
1.6 2.5 0.4 6.7
1.4 2.1 0.4 5.5
1.2 1.5 0.2 7.9
1.5 2.3 0.4 5.0
1.5 2.2 6.8

min µ σ max
1.8 2.8 0.3 5.7
1.6 2.5 0.4 6.7
1.4 2.2 0.4 6.0
1.2 1.5 0.3 13.0
1.3 2.4 0.8 11.4
1.3 1.9 0.3 4.6
1.4 1.5 0.1 3.3
1.8 2.9 0.4 5.7
1.5 2.3 0.4 6.1
1.3 1.9 0.3 5.2
1.3 1.5 0.1 4.6
1.3 2.1 0.3 4.7
1.4 2.1 6.4

min µ σ max
1.8 2.6 0.3 6.6
1.5 2.3 0.4 6.5
1.4 2.0 0.3 5.7
1.2 1.5 0.4 14.6
1.3 2.3 0.5 6.7
1.3 1.8 0.3 4.9
1.4 1.5 0.1 3.3
1.6 2.6 0.4 5.6
1.4 2.1 0.4 5.4
1.2 1.8 0.3 5.4
1.3 1.5 0.1 3.4
1.2 1.9 0.3 4.4
1.4 2.0 6.1

min µ σ max
1.7 2.4 0.3 5.0
1.4 2.1 0.3 6.2
1.3 1.9 0.3 5.0
1.2 1.6 0.2 3.7
1.3 2.1 0.3 4.0
1.2 1.6 0.2 3.8
1.3 1.5 0.1 3.5
1.4 2.3 0.3 4.5
1.3 1.9 0.3 5.8
1.2 1.6 0.3 3.9
1.2 1.5 0.1 3.3
1.1 1.6 0.2 3.5
1.3 1.8 4.3

Only a subset of all classes are now loaded, and sums are on all loaded leaf classes. Column “100%” would display the
same data as column PN-and in Table IV.

Table V. PN-and statistics on a subset of all classes, with random leaf-class loading orders

4.2.2. Results and discussion. We tested all perfect hashing functions on the same set of
benchmarks, under this new assumption. We did this under two forms, according to whether, in
the ratio

∑
cHc/

∑
c nc, sums are still applied to all classes or only to concrete classes. Indeed,

only all-class sums are comparable to the statistics in Table II, but only concrete classes require
method tables. As the resulting ratios do not markedly differ between the two forms, we only present
the second one. Furthermore, as PN-and+shift is now hardly better than PN-and, we present
statistics on the useful part of the PN-and tables according to Proposition 3.11.

In this setting, all the PH-and values are markedly improved (Table IV), and the PHAPST ratios
in Table II are now close to the average PH ratios in Table IV. This is explained by the fact that our
original class order was a depth-first top-down linear extension, hence a possible leaf-class ordering.
The fact that the minimum values are greatly improved confirms that our random testbed cannot
explore all possible orders (the combinatorics is too large), whereas leaf-class ordering focuses on
the best orders. Regarding PN, it is not clear whether the optimization takes advantage of loading and
numbering a set of classes as a whole. We tested 1- and k-numbering; on average, the resulting Hc

parameter does not significantly differ, regardless of whether all yet unloaded classes are numbered
as a whole (k-numbering), or whether they are numbered one by one by successive applications of
PN in a top-down ordering (1-numbering). Hence, the improvement over PH is mostly due to the
selection of specific class loading orders.

The most interesting observation is that the erratic behavior of PH-and has been markedly
reduced (the max/min ratio is now always less than 10, instead of 35) and most worst-case orders
have been ruled out (the worst-case ratio ρ hardly exceeds 50, instead of 200). On most benchmarks,
the maximum PN-and values in Table IV are now lower than the corresponding PH-and minimal
values in Table II. The standard deviation is now less than 1 on all benchmarks; the proportion of
leaf-class orders that exceed µ+ 2σ is still less than 5%; and µ+ 2σ is always less than 5. Moreover,
for the useful PN-and ratio, µ+ 2σ is always less than 3, and the maximal values are markedly
lower than that of PN-and. Hence, a large part of the extra memory occupation is not wasted but
can be reused for specific static allocations. Overall, PN-and produces excellent results. On average,
its space-occupation ratio is close to 2 for most benchmarks, and perfect hashing is thus obtained at
a cost similar to that of efficient linear probing. The ratio is often very close to its 2dlog2(nc)e lower
bound, though it does not exclude a risk of a bad-case class loading order. However this risk is low,
as bad cases are infrequent; and it is not fatal, as the resulting memory occupation would be large
but not unreasonable. Actually, it would seem that there is no need for any other hashing function,
and PN-and+shift is not sufficiently better to offset its expected time-overhead.

Of course, it would be interesting to confirm that leaf-class orders are representative of actual class
loading orders. The reality is likely midway between both models. On the one hand, programmers

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 19

class numbers interface total extends implements
all concrete abstract number avg max avg max avg max

eclipse 59690 56117 3573 8122 5.6 36 3.5 16 2.1 28
java-6-sun 17213 15777 1436 2257 4.5 29 3.1 10 1.4 20
Total 76903 71894 5009 10379 5.4 36 3.4 16 2.0 28

derby 1764 1528 236 453 5.2 20 3.1 8 2.0 14
jfreechart-1.0.5 1393 1215 178 382 5.3 19 3.1 8 2.2 13
jess 1289 1137 152 329 4.3 16 2.8 7 1.6 9
sunflow 1140 982 158 283 4.3 15 2.8 7 1.5 9
ant 1022 895 127 187 4.2 14 3.2 8 1.1 8
xom-1.1 898 796 102 262 4.2 12 3.0 9 1.3 7
javac 864 770 94 207 4.3 12 3.0 6 1.4 8
Tidy 793 679 114 230 4.1 11 2.8 7 1.3 7
jl1.0 778 655 123 215 4.1 12 2.8 7 1.3 8
janino 783 668 115 132 4.4 13 3.2 7 1.2 9
scheme-builder 340 275 65 82 4.4 12 3.0 6 1.4 8
check 326 266 60 75 4.3 11 3.0 6 1.4 7
Total 11390 9866 1524 2837 4.5 20 3.0 9 1.6 14

jython 3715 3494 221 347 6.3 14 4.4 8 1.8 8
fop 2669 2338 331 633 4.3 27 3.1 9 1.3 21
xalan 2562 2309 253 490 5.2 18 3.2 9 2.0 13
pmd 1747 1548 199 397 4.7 18 3.2 8 1.5 12
antlr 1417 1239 178 302 4.2 15 3.0 7 1.2 10
eclipse-dacapo 872 759 113 226 3.9 14 2.7 6 1.2 8
luindex 452 356 96 89 4.1 12 2.9 6 1.2 7
lusearch 396 316 80 86 4.2 11 2.9 6 1.3 7
Total 13830 12359 1471 2570 5.0 27 3.5 9 1.6 21

From top to bottom, three benchmark groups: complete libraries, SPECjvm2008 and DaCapo benchmarks. The first
columns represent the class and interface numbers. The next section represents the average and maximum numbers of
superclasses and implemented interfaces, per concrete class. For instance, on average on the whole Java-6-sun library, a
concrete class extends 3.1 classes and implements 1.4 interfaces, and the maximum values are, respectively, 10 and 20.
Moreover, the maximum value of the union of both is 29. nc is now the number of interfaces implemented by concrete
class c. ’Total’ lines include all benchmarks of each group.

Table VI. Statistics on classes and interfaces for JAVA benchmarks

and class hierarchies only partly comply with Meyers’ directive. On the other hand, concrete classes
would represent only a possibility, since a concrete class can be instantiated in some programs, but
the class may also remain abstract in many others. This concerns only non-leaf classes, since a
non-instantiated leaf would never be loaded.

4.2.3. Loading a subset of all classes. However, apart from some small benchmarks like PRMcl and
SmartEiffel, our benchmarks do not represent actual programs, but whole class libraries. Therefore,
a real program would only load a subset of these libraries, and it was reported in [17] that hardly
one thousand classes were actually loaded from similar several-thousand class hierarchies.

Therefore, we also tested PH-and variants when only a subset of all classes was loaded. The
principle is the same as random class ordering, except that class loading ends when a fraction of
all classes are loaded. In practice, we tested it with fractions running from 20% to 60%. The class
number limitation improves all PH parameters, but the bad features of PH-and remain, though at a
smaller scale. Table V presents only the statistics of PN-and in this new setting, for the restriction
to leaf classes. The table shows marked improvement as the class number decreases.

4.3. Application to JAVA-like multiple subtyping

Perfect hashing can also be applied to JAVA-like interfaces in a restricted form. In JAVA, the
extends relationship between classes is in single inheritance, thus Cohen’s display and usual
single-subtyping implementation works, and it is more efficient than PH for classes (Section 2.1).
Therefore, only the implements relationship between classes and interfaces needs to be hashed.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

20 R. DUCOURNAU AND F. MORANDAT

1765731 lower PN-and
0.01 bound min µ σ max

eclipse 1.34 1.7 3.2 1.6 28.5
java-6-sun 1.46 1.8 2.4 0.4 8.1
Total 1.36 1.8 3.0 25.3

derby 1.37 1.4 1.7 0.2 5.5
jfreechart-1.0.5 1.36 1.4 1.8 0.2 3.6
jess 1.24 1.3 1.4 0.1 4.7
sunflow 1.34 1.4 1.5 0.1 3.7
ant 1.50 1.5 1.6 0.1 2.9
xom-1.1 1.40 1.4 1.5 0.0 2.2
javac 1.44 1.4 1.6 0.1 2.6
Tidy 1.34 1.3 1.4 0.1 2.6
jl1.0 1.39 1.4 1.5 0.1 2.5
janino 1.43 1.4 1.5 0.0 2.2
scheme-builder 1.37 1.4 1.5 0.1 2.2
check 1.37 1.4 1.4 0.0 1.9
Total 1.37 1.4 1.6 3.6

jython 1.28 1.3 1.4 0.4 11.8
fop 1.45 1.5 1.7 0.1 4.1
xalan 1.41 1.5 2.1 0.4 5.4
pmd 1.29 1.3 1.5 0.1 5.3
antlr 1.51 1.5 1.6 0.1 3.3
eclipse-dacapo 1.37 1.4 1.5 0.1 2.6
luindex 1.45 1.5 1.5 0.1 2.2
lusearch 1.38 1.4 1.5 0.0 2.0
Total 1.37 1.4 1.7 6.9

All numbers are ratios ρ =
∑
cHc/

∑
c nc, whereby the sum is done on concrete classes only (the denominator is the

cardinality of the implements relationship, restricted to concrete classes). As nc can be zero, the lower bound is now
ρ =

∑
c oc/

∑
c nc, where oc = 1 if nc = 0 and 2dlog2(nc)e otherwise.

Table VII. Statistics of PN-and for JAVA benchmarks over random concrete-class loading orders

The exact relation is not the explicit implements relationship, but rather its closure with class
specialization, i.e. if B extends A and A implements I , then B implements I . Overall,
only classes require a hashtable and only interfaces are numbered and hashed. In this setting, the
hashtable is used for subtype tests whose target is an interface, and for method invocations when the
receiver is typed by an interface and the method is not introduced by the Object root.

We have adapted all perfect hashing and perfect numbering functions to JAVA interfaces and
tested them on new class hierarchies that have been extracted from DaCapo [25] and SPECjvm2008
(http://www.spec.org/jvm2008/) benchmarks, or full Java 1.6 libraries§. Table VI
presents the number of classes and interfaces for each benchmark, along with the average numbers
of extended classes and implemented interfaces. Each benchmark represents an approximation of
the set of classes that could be loaded when the corresponding archive (.jar) file is loaded. These
sets are generated by meta-programming, and are closed under two relationships: specialization (i.e.
implements and extends) and method signature. The only classes that might defy this analysis
are those that are instantiated within a method while being only a strict subclass of the collected
classes. These new benchmarks provide extra information about classes, namely if they are abstract,
along with their nesting and visibility. Therefore, the algorithm described in Section 4.2 has been
improved in order to take the new information into account. Concrete classes are considered, instead
of leaf-classes, and complex loading rules are taken into account for inner classes. Indeed, JAVA
inner classes are archived in separate .class files, and they can be loaded independently of their
enclosing class. However, non-static inner classes are only instantiable from their enclosing class
or a subclass of it. In contrast, static inner classes can be instantiated from the enclosing class, the
package or the whole hierarchy according to their visibility. Finally, inner classes can be instantiated

§These new benchmarks are available on http://www.lirmm.fr/∼morandat/benchmarks.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 21

through invocation of a virtual or static method (both of a class), or by initializing a static variable
(of a class or even an interface). Overall, the enclosing class or some class of the same package must
often be loaded before the considered inner class can be loaded.

The application of Definition 3.1 is now slightly different, and resembles an application to
unrooted hierarchies, since Object is considered as a class. Moreover, a class does not encode
itself in its hashtable. Thus, for a class c that does not implement any interface other than Object,
Ic = ∅, nc = 0 and Hc = 1, and the single table entry must then contain any non-null integer
that is not an interface ID. Proposition 3.14 optimum now occurs when interfaces are in single
inheritance, and with the difference that Hc = 1 instead of 2dlog2(nc)ewhen nc = 0. Therefore,
the global optimum is unbounded. Finally, the PH algorithms are applied in the same manner as
described in Section 4.2.1, except that X ′c and X ′′c are now sets of, respectively, already loaded and
still unloaded interfaces implemented by concrete class c.

Table VII presents the statistics of PN-and over these random concrete-class loading orders.
The results are clearly satisfactory. Apart from Java-6-sun and Eclipse which represent complete
libraries that will never be loaded as a whole in a single program, all other benchmarks represent
set of classes, a large part of which could be loaded in a single run. Their PN-and parameter
is quite good, namely lower than 2 on average, and µ+ 2σ rarely exceeds 2. These data will be
further discussed in Section 6. The overall conclusion is that PN-and would also provide a scalable
implementation for JAVA-like interfaces

5. TIME-EFFICIENCY TESTS

This section presents the results of experiments that provide empirical assessment of the PH runtime
efficiency and complement the PHAPST abstract assessment.

5.1. Abstract assessment

In Driesen’s [2001] computational model, the cycle count of a code sequence is a function of
the processor latencies for different machine instructions like load (L latency) or branch (B
latency). We add to these two parameters the integer division latency (D) for PH-mod. Besides
these latencies, processors are characterized by their instruction-level parallelism. Overall, each
code sequence can be associated with a cycle count which represents the time necessary to execute
the sequence when all data are cached. Driesen’s model is purely static. Therefore, cache misses
are not considered, whereas each one would represent a latency far greater than the cycle count
of the sequences considered here. Moreover, well-predicted branchings cost nothing, whereas a
misprediction costs B cycles. These two dynamic features, i.e. cache misses and mispredictions,
can however be considered as a risk. For instance, incremental coloring introduces extra cache-miss
risks, since three memory areas are concerned, instead of one in all other techniques. Moreover, it
also introduces extra misprediction risks for subtype testing, since it requires an extra bound check.
There are thus two different ways of failing (instead of one). Table VIII presents the results of these
analyses for the considered techniques.

5.2. Empirical runtime assessment in the PRM testbed

We also implemented PH in the compiler of the PRM language, and tested its time efficiency on
a real program, namely the PRM compiler itself. In this setting, perfect hashing is compared to
different techniques on a variety of processors. These experiments are original, as they compare
different implementation techniques, in a common framework that allows a fair comparison, with
all other things being equal. In this section, we only summarize the results of these tests. Interested
readers are referred to [7] for a more complete report.

Tested techniques. The PRM testbed has been used for comparing a variety of techniques from
which we extract four families:

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

22 R. DUCOURNAU AND F. MORANDAT

method call subtype test attribute access
technique cycles code cycles code cycles code
Coloring 2L+B 16 3 2L+ 2 8 4 L 3 1
IC 4L+B + 2 24 8 3L+ 4 13 10 4L+ 2 14 8
PH-and 4L+B + 3 25 8 3L+ 5 14 8 4L+ 3 15 8
PH-and+shift 4L+B + 4 26 10 3L+ 6 15 10 4L+ 4 16 10
PH-mod 4L+B +D + 2 49 8 3L+D + 4 38 8 4L+D + 2 39 8

The table recalls the cycle counts and code lengths that are presented in PHAPST, according to the computational model
of [6] which is illustrated in Figures 1, 3 and 4. L, B and D represent the respective latencies of memory loads, indirect
or mispredicted branches and integer division. The values considered here are L = 3,B = 10 andD = 25 (instead of the
optimistic value of 6 used in PHAPST). For each mechanism, all techniques present the same cache-miss or misprediction
risks, except attribute access for which PH and IC add cache-miss risk, and IC which adds misprediction risk for subtype
testing and cache-miss risks in all mechanisms.

Table VIII. Cycle counts for the different techniques and three mechanisms

• Link-time coloring (Section 2.2.2), as a generalization of single-subtyping implementation,
represents a reference, i.e. the zero point of our scale; this is the best known technique that
does not involve global optimization, but it requires global linking; it is also the technique used
in JAVA for implementing classes, hence for method invocation and subtype testing when the
receiver’s type or the target type is a class, and for all attribute accesses.

• Compile-time coloring, with type analysis for detecting monomorphic call sites, represents
another reference, close to the optimum, and the difference between link-time and compile-
time coloring can be considered as the unit of our scale.

• All PH variants have been tested. As the tests concern only time-efficiency, PH and PN do not
differ apart from method table sizes, but this slight difference should not affect cache misses.

• The incremental version of coloring (IC) (Section 2.2.4) represents an alternative to PH in
spite of its expected load-time overhead.

All techniques are considered for application to the three basic mechanisms required by object-
oriented programming: (i) subtype tests, (ii) method invocation and (iii) attribute access. For
attribute access, two variants are considered, with attribute coloring (AC) or accessor simulation
(AS). The tests with accessor simulation provide an assessment of the use of the considered
technique (IC or PH) for implementing full multiple inheritance, for instance as an alternative to the
subobject-based implementation of C++. Attribute coloring is the most efficient implementation,
that of JAVA for instance, so combining PH or IC with attribute coloring provides an assessment
of the considered techniques when applied to JAVA interfaces. Of course, this assessment requires
some extrapolation, as PRM classes are not JAVA interfaces. However, this experiment is much more
demanding than actual JAVA tests, since the tested technique here represents all method invocations
instead of being reserved to interface-typed receivers. Therefore, if the overhead is low in the PRM
testbed, it should be even lower with actual JAVA programs.

Tested program. We implemented all these techniques in the PRM compiler, which is dedicated
to exhaustive assessment of various implementation techniques and compilation schemes [26, 7].
The test involves meta-programming, as the benchmark program is the compiler itself, which is
written in PRM and compiles the PRM source code into C code. The PRM compiler is actually not
compatible with dynamic loading, and the code for PH or IC has been generated at link-time exactly
as if it were generated at load-time, and the usual optimizations of the PRM compiler (see [26]) are
deactivated. The class load ordering does not matter since here we only consider time measurement,
and the class hierarchy is small enough (compared to the largest benchmarks in Section 4) for
making size variations insignificant.

The tested program makes intensive usage of the compared object-oriented mechanisms. The
respective numbers of method invocations and attribute accesses are about 1.8 and 2.6 billion.
The program size is also significant; it is the PRMcl benchmark in Tables I to IV. Load-time

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 23

technique
compile-time MC
link-time MC
IC
PH-and
PH-and+shift
PH-mod
unit
#processor

AC AS
-1.0 -0.3
0.0 0.5
0.5 1.2
0.4 1.3
0.6 1.8
3.0 9.2

19.0%
4

AC AS
-1.0 0.5
0.0 1.2
1.1 3.1
1.3 4.3
1.5 4.9
6.0 17.9

12.8%
2

AC AS
-1.0 0.2
0.0 1.1
0.7 2.9
0.5 2.9
0.8 4.2
1.9 9.3
10.7%

4
cluster 1 2 3

Each sub-table presents the results for a cluster of processors, and each number is the unweighted mean of the
corresponding measures for all processors in the considered cluster. Each row describes a method invocation and subtype
testing technique, and the two columns represent the overhead vs. pure coloring (link-time MC-AC), respectively with
attribute coloring (AC) and accessor simulation (AS).

Table IX. Comparison of execution time according to implementation techniques and processors

computations are not considered here, but our previous analysis shows that it is not significant for
perfect hashing in both practice and theory (see Appendix A).

Time-measurement conditions. Tested variants differ only by the underlying implementation
technique, with all other things being equal. The compilation testbed is deterministic, and two
compilations of the same program by the same compiler executable produce exactly the same
executable. Moreover, when applied to a program, two compiler variants produce exactly the same
code, and it has been verified with the diff command on both C and binary files. Overall,
the effect of memory locality should be roughly constant, apart from specific effects due to the
considered techniques. The tests were performed on several processors from different families and
manufacturers: Intel R© PentiumTM, AMD R© AthlonTM, SUN R© UltraSPARCTM or PowerPCTM. All
processors run under various 32-bit versions of Unix (Linux, Solaris, BSD).

5.3. Results and discussion

The results presented in [7] are here abstracted in two ways (Table IX). First, the scale is changed
and the unit is now the difference in percentage between link-time and compile-time colorings.
Second, a few processors are added, and the whole processor set is partitioned into 3 clusters by a
k-mean algorithm, with each processor being represented by a 10-dimension point in this new scale.

• Cluster 1 gathers processors of different families (UltraSPARC, PowerPC, and Pentium) that
are generally older than other processors (from 2001 to 2006). The unit is high and PH-and
overhead is about half a unit with AC and slightly more than a unit with AS.

• Cluster 2 consists of AMD processors (from 2003 and 2006). The unit is average and all
overheads are exaggerated.

• Cluster 3 consists of recent Pentiums (from 2006 to 2009). The unit is low, PH-and overhead
is slightly higher than in cluster 1 with AC, but markedly higher with AS. Actually, cluster 3
resembles cluster 1 for AC, and cluster 2 for AS.

• PH-and is generally slightly better than IC with AC, not with AS, but the differences are not
marked. Moreover, the extra instructions of PH-and+shift entails low extra overhead.

• In contrast, the overhead of PH-mod is markedly higher than that of PH-and. Coupled with
the abstract cycle count, this is the reason why we decided to give up PH-mod and we do not
present the theoretical and experimental analyses that we have undertaken.

These empirical results can be partly explained by comparing them to the theoretical predictions
in Table VIII.

• For method invocation and subtype testing, PH-and adds a few loads from a memory area
that is already used by the reference technique, hence without extra cache misses, plus a

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

24 R. DUCOURNAU AND F. MORANDAT

few 1-cycle instructions; these extra cycles represent real overhead that is, however, slight in
comparison with the overall method call cost; PH-and+shift adds a load and a shift that
are partly or even totally done in parallel, hence with slight overhead.

• PH-mod adds high integer division latency, commonly estimated at about 20-25 cycles [27],
hence much more expensive than extra loads; D latency can be estimated at D ≈ 1 + F∆

1.8 ,
whereby ∆ is the difference between the PH-mod and PH-and measures (in seconds), F is
the processor frequency (in GHz), and 1.8 is the number of invocations (in billions). This
estimation is about 25-35 cycles (as expected), or even more, for cluster 1 and 2, but less than
10 for processors in cluster 3. This is confirmed by the fact that most processors in cluster 3
use the Radix-16 algorithm, rather than Radix-4 which was used in older Pentiums [28].

• Accessor-simulation replaces the single coloring load by a sequence that adds several loads
from a memory area (i.e. the method table) that was not already used—hence it increases
the cache miss risks with marked overhead. This overhead increases with the cost of the
underlying method invocation technique, from method coloring to PH-and and PH-mod. The
measures provide the same kind of estimation ofD at 1 + F∆

4.3 , whereby 4.3 is the total number
of mechanism invocations, in billions. On all processors, the estimation is slightly higher than
the previous one by a few cycles.

• In Table VIII, the difference between IC and PH-and is not significant, and the tests confirm
it, as extra indirections in IC and extra computations in PH-and cause similar overheads.
However, IC implies access to extra memory areas, a first one for the color and a second
one for the recomputable color table, hence extra cache misses are expected, that are likely
underestimated in our tests. However, we have no explanation for the fact that IC is slightly
better than PH-and with AS, whereas the relation is inverted with AC (eg in cluster 1).
Overall, as the PH load-time cost is also far lower than that of IC, PH-and must be preferred
to IC.

Overall, the results of these tests are quite satisfactory, and PH-and is even better than expected
for method invocation and subtype testing on many processors. It should thus provide very high
efficiency for implementing interfaces in JAVA and .NET. When also used for attribute access, the
overhead becomes less reasonable, and the results of PH-and with AS can actually be considered as
bad. However, preliminary tests with the C++-like subobject-based implementation (Section 2.2.1)
show that PH-and with AS is not less efficient than subobjects [29].

Of course, the validity of such experiments that rely on a single program may be questioned.
This single-benchmark limitation is inherent to our experimentation. The PRM compiler is the
only one that proposes such versatility in the basic implementation of object-oriented programs.
The compensation is that the language has been developed with this single goal in mind, and its
compiler is the only large-scale program written in PRM. This is however a large, fully object-
oriented program, which intensively uses the basic mechanisms that are tested. Moreover, the
experiments compare two implementations with all other things being equal and, apart from IC,
these implementations present similar processor cache-miss risks. With IC, the effect of cache
misses is likely underestimated, since all color tables are here allocated in the same memory area,
whereas load-time recomputations should scatter them in the heap. Therefore, when the differences
are marked, their sign should hold for all programs and only the order of magnitude should vary. In
contrast, the comparison between IC and PH cannot conclude, because differences are rather low on
most processors, and increased cache-miss risks might penalize IC. However, we prefer PH because
of their respective load-time behaviours.

6. RELATED WORKS

Perfect class hashing is proposed here as a potential alternative to the implementation approaches
that are currently undertaken in C++ and JAVA-like languages. The key features of these languages
are static typing, multiple inheritance (possibly reduced to multiple subtyping) and dynamic loading
or linking. For these two language families, there is some evidence that their implementations

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 25

// method invocation
load [object+#tableOffset], table
load [table+#cacheMethId_i], id
comp id, #targetId
beq #hit
// cache miss
store #targetId, [table+#cacheMethId_i]
... // usual sequence of PH or IC
... // (4-5 instructions)
... // or any ad hoc technique
store itable, [table+#cacheMethOffset_i]
jump #end
hit: // cache hit
load [table+#cacheMethOffset_i], itable
end:
load [itable+#methodOffset], method
call method

// subtype testing
load [object+#tableOffset], table
load [table+#cacheTypeId_i], id
comp id, #targetId
beq #succeed
... // usual sequence of PH or IC
... // (6-8 instructions)
... // or any ad hoc technique
store #targetId, [table+#cacheTypeId_i]
succeed:

The cycle count of method invocation is here 4L+B + 2 in case of cache hit. However, the third load could be moved
just after the second one, and run in parallel, with 3L+B + 2 cycles. This might, however, degrade the cache-miss case.

Figure 6. Separate caches in method tables

do not meet our constant-time, linear-space and inlining criteria. The original subobject-based
implementation of C++ has been briefly reviewed in Section 2.2.1. It yields marked overhead,
with many compiler-generated pointers in the object layout and pointer adjustments at runtime.
Moreover, before perfect hashing, there were no known constant-time subtype tests for this
implementation. From the memory occupation standpoint, subobjects present a cubic worst case,
and large scale experiments show that the spatial cost can be markedly higher than for all other
techniques [10]. Moreover, the aforementioned comparison between PH-and and subobjects show
that they provide similar time-efficiency [29]. The rest of this section will now consider the case of
JAVA and .NET languages.

6.1. JAVA-like runtime systems

Modern runtime systems are dedicated to languages like JAVA and C# that use only a limited form
of multiple inheritance, namely multiple subtyping of interfaces. In this setting, the implementation
of classes is that of single-subtyping, and interfaces are usually implemented in rather ad hoc ways.
Currently, almost all known JAVA interface implementations do not meet one of two requirements
for constant-time or incrementality. For instance, the proposal of [17] is not inherently incremental,
so it yields potentially high load-time overhead, together with extra run-time indirections. All other
techniques reported in [2, 30, 31, 17] are not time-constant. The only exception might be the
proposal of using large direct access tables in SableVM [32], but it does not meet the linear-space
requirement. However, the empty slots of these huge tables are used for allocating other data, and
we do not know the extent to which it offsets the nonlinear size. The same trick is possible for PH-
and according to Proposition 3.11. However, in SableVM, it cannot be used for subtype testing, for
which empty entries represent failure, i.e. useful information. Therefore, the total occupied size is
linear in the product of class and interface numbers.

Non-constant-time techniques generally rely on searching and caching. For instance, the interface
that introduces the invoked method is cached in the method table. Then, for each method invocation,
the interface ID is compared with the cache. A cache hit thus provides the right interface-
table address, whereas a cache miss requires the interface ID to be searched in a data structure,
before filling the cache. However, even with cache hits, the cycle count for method invocation
is 3L+B + 2 (Figure 6), which is midway between PH-and (4L+B + 3) and single subtyping
(2L+B). This cache can also be used for subtyping tests, as in [31] where the underlying search
is naively sequential. The cycle count is now 2L+ 2 with cache hits, but not lower than PH-and
with cache misses. As for all cache-based techniques, the resulting efficiency depends on the actual
cache-hit rate. For instance, empirical cache-hit rates between 50% and 99% are reported in [17] for
subtype testing. This rate can be improved with multiple caches, whereby each interface is statically

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

26 R. DUCOURNAU AND F. MORANDAT

assigned to a specific cache. We tested this possibly original approach in the PRM testbed with
quadruple caches and an overall cache-hit rate about 80%. The experiments show that this improves
only on very inefficient underlying techniques, that is PH-mod, on all processors but cluster 3 [7].
Moreover, caches markedly increase memory occupation in both method tables and code sequences.

An alternative involves polymorphic inline caches (PIC) [33] which consist of testing the
receiver’s dynamic type against a few expected types. It yields a series of conditional branchings.
Under the CWA, all types can be exhausted, and this is called binary tree dispatch (BTD)
[34, 35]. Experiments in the PRM testbed show that the best techniques involve coloring for highly
polymorphic sites and BTD for other sites [7]. However, under the OWA, all types cannot be
exhausted, and the code sequence must include a case for cache misses, eg PH. The resulting
efficiency still depends on the cache-miss rate, hence on the way the expected types are computed.

Overall, the reasons for the apparent efficiency of these runtime systems must be searched
elsewhere than in the used implementation technique. A first reason is that, in JAVA-like languages,
the implementation question concerns only interfaces, i.e. a subset of all classes, instead of all
classes as in PRM. Hence, cached entities are fewer and cache-hit rates higher. This is explicit in
Tables II and VII, where the average number of implemented interfaces is seldom greater than 2,
while the average number of superclasses is about 7.

However, the main reason for this apparent efficiency likely follows from the implied compilation
scheme, namely just-in-time (JIT) compilers, rather than from the used implementation techniques.
Indeed, JIT compilers rely on a provisional closed-world assumption that allows the compiler to
perform many optimizations that are currently valid. For instance, a method call can be handled as
a static call, or as a class invocation (instead of an interface invocation), because this optimization
is possible in the current state of the system. Later on the compilation of some new code may force
the compiler to recompile the optimized code because the underlying optimizations are no longer
valid. With this approach, the runtime system must first warm up before reaching its cruising speed
whereby the code is optimized and no further recompilation is required.

6.2. Comparison with perfect hashing

In the Java benchmarks in Table VII, abstract classes are known and the statistics represent the
real memory occupation of a program that would load exactly those classes and interfaces. Of
course, there is no program that would load the complete Java-6-sun or Eclipse libraries, but these
benchmarks show insight into possible material limitations. For instance, in the Eclipse benchmark,
the maximum number of superclasses, i.e. the longest inheritance chain, is 16, the maximum number
of implemented interfaces is 28, and the maximum number of extended classes or implemented
interfaces is 36. This means that there are programs that require an efficient implementation for
these specific cases.

With a midsize benchmark like Derby, the PN-and ρ ratio (i.e. µ+ 2σ) is not greater than 2.1 for
93% of concrete-class-loading orders. As the average number of implemented interfaces is 2.1, this
means that the entire interface implementation requires about 4.4 (i.e. 2.1× 2.1) entries per class
plus a word for the Hc parameter. Each entry is two-fold, and this amounts to 10 words per class.
Moreover, the average number of superclasses is 3.1. This is the average size of Cohen’s display.
Overall, about 13 words per class allow for both subtype tests and interfaces. When considering
only subtype testing, 9 words are enough.

It is worthwhile comparing these concrete cases with the technique used for subtyping tests
in the HotSpot virtual machine [31]. The proposed technique involves a data structure with 3
words for the cache and 8 words for fixed-size Cohen’s display, whereas the tested benchmarks
do not require more than 5 words for Cohen’s display (8 words are proposed for the sake of
“robustness”). Moreover, a so-called “secondary list” is used for implementing interface cache
misses and extra superclasses that exceed Cohen’s display fixed size (this is what we call the
“underlying implementation”), but it is neither precisely described, nor counted in these 11 words.
Overall, the proposed technique is not better than PH on midsize benchmarks like Derby, and it
cannot take actual Java hierarchies into account, as the class inheritance chains can be markedly
longer than 5 or even 8, and cache misses would make the technique quite inefficient in the case of

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 27

Eclipse classes with 36 superclasses and implemented interfaces. The length of the “secondary list”
would be 28, and sequential search would be painful. Actually, it would seem that the technique
is only tailored to the SPECjvm98 (http://www.spec.org/jvm98/) benchmarks, which
are markedly smaller than SPECjvm2008 and DaCapo, without considering the need to scale up
gracefully on larger programs.

Both techniques could be compacted by using 16-bit integers, but our experiments with the PRM
testbed show that the gain in method table size is offset by a slight increase in code size. Therefore,
it should be considered only for processors that are equipped with specific half-word instructions.
Overall, we consider that perfect hashing ensures several advantages over the technique proposed in
[31]. PN-and is indeed constant-time, inlinable, scalable, and it addresses both subtype testing and
method invocation mechanisms.

Another comparison can be made with the technique proposed for method invocation in
JikesRVM (formerly Jalapeño) [2]. Method identifiers are hashed in a fixed-size hashtable whose
entries contain addresses of stub functions that handle collisions. This paper presents benchmarks
with two values, namely 5 and 40, for the hashtable size. In JikesRVM 3.1.0, this value is 29. The
first value is very low, and certainly too low to be time-efficient. In contrast, 29 and 40 are markedly
higher than PH average.

Finally, it is quite hard to compare PH and PIC. Indeed, in the best cases (no cache misses) PIC
is far better, but in the worst cases (no cache hits), the winner is PH. There are actually several
points against PIC: (i) before JIT compilation, profiling is needed to identify the frequent types that
must be expected; (ii) this profiling must be continued in the compiled code if the code is intended
to remain optimized in case of a change of frequent types; (iii) the code sequences are markedly
longer. It is likely that (ii) significantly degrades the efficiency. Overall, PIC makes the compilation
highly complicated in contrast with the simplicity of PH.

7. CONCLUSIONS AND PROSPECTS

Our previous works on perfect class hashing [3] concluded that the technique was promising and
deserved further consideration. However, a more in-depth assessment was also required. The tests
presented here now allow us to draw some new and much more definitive conclusions about the
time and space efficiency of perfect class hashing.

To our knowledge, PH is, together with C++ subobject-based implementation, the only constant-
time technique for method invocation that allows for both multiple inheritance and dynamic loading
at reasonable spatial cost. Furthermore, its space requirements are roughly linear in the cardinality
of the specialization relation and far lower than that of subobjects. PH is also the only constant-time
and linear-space technique for subtyping tests that allows for both multiple inheritance and dynamic
loading. These assertions hold when PH is used under the perfect class numbering variant, with both
mod and and hashing functions. However, the time constant of mod is too high, even on recent
processors which use the Radix-16 division algorithm. Therefore, PH-mod should be reserved to
processors with very efficient integer division, that is if any exists. In contrast, the time efficiency of
PH-and is better than expected when used for method invocation and subtyping tests. Its overhead
vs. coloring is not insignificant, but it seems to be the price to be payed for implementing interfaces
when they are intensively used, and the tested alternatives like caching are actually markedly less
scalable. PN-and is thus certainly a very good solution for implementing JAVA interfaces—this is
actually the best solution that we are aware of. PN-and+shift could also be envisaged from the
time standpoint, but it does not represent a neat spatial improvement on PN-and when leaves are
assumed to be the only concrete classes.

The main contribution of this article is, however, from the space standpoint. We have proposed
and tested, here, (i) an optimized approach, namely perfect class numbering; (ii) a more systematic
testbed based on random class loading; and (iii) a more realistic model based on concrete leaf
classes. It follows from these new tests that PH-and is inherently erratic and over space-consuming
in the worst-case class loading orders. Perfect class numbering provides a marked improvement
over plain perfect hashing, with both mod and and hashing functions. However, in spite of its

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

28 R. DUCOURNAU AND F. MORANDAT

optimality in single inheritance, it is still over space-consuming in the worst cases, but combining
it with shift provides an improvement that is slight on average but marked in the worst cases.
Finally, the assumption that all non-leaf classes are abstract makes the behaviour of PH and PN
markedly more regular; in practice, the PN-and worst cases are now infrequent and they yield
reasonable memory overhead. Furthermore, a large part of the extra memory occupation could be
used for allocating static data.

Moreover, when it is also used for attribute access, the perfect hashing overhead becomes
unreasonable on many processors—hence, it might not be a direct alternative to the C++ subobject-
based implementation.

The prospects of this work are manifold:

• The first experiments in PRM led us expect that PH-and should be very efficient for
implementing JAVA interfaces—thus experiments in a production virtual machine represent
the next step to confirm it. Regarding runtime systems and JIT compilers, the point at
issue cannot be to substitute perfect hashing for both caching and JIT compilers. The
proposal is rather to use perfect hashing, i.e. PN-and, as the single underlying technique for
implementing interfaces, and to adapt current JIT compilers to this technique. The observed
efficiency should not be drastically changed, but our claim is that the resulting implementation
should be both simple and scalable. Constant time is also an essential argument for real-time
systems.
This simple goal is, however, not so easy to meet. Indeed, to be efficient, perfect hashing
requires a very simple but uncommon method-table layout, namely with bidirectionality and
per interface grouping. Moreover, an efficient implementation of Cohen’s display, without
bound checks, requires allocation of method tables in dedicated areas [3]. For instance,
we tried to implement PH in JikesRVM [2, 30], but we gave up because the VM overall
implementation does not meet these requirements, and the expected improvement would be
offset by unnecessary indirections and bound checks.

• Experiments with the PRM testbed must be generalized to other processor families,
manufacturers or architectures—especially for testing more efficient integer divisions and 64-
bit implementations; other programs than the PRM compiler would also be of great interest.

• Full-multiple-inheritance languages do not provide such large and rich benchmarks as JAVA-
like languages, and information about concrete classes is generally not available. Therefore,
our experiments in full multiple inheritance rely on the assumption that only the leaf ordering
matters. This assumption should be confirmed either empirically or theoretically. However,
empirical experiments are usually at a smaller scale than simulations. For instance, in [17], a
report on experiments on JAVA programs based on almost ten-thousand class libraries shows
that each run hardly loads one thousand classes and interfaces. Bit-wise and perfect class
hashing and numbering are always very good on one-thousand class benchmarks. It would
thus seem that the scalability of these techniques can be proven only by simulations or
theoretical means. This is, however, somewhat unavoidable, since scalability is the ability
to gracefully scale up over future programs that do not yet exist. Conversely, empirical
experiments, in spite of their smaller scale, could provide models of class load orderings
that would be less theoretical than the slogan “make all non-leaf classes abstract”.

As PN-and provides a technique for implementing all three basic object-oriented mechanisms—
namely method invocation, subtype testing and attribute access—that is efficient at least for the
first two, it is essential to compare PH with the C++ subobject-based technique. Both techniques
are indeed the only ones that ensure constant-time method invocation in a multiple inheritance
and dynamic loading framework, while being inherently incremental. We are currently conducting
these tests in the PRM testbed, and our aforementioned preliminary results show that perfect
hashing coupled with attribute coloring is much more efficient than subobjects [29]. However,
this combination of PH and coloring is not compatible with dynamic loading, and the compatible
combination, with accessor simulation instead of coloring, is not better than subobjects. The tests
must be completed for precise comparisons and firm conclusions, but the overall conclusion is that

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 29

both implementations are not that efficient. In practice, the efficiency of the C++ language comes
from the fact that virtual inheritance is only marginal in C++ programs.

Despite this apparent inefficiency, an efficient solution to full multiple inheritance implementation
in a dynamic loading setting might be based on perfect hashing, accessor simulation and JIT
optimizations, and there is some evidence that such a solution could be markedly more efficient
than current subobject-based implementations. We now envisage designing a virtual machine for
the PRM language, with a JIT compiler adapted to full multiple inheritance and perfect hashing.
In this context a basic JIT optimization would be to use the single-subtyping implementation
instead of perfect hashing until it becomes impossible, then to recompile the concerned methods.
Preliminary simulations show that the single-subtyping implementation could be used on most
attribute accesses, and on many method invocations, thus making a full multiple-inheritance virtual
machine as efficient as a JAVA-like program making intensive use of interfaces [36]. Moreover, the
recompilation cost would remain markedly low.

An extra contribution of this article concerns the methodology used for simulating load-time
effects at random on very-large-scale hierarchies (Section 4). This approach is currently used to
simulate the effects of alternative decisions in the design of the PRM virtual machine. It provides
a preliminary assessment of recompilation costs and overall expected efficiency in the worst case.
Such random simulations could also be used for assessing the scalability of many optimizations
currently used in virtual machines and JIT compilers.

APPENDIX A. ALGORITHMS

The computation of perfect hashing parameters is presented in a simple COMMON LISP code [37],
as in PHAPST. In the following algorithms, simplicity takes priority over efficiency.

A.1. Perfect class hashing with bit-wise and

PH-and could be based on a function that takes successive numbers until it finds a perfect hashing
function. This works well with modulus but, with bit-wise and, the PH parameter closely depends
on the significant bits of the input numbers. Indeed, with bit-wise and, a hashtable can have empty
entries that cannot be filled by any number, and the useful entries depend only on the 1-bits of the
mask (Proposition 3.7). Therefore, an algorithm working at the bit level is certainly preferable. By
the way, it is also more efficient as it yields a logarithmic complexity.

The basic version of PH-and first computes a mask composed of all discriminant bits, i.e. bits
which are not 0 or 1 in all numbers. The resulting integer gives a perfect hashing function since all
integer pairs in the input differ by at least one bit in the mask. Then the function checks each 1-value
bit by decreasing weight and switches the bit when it is not required for injectivity.

defun ph-and (ln) ;; LN is an integer list
(if (null (cdr ln))

1
(let ((mask (logxor (apply #’logior ln) (apply #’logand ln))))

;; MASK consists of all discriminant bits
(fill *ht* nil :start 0 :end (1+ mask)) ;; resets *HT*
(loop for b from (highest-bit mask) by 1 downto 0

when (logbitp b mask) do ;; for each 1-bit in MASK
(let ((new (logxor mask (ash 1 b)))) ;; NEW = MASK with switched bit

(when (ph-and-p ln new) (setf mask new)))
finally return (1+ mask)))))

In this code, logxor, logior and logand are COMMON LISP integer functions for bit-wise
operations: exclusive and inclusive or, and and. (highest-bit n) gives the position of the
leftmost 1-bit of a positive integer n. (logbitp n b) tests if the b-th bit of n is 1. (ash n b)
shifts n left by b positions (when b is positive).

defun ph-and-p (ln mask)
(loop for i in ln

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

30 R. DUCOURNAU AND F. MORANDAT

for hv = (logand i mask) do
(if (eql (aref *ht* hv) mask)

(return nil)
(setf (aref *ht* hv) mask))

finally return t))

The ph-and-p function checks that its mask parameter forms a perfect hashing function for the
ln identifier list. *ht* is a global variable bound to an array that is presumed to be large enough
and is initialized only once in ph-and (this is a slight improvement over the PHAPST version). A
successful call to ph-and-p leaves the hashtable filled by numbers in ln on length hc. However,
ph-and often finishes with an unsuccessful call to ph-and-p. Therefore a subsequent call to
ph-and-p may be required in the following functions, in order to reset the hashtable.

With consecutive numbering of class IDs, the ph-and complexity isO(idc + nc log idc). Indeed,
idc is the maximum of ln input, and mask is bounded by 2idc (Proposition 3.9). The *ht*
initialization is thus in O(idc), and the main loop involves O(log idc) calls to ph-and-p, which
itself is in O(nc).

A.2. Perfect class numbering

PN-and is slightly more complicated than PH-and. The algorithm is based on Proposition 3.13
as follows. It first computes the PH-and parameter for the input list of numbers. If the bit-wise
mask does not contain enough 1-bits (logcount is the function that returns the 1-bit count of its
argument), the rightmost 0-bit is switched. Then *ht* is reset by ph-and-p and the function ends
by selecting free identifiers. It returns two values¶, namely the set idc of new identifiers and the
hashtable size hc.

defun pn-and* (ln n)
(let ((mask (1- (ph-and ln))))

(loop for b from 0 by 1
while (> (+ (length ln) n) (ash 1 (logcount mask)))

;; when there are not enough 1-bits
unless (logbitp b mask) ;; rightmost 0-bit
do (setf mask (logxor mask (ash 1 b)))) ;; switch

(ph-and-p ln mask) ;; resets *HT*
(values (compute-least-free-ids-and n mask) (1+ mask))))

defun compute-least-free-ids-and (n mask)
(loop for i in *free* until (= n 0)

for hv = (logand i mask)
unless (eql (aref *ht* hv) mask)
collect (progn (setf (aref *ht* hv) mask)

(decf n)
i)))

free is a data structure that represents the set of free identifiers. The loop on *free* is
actually slightly more complicated, as *free* is a more efficient data structure than a simple list,
e.g. a union of intervals. It might also be optimized to take advantage of the bit-wise structure of free
numbers. However, it is certainly not straightforward, and this naive loop is likely a good tradeoff
between simplicity and efficiency.

Finally, the newly allocated class identifiers must be assigned to the set X ′′c of newly loaded
classes, and there are many ways to do this. In this respect, (pn-and* ln n) is certainly not
exactly equivalent to iterating (pn-and* ln 1) n times. Their respective results must depend,
however, on the structure of the class hierarchy, and only the latter form ensures the single-
inheritance optimum. Consider, for instance, the ABCD diamond of Figure 2. Suppose that only A
is already numbered, so all other classes must be numbered as a whole (i.e. n=3). Proposition 3.14
states that (pn-and ln) is optimal in the presence of single inheritance. Hence, it should be
preferred for B and C, especially if they have many subclasses. On the contrary, (pn-and* ln

¶The function here uses the COMMON LISP feature called multiple values, with the values special form. Another
special form that is used hereafter, i.e. multiple-value-bind, binds a list of variables to such multiple values.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 31

n) should likely be preferred for D, especially if D has many subclasses. So the overall efficiency
depends on the whole class hierarchy, which is unpredictable when the considered classes are
loaded. Our experiments are actually not conclusive, as the differences are not significant.

Without considering the free-number computation, pn-and* adds O(log n′′c log id′c) to the
O(n′c log id′c) ph-and complexity, where id ′c is now the maximum inherited class ID, and n′c and
n′′c are the respective numbers of already loaded and yet unloaded classes (i.e. n′′c is n). The free-
number computation is in O(idc), where idc is the maximum returned free number, which will be
assigned to the current class c. Of course, this analysis does not provide formal complexity, since
it is a function of the output, instead of the input. However, as we empirically observed that the
maximum allocated identifier does not exceed 3N , where N is the total class number, this provides
rough complexity on average.

A.3. Bit-wise shift

The combination of and and shift (Definition 3.17) relies on a similar algorithm, but it is now
linear instead of logarithmic. It is indeed exponential in the 1-bit count. The function is like ph-and
except that the 1-bits of the mask are not scanned in the same order. When both leftmost and
rightmost 1-bits are switchable, both solutions are computed and the best one is returned. Otherwise,
the left- or right-most 1-bits are switched while it is possible, and finally the remaining inner 1-bits
are switched in decreasing weight. We present a simplified version. The best-and+s function
returns a single bit-wise mask whose rightmost 1-bit gives the parameter H2, and H1 is obtained by
shifting the mask by H2 positions.

defun ph-and+s (ln)
(if (null (cdr ln))

(values 1 0) ;; returns H_1 and H_2
(let ((mask (logxor (apply #’logior ln) (apply #’logand ln))))

(lbit))
(fill *ht* nil :start 0 :end (1+ mask)) ;; resets *HT*
(setf mask (best-and+s mask)

lbit (lowest-bit mask))
(values (1+ (ash mask (- lbit))) lbit))))

(defun best-and+s (ln mask)
(let* ((hbit (highest-bit mask))

(lbit (lowest-bit mask))
(newh (logxor mask (ash 1 hbit)))
(newl (logxor mask (ash 1 lbit))))

(if (ph-and-p ln newh)
(if (ph-and-p ln newl)

(let ((mh (best-and+s ln newh)) ;; exponential
(ml (best-and+s ln newl))) ;; part

(if (<= (ash mh (- (lowest-bit mh)))
(ash ml (- (lowest-bit ml))))

mh ml))
(best-and+s ln newh))

(if (ph-and-p ln newl)
(best-and+s ln newl)

;; switches inner 1-bits by decreasing weight
(loop for b from (1- hbit) by 1 downto (1+ lbit)

when (logbitp b mask) do
(let ((new (logxor mask (ash 1 b))))

(when (ph-and-p ln new)
(setf mask new)))

finally return mask)))))

The combination with perfect numbering gives the following algorithm. The difference with
respect to pn-and* is that the switched bit is first searched in the range between leftmost and
rightmost 1-bits, if any, and otherwise the mask is extended, preferably on the right.

defun pn-and+s* (ln n)
(multiple-value-bind

(hc mask lbit hbit) (ph-and+s ln)
(loop while (> (+ (length ln) n) (ash 1 (logcount mask))) do

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

32 R. DUCOURNAU AND F. MORANDAT

(loop for b from lbit by 1 ;; rightmost
unless (logbitp b mask) do ;; inner 0-bit
(when (and (> b hbit) (> lbit 0))

(setf b (1- lbit)
lbit b))

(setf mask (logxor mask (ash 1 b)) ;; switch
hc (1+ (ash mask (- lbit))))

(return)))
(ph-and-p ln mask) ;; ends like PN-AND*
(values (compute-least-free-ids-and n mask) hc)))

REFERENCES

1. S. B. Lippman. Inside the C++ Object Model. Addison-Wesley, New York, 1996.
2. B. Alpern, A. Cocchi, S. Fink, and D. Grove. Efficient implementation of Java interfaces: Invokeinterface

considered harmless. In Proc. OOPSLA’01, SIGPLAN Not. 36(10), pages 108–124. ACM, 2001.
3. R. Ducournau. Perfect hashing as an almost perfect subtype test. ACM Trans. Program. Lang. Syst., 30(6):1–56,

2008.
4. R. Sprugnoli. Perfect hashing functions: a single probe retrieving method for static sets. Comm. ACM, 20(11):841–

850, 1977.
5. Z. J. Czech, G. Havas, and B. S. Majewski. Perfect hashing. Theor. Comput. Sci., 182(1-2):1–143, 1997.
6. K. Driesen. Efficient Polymorphic Calls. Kluwer Academic Publisher, 2001.
7. R. Ducournau, F. Morandat, and J. Privat. Empirical assessment of object-oriented implementations with multiple

inheritance and static typing. In Gary T. Leavens, editor, Proc. OOPSLA’09, SIGPLAN Not. 44(10), pages 41–60.
ACM, 2009.

8. Zbigniew J. Czech. Quasi-perfect hashing. The Computer Journal, 41:416–421, 1998.
9. S. Meyers. More Effective C++. Addison-Wesley, 1996.

10. R. Ducournau. Implementing statically typed object-oriented programming languages. ACM Comp. Surv., 43(4),
(to appear) 2011.

11. N. H. Cohen. Type-extension type tests can be performed in constant time. ACM Trans. Program. Lang. Syst.,
13(4):626–629, 1991.

12. R. Ducournau and J. Privat. Metamodeling semantics of multiple inheritance. Science of Computer Programming,
(to appear) 2011.

13. R. Dixon, T. McKee, P. Schweitzer, and M. Vaughan. A fast method dispatcher for compiled languages with
multiple inheritance. In Proc. OOPSLA’89, SIGPLAN Not. 24(10), pages 211–214. ACM, 1989.

14. W. Pugh and G. Weddell. Two-directional record layout for multiple inheritance. In Proc. PLDI’90, SIGPLAN
Not. 25(6), pages 85–91. ACM, 1990.

15. J. Vitek, R. N. Horspool, and A. Krall. Efficient type inclusion tests. In Proc. OOPSLA’97, SIGPLAN Not. 32(10),
pages 142–157. ACM, 1997.

16. R. Ducournau. Coloring, a versatile technique for implementing object-oriented languages. Soft. Pract. Exper., (to
appear) 2011.

17. K. Palacz and J. Vitek. Java subtype tests in real-time. In L. Cardelli, editor, Proc. ECOOP’2003, LNCS 2743,
pages 378–404. Springer, 2003.

18. Y. Zibin and J. Gil. Two-dimensional bi-directional object layout. In L. Cardelli, editor, Proc. ECOOP’2003,
LNCS 2743, pages 329–350. Springer, 2003.

19. A. Myers. Bidirectional object layout for separate compilation. In Proc. OOPSLA’95, SIGPLAN Not. 30(10),
pages 124–139. ACM, 1995.

20. Robert Morris. Scatter storage techniques. Commun. ACM, 11(1):38–44, 1968.
21. D. E. Knuth. The art of computer programming, Sorting and Searching, volume 3. Addison-Wesley, 1973.
22. J. S. Vitter and Ph. Flajolet. Average-case analysis of algorithms and data structures. In J. Van Leeuwen, editor,

Algorithms and Complexity, volume 1 of Handbook of Theoretical Computer Science, chapter 9, pages 431–524.
Elsevier, Amsterdam, 1990.

23. Friedrich Steimann. Abstract class hierarchies, factories, and stable designs. Commun. ACM, 43(4):109–111, 2000.
24. M. Lorenz and J. Kidd. Object-Oriented Software Metrics. Prentice-Hall, Englewood Cliffs (NJ), USA, 1994.
25. S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,

D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In Peri L. Tarr and William R. Cook, editors, Proc. OOPSLA’06,
SIGPLAN Not. 41(10), pages 169–190. ACM, 2006.

26. J. Privat and R. Ducournau. Link-time static analysis for efficient separate compilation of object-oriented
languages. In ACM Workshop on Prog. Anal. Soft. Tools Engin. (PASTE’05), pages 20–27, 2005.

27. Henry S. Warren. Hacker’s Delight. Addison-Wesley, 2003.
28. J. Coke, H. Baliga, N. Cooray, E. Gamsaragan, P. Smith, K. Yoon, J. Abel, and A. Valles. Improvements in the Intel

Core2 Penryn processor family architecture and microarchitecture. Intel R© Technology Journal, 12(03):179–192,
2008.

29. F. Morandat and R. Ducournau. Empirical assessment of C++-like implementations for multiple inheritance. In
Proc. MASPEGHI/ICOOOLPS Workshop. ACM, 2010.

30. B. Alpern, A. Cocchi, and D. Grove. Dynamic type checking in Jalapeño. In Proc. USENIX JVM’01, 2001.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PERFECT CLASS HASHING AND NUMBERING 33

31. C. Click and J. Rose. Fast subtype checking in the Hotspot JVM. In Proc. ACM-ISCOPE Conf. on Java Grande
(JGI’02), pages 96–107, 2002.

32. E. M. Gagnon and L. J. Hendren. SableVM: A research framework for the efficient execution of Java bytecode. In
Proc. USENIX JVM’01, pages 27–40, 2001.

33. U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed object-oriented languages with polymorphic
inline caches. In P. America, editor, Proc. ECOOP’91, LNCS 512, pages 21–38. Springer, 1991.

34. O. Zendra, D. Colnet, and S. Collin. Efficient dynamic dispatch without virtual function tables: The SmallEiffel
compiler. In Proc. OOPSLA’97, SIGPLAN Not. 32(10), pages 125–141. ACM, 1997.

35. O. Zendra and K. Driesen. Stress-testing control structures for dynamic dispatch in Java. In Proc. Java Virtual
Machine Research and Technology Symp., JVM’02, pages 105–118. Usenix, 2002.

36. R. Ducournau and F. Morandat. Towards a full multiple-inheritance virtual machine. In Proc.
MASPEGHI/ICOOOLPS Workshop. ACM, 2010.

37. G. L. Steele. Common Lisp, the Language. Digital Press, second edition, 1990.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

	INTRODUCTION
	Object-oriented implementation and perfect hashing
	Limitations of previous work
	Contributions and plan

	FROM SINGLE SUBTYPING TO MULTIPLE INHERITANCE
	Single subtyping
	Method invocation and object layout.
	Subtype tests.

	Multiple inheritance
	Multiple inheritance with static typing and dynamic linking.
	Coloring for multiple inheritance with global linking.
	Perfect class hashing for object implementation.
	Incremental coloring (IC).
	Accessor simulation (AS).

	PERFECT CLASS HASHING AND NUMBERING
	Definitions
	Application to bit-wise and
	Other hashing functions

	SPACE-EFFICIENCY TESTS
	Class loading at random
	Random leaf-class loading
	Principle.
	Results and discussion.
	Loading a subset of all classes.

	Application to Java-like multiple subtyping

	TIME-EFFICIENCY TESTS
	Abstract assessment
	Empirical runtime assessment in the Prmtestbed
	Results and discussion

	RELATED WORKS
	Java-like runtime systems
	Comparison with perfect hashing

	CONCLUSIONS AND PROSPECTS
	Perfect class hashing with bit-wise and
	Perfect class numbering
	Bit-wise shift

