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Abstract
Object-oriented languages involve a trade-off between three
aspects, namely multiple inheritance, runtime efficiency
and open world assumption (OWA), i.e. dynamic loading.
The runtime efficiency of object-oriented programs is con-
ditioned by the underlying implementation technique and
compilation scheme. The former is concerned by the precise
data structures that support basic object-oriented mecha-
nisms (namely method invocation, attribute access and sub-
type testing). The latter consists of the production line of
an executable program from the source code files, includ-
ing compilers, linkers, loaders, virtual machines and so on.
Many implementation techniques have been proposed and
several compilation schemes can be considered from fully
global compilation, under the closed-world assumption, to
fully separate compilation, with dynamic loading, under the
OWA, with midway solutions that involve separate compila-
tion and global linking. In this article, we review a significant
subset of all possible combinations and present a systematic
empirical comparison of their respective efficiency with all
other things being equal. The testbed consists of the PRM
compiler that has been designed to implement various al-
ternative techniques, in different compilation schemes. The
considered techniques include C++ subobjects, coloring,
perfect hashing and binary tree dispatch. A variety of pro-
cessors have been considered. Qualitatively, these first re-
sults confirm the intuitive or theoretical abstract assessments
of the tested approaches—as expected, efficiency increases
as CWA strengthens. From a quantitative standpoint, the
results are the first to precisely compare the efficiency of
techniques that are closely associated with languages, e.g.
C++ and EIFFEL. They also confirm that perfect hashing
should be used for implementing JAVA interfaces.
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1. Introduction
In spite of its 30-year old maturity, object-oriented pro-
gramming still presents an important efficiency issue in the
context of multiple inheritance and this issue is worsened
by dynamic loading. In a recent article (Ducournau 2008),
we identified three requirements that all implementations of
object-oriented languages, especially in this context, should
fulfil—namely (i) constant-time, (ii) linear-space and (iii)
inlining. This implementation issue is exemplified by the
two most used languages that support both features, namely
C++ and JAVA. When the virtual keyword is used for
inheritance, C++ provides a fully reusable implementa-
tion, based on subobjects, which however implies a lot of
compiler-generated fields in the object layout and pointer
adjustments at run-time1. Moreover, it does not meet the
linear-space requirement and there is no known efficient
subtype test available for this implementation. JAVA pro-
vides multiple inheritance of interfaces only but, even in
this restricted setting, the current implementations are not
constant-time (see for instance (Alpern et al. 2001a)). The

1 When this virtual keyword is not used, the implementation is markedly
more efficient but no longer fully reusable because it yields repeated inher-
itance—so the language is no longer compatible with both multiple inheri-
tance and dynamic loading.
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present research was motivated by this observation—though
object-oriented technology is mature, the ever-increasing
size of object-oriented class libraries makes the need for
scalable implementations urgent and there is still consider-
able doubt over the scalability of existing implementations.

The implementation of object-oriented languages relies
upon three specific mechanisms, namely method invocation,
subtype testing and attribute access. Method invocation im-
plies late binding—that is, the address of the actually called
procedure is not statically determined at compile-time, but
depends on the dynamic type of a distinguished parameter
known as the receiver. Subtyping and inheritance introduce
another original feature, i.e. run-time subtype checks, which
amounts to testing whether the value of x is an instance of
some class C or, equivalently, whether the dynamic type of x
is a subtype of C. This is the basis for so-called downcast op-
erators. An issue similar to late binding arises with attributes
(aka fields, instance variables, slots, data members accord-
ing to the languages), since their position in the object layout
may depend on the object’s dynamic type.

Message sending, attribute access and subtype testing
need specific implementations, data structures and algo-
rithms. In statically typed languages, late binding is usu-
ally implemented with tables, called virtual function tables
in C++ jargon. These tables reduce method calls to func-
tion calls, through a small fixed number—usually 2—of
extra indirections. It follows that object-oriented program-
ming yields some overhead, as compared to usual procedu-
ral languages. When static typing is combined with single
inheritance—this is single subtyping—two major invariants
hold: (i) a reference to an object does not depend on the
static type of the reference; (ii) the position of attributes and
methods in the tables does not depend on the dynamic type
of the object. These invariants allow direct access to the de-
sired data and optimize the implementation. Hence, all three
mechanisms are time-constant and their constant is small
and optimal. The code sequence is short and easily inlinable.
Finally, the overall memory occupation is linear in the size
of the specialization relationship—this can be understood as
a consequence of the fact that constant-time mechanisms re-
quire some compilation of inheritance. Otherwise, dynamic
typing or multiple inheritance make it harder to retain these
two invariants.

Implementation is thus not a problem with single-subtyping
languages. However, there are almost no such languages.
The few examples, such as OBERON (Mössenböck 1993),
MODULA-3 (Harbinson 1992), or ADA 95, result from the
evolution of non-object-oriented languages and object orien-
tation is not their main feature. In static typing, commonly
used pure object-oriented languages, such as C++ or EIFFEL
(Meyer 1992, 1997), offer the programmer plain multiple in-
heritance. More recent languages like JAVA and C# offer a
limited form of multiple inheritance, whereby classes are in
single inheritance and types, i.e. interfaces, are in multiple

subtyping. Furthermore, the absence of multiple subtyping
was viewed as a deficiency of the ADA 95 revision, and
this feature was incorporated in the next version (Taft et al.
2006). This is a strong argument in favour of the importance
of multiple inheritance. So there is a real need for efficient
object implementation in the context of multiple inheritance
and static typing. The multiple inheritance requirement is
less urgent in the context of dynamic typing—an explana-
tion is that the canonical static type system corresponding to
a language like SMALLTALK (Goldberg and Robson 1983)
would be that of JAVA, i.e. multiple subtyping. Anyway, dy-
namic typing gives rise to implementation issues which are
similar to that of multiple inheritance, even though the so-
lutions are not identical, and the combination of both, as in
CLOS (Steele 1990), hardly worsens the situation. In this
article, we focus on static typing and multiple inheritance.
Hence, our target languages can be thought of as C++, JAVA,
C# or EIFFEL.

Besides implementation techniques, which are concerned
with low-level data structures and code sequences, the over-
all run-time efficiency strongly depends on what we call,
here, compilation schemes, that involve the production of
an executable from the source code files and include vari-
ous processors like compilers, linkers and loaders. We con-
sider that the object-oriented philosophy is best expressed
under the open world assumption (OWA)—each class must
be designed and implemented while ignoring how it will be
reused, especially whether it will be specialized in single
or multiple inheritance. OWA is ensured by separate com-
pilation and dynamic loading. However, as JAVA and C++
exemplify it, we do not know any implementation of mul-
tiple inheritance under the OWA that would be perfectly
efficient and scalable, i.e. time-constant and space-linear.
In contrast, the close world assumption (CWA), that is en-
sured by global compilation, allows for both efficient im-
plementations and various optimizations that partly nullify
the overhead of late binding. This approach is exemplified
by the GNU EIFFEL compiler (Zendra et al. 1997; Collin
et al. 1997). A variety of combinations stands between these
two extremes. For instance, the program elements can be
separately compiled under the OWA while the executable
is produced by an optimized global linker (Boucher 2000;
Privat and Ducournau 2005). Alternatively, some parts of
the program—the libraries—can be separately compiled un-
der the OWA, whereas the rest is globally compiled un-
der the CWA. A last example is given by adaptive compil-
ers (Arnold et al. 2005) that can be thought of as separate
compilation under temporary CWAs that can be questioned
when further loading invalidates the assumptions—partial
recompilation is thus required. In this paper, we do not con-
sider adaptive compilers and we mostly consider compila-
tion schemes that do not involve any recompilation.

Implementation techniques and compilation schemes are
closely related—when excluding recompilations, not all
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pairs are compatible. Moreover, compilation schemes can
be ordered from full OWA to full CWA and the compati-
bility of techniques w.r.t. schemes is monotonic—when a
technique is compatible with a scheme, it is also compati-
ble with all schemes that are more closed than the consid-
ered one. In principle, language specifications should be
independent from implementation. However, in practice,
many language specifications are closely dependent on a
precise implementation technique or compilation scheme.
For instance, the virtual keyword makes C++ insepa-
rable from its subobject-based implementation (Ellis and
Stroustrup 1990; Lippman 1996), whereas EIFFEL cannot
be considered other than with global compilation, because
of its unrestricted covariance which would yield unsafe and
inefficient code with separate compilation. Therefore, an
objective comparison of the respective efficiency of these
languages is almost impossible.

From the beginning of object-oriented programming,
many implementation techniques have been proposed. Some
of them are commonly used in production run-time systems,
in JAVA and C# virtual machines or C++ and EIFFEL com-
pilers. Many others have been studied in theory, their time-
efficiency may have been assessed in an abstract framework
like (Driesen 2001) and their space-efficiency may have
been tested on some benchmarks made of large class hi-
erarchies. Most often, however, no empirical assessment has
been made or, alternatively, the empirical assessment of the
considered technique did not allow a fair comparison with
alternative techniques, with all other things being equal.
There are many reasons to such a situation. Implementing
an object-oriented language is hard work and implement-
ing alternative techniques is markedly harder—the compiler
needs an open architecture and fair measurements require a
perfect reproducibility.

So this article is a step in a project that intends to produce
fair assessment of various alternative implementation tech-
niques, with all other things being equal. The previous steps
included abstract analysis in the Driesen’s framework, and
simulation of the memory occupation based on large scale
benchmarks (Ducournau 2002, 2006, 2008). In the past few
years, we developed a new language, called PRM, and a com-
piler with an open modular architecture which makes it easy
to test alternatives techniques. Early results presented empir-
ical measures of program efficiency, but the tested programs
were artificial (Privat and Ducournau 2005). In this article,
we present an empirical assessment of the time-efficiency of
a real program, according to the underlying implementation
techniques and compilation schemes that are used to produce
the executable, and on a variety of processors. Our testbed
consists of the PRM compiler, which compiles PRM source
code to C code and is applied to itself. The tested techniques
include: (i) coloring (Ducournau 2006) which represents the
extension of the single-subtyping implementation to multi-
ple inheritance under partial CWA; (ii) binary tree dispatch

(BTD) (Zendra et al. 1997; Collin et al. 1997) which requires
stronger CWA; (iii) C++ subobjects, (iv) perfect hashing
(Ducournau 2008) that has been recently proposed for JAVA
interfaces under pure OWA, (v) incremental coloring (Palacz
and Vitek 2003) also proposed for JAVA interfaces, that is an
incremental version of coloring which requires load-time re-
computations, (vi) caching, when it is coupled with the less
efficient techniques.

The contribution of this article is thus reliable time mea-
surements of different executables produced from the same
program benchmark, according to different implementations
and compilations. From a qualitative standpoint, the conclu-
sions are not new—our tests mostly confirm the intuitive or
theoretical abstract assessments of the tested approaches. As
expected, efficiency increases as CWA strengthens. How-
ever, from a quantitative standpoint, the conclusions are
quite new—these tests represent, to our knowledge, the first
systematic comparisons between very different approaches
with all other things being equal. Among others, these tests
give the first empirical assessment of: (i) both the oldest and
newest techniques—subobjects and perfect hashing; (ii) the
overhead of OWA vs. CWA; (iii) the overhead of multiple
vs. single inheritance; and (iv) the first empirical comparison
between C++ and EIFFEL implementations.

This article is structured as follows. Section 2 surveys
the implementation techniques that are tested here and dis-
cusses their expected efficiency. Section 3 presents com-
pilation schemes and their compatibility with the different
implementation techniques. Section 4 describes the testbed
and some statistics on the tested program, then discusses
the precise experimental protocol, its reliability and repro-
ducibility. Section 5 presents the time measures and dis-
cusses the relative overhead of the different combinations.
Finally, the last section presents related works, first conclu-
sions and prospects.

2. Implementation Techniques
Implementation techniques are concerned with object repre-
sentation, that is, the object layout and the associated data
structures that support method invocation, attribute access
and subtype testing.

2.1 Single Subtyping
In separate compilation of statically typed languages, late
binding is generally implemented with method tables, aka
virtual function tables (VFT) in C++ jargon. Method calls
are then reduced to function calls through a small fixed num-
ber (usually 2) of extra indirections. An object is laid out as
an attribute table, with a pointer at the method table. With
single inheritance, the class hierarchy is a tree and the tables
implementing a class are straightforward extensions of those
of its single direct superclass (Figure 2). The resulting imple-
mentation respects two essential invariants: (i) a reference to
an object does not depend on the static type of the reference;
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inheritance—solid arrows represent class specialization and dashed arrows represent
instantiation.

Figure 1. Single and multiple inheritance hierarchies

(ii) the position of attributes and methods in the table does
not depend on the dynamic type of the object. Therefore,
all accesses to objects are straightforward. This simplicity
is due to both static typing and single inheritance—dynamic
typing adds the same kind of complication as multiple in-
heritance, since the same property name may be at different
places in unrelated classes. So this accounts for method in-
vocation and attribute access under the OWA.

Regarding subtype testing, the technique proposed by
(Cohen 1991) also works under the OWA. It involves as-
signing a unique ID to each class, together with an invariant
position in the method table, in such a way that an object x
is an instance of the class C if and only if the method table
of x contains the class ID of C, at a position uniquely deter-
mined by C. Readers are referred to (Ducournau 2008) for
implementation details.

In this implementation, the total table size is roughly lin-
ear in the cardinality of the specialization relationship, i.e.
linear in the number of pairs (x, y) such that x is a sub-
type (subclass) of y (x � y). Cohen’s display uses exactly
one entry per such pair and the total table size is linear if
one assumes that methods and attributes are uniformly in-
troduced in classes. Moreover, the size occupied by a class
is also linear in the number of its superclasses. More gener-
ally, linearity in the number of classes is actually not possible
since efficient implementation requires some compilation of
inheritance, i.e. some superclass data must be copied in the
tables for subclasses. Therefore, usual implementations are,
in the worst case (i.e. deep rather than broad class hierar-
chies), quadratic in the number of classes, but linear in the
size of the inheritance relationship. The inability to do bet-
ter than linear-space is likely a consequence of the constant-
time requirement. As a counter-example, (Muthukrishnan
and Muller 1996) propose an implementation of method in-
vocation withO(N +M) table size, butO(log log N) invo-
cation time, where N is the number of classes and M is the
number of method definitions.

The three mechanisms that we consider—namely method
invocation, attribute access and subtype testing—would
seem to be equivalent, as they reduce to each other. Ob-
viously, method tables are object layout at the meta-level.

A B C

A

A B

A

AB

C AB

The single subtyping implementation of the example from Fig. 1-left. Object layouts
(right) are drawn from left to right and method tables (left) from right to left. In the
object layouts (resp. method tables) the name of a class represents the set of attributes
(resp. methods) introduced by the class.

Figure 2. Single subtyping implementation
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The diagram depicts the precise object representation for all three mechanisms. Point-
ers and pointed values are in roman type with solid lines, and offsets are italicized
with dotted lines. Each mechanism relies on a single invariant offset. The grey parts
represent the groups of attributes and methods introduced by a given class. Cohen’s
display amounts to reserving an entry in the method group for the class ID.

Figure 3. Object representation in single subtyping

So, apart from memory-allocation considerations, they are
equivalent. Moreover, an attribute can be read and written
through dedicated accessor methods—hence, attribute ac-
cess can always reduce to method invocation (Section 2.7).
An interesting analogy between subtype tests and method
calls can also be drawn from Cohen’s display. Suppose that
each class C introduces a method amIaC? that returns yes.
In dynamic typing, calling amIaC? on an unknown receiver
x is exactly equivalent to testing if x is an instance of C—in
the opposite case, an exception will be signaled. In static
typing, the analogy is less direct, since a call to amIaC?
is only legal on a receiver statically typed by C, or a sub-
type of C—this is type safe but quite tautological. However,
subtype testing is inherently type unsafe and one must un-
derstand amIaC? as a pseudo-method, which is actually not
invoked but whose presence is checked. The test fails when
this pseudo-method is not found, i.e. when something else
is found at its expected position. This informal analogy is
important—it implies that one can derive a subtype testing
implementation from almost any method call implementa-
tion. We actually know a single counter-example, when the
implementation depends on the static type of the receiver, as
in subobject-based implementations (Section 2.2).

2.2 Subobjects (SO)
With multiple inheritance, both invariants of reference and
position cannot hold together, at least if compilation—i.e.
computation of positions—is to be kept separate. For in-
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Object layout and method table of a single instance of the class D from the diamond
example of Fig. 1-right.

Figure 4. Subobject-based implementation

stance, in the diamond hierarchy of Figure 1-right, if the
implementations of B and C simply extend that of A, as
in single inheritance, the same offsets will be occupied by
different properties in B and C, thus prohibiting a sound
implementation of D. Therefore, the ‘standard’ implemen-
tation of multiple inheritance in a static typing and separate
compilation setting—i.e. that of C++—is based on subob-
jects (SO). The object layout is composed of several subob-
jects, one for each superclass of the object’s class. Each sub-
object contains attributes introduced by the corresponding
class, together with a pointer to a method table which con-
tains the methods known by the class (Fig. 4 and 5). Both in-
variants are dropped, as both reference and position depend
on the current static type. This is the C++ implementation,
when the keyword virtual annotates each superclass (El-
lis and Stroustrup 1990; Lippman 1996; Ducournau 2002).
It is time-constant and compatible with dynamic loading,
but method tables are no longer space-linear. The number
of method tables is exactly the size of the specialization re-
lationship. When a class is in single inheritance, its total ta-
ble size is itself quadratic in the number of superclasses—
so, in the worst case, the total size for all classes is cubic
in the number of classes. Furthermore, all polymorphic ob-
ject manipulations—i.e. assignments and parameter passing,
when the source type is a strict subtype of the target type—
which are quite numerous, require pointer adjustments be-
tween source and target types, as they correspond to different
subobjects. These pointer adjustments are purely mechanical
and do not bring any semantics. They are also safe—i.e. the
target type is always a supertype of the source type—so they
are implemented more efficiently than subtyping tests. They
can be done with explicit pointers, called VBPTRs, in the
object layout or with offsets in the method tables. There are,
however, a lot of variants, according to whether compiler-
generated fields are allocated in the object layout, like VBP-
TRs, or in the method tables. (Sweeney and Burke 2003)
analyse this variety, from the ARM implementation, where
all fields are allocated in the object layout, to the ALL im-
plementation, where all fields are allocated in the method
tables. Although VBPTRs are markedly more time-efficient
since they save an access to method table at each pointer ad-
justment, they are also over space-consuming. Therefore, we

delta1 method delta2
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attr

Offset

cast

method table

table

value

meth

Offset

delta1

table1

delta2

object2

table2

object object1

The diagram depicts the precise object representation restricted to method invocation,
attribute access and pointer adjustemnt. object is the current reference to the consid-
ered object. delta1 is the pointer adjustment that is required for going from object to
object1 subobjects, e.g. for accessing an attribute defined in the class corresponding
to the latter. delta2 is the pointer adjustment that is required for going from object
subobject to that of the class which defines the invoked method.

Figure 5. Object representation with subobjects

only consider ALL implementation here, which is closest to
most actual implementations. Furthermore, contrary to sin-
gle inheritance, there is no known way of deriving a subtype
test from the technique used for method invocation. It is no
longer possible to consider that testing if an object is an in-
stance of some class C is a kind of method introduced by C
because this pseudo-method would not have any known po-
sition other than in static subtypes of C. So, in our tests, we
will complete subobject-based implementation with perfect
hashing (Section 2.5) for subtype testing.

Empty-subobject optimization (ESO) (Ducournau 2002)
represents further improvement that applies when a class
does not introduce any attribute—hence the corresponding
subobject is empty—especially when it does not either intro-
duce any method and have a single direct superclass. In this
case, both subobjects can be merged and the statistics pre-
sented in the aforementioned article show that the improve-
ment is significant. Although the designers of C++ com-
pilers do not seem to be aware of the possibility of ESO,
we have used it in our tests because it was required in the
PRM testbed for efficient boxing and unboxing of primitive
types—unlike C++ and like JAVA 1.5 and EIFFEL, the PRM
type system consider that primitive types are subtypes of
some general types like Object.

Subobjects can also apply to JAVA interfaces, with an im-
proved empty-subobject optimization that relies on class sin-
gle inheritance. The technique, detailed in (Ducournau 2002)
after the bidirectional layout of (Myers 1995), is space-
linear contrary to general subobject-based implementation.
It would be interesting to test it but it is incompatible with
both our PRM testbed, because of the distinction between
classes and interfaces, and current JVMs, because it is not
reference-invariant.

When the virtual keyword is not used—we call it non-
virtual inheritance—the C++ implementation is markedly
more efficient but no longer fully reusable because it yields
repeated inheritance—so the language is no longer compat-
ible with both multiple inheritance and dynamic loading. As
coloring is certainly more efficient than C++ non-virtual im-
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With the same class diamond as in Fig. 1 and 4, implementation of A and B is
presumed to be the same as in Fig. 2. So the implementation of C leaves some empty
place (in grey) for B in anticipation of D. The final object representation is the same
as in Fig. 3.

Figure 6. Coloring implementation

plementation, we do not test the latter and, in the following,
we only consider C++ under the virtual implementation.

2.3 Coloring (MC/AC)
The coloring approach is quite versatile and naturally ex-
tends the single inheritance implementation to multiple in-
heritance, while meeting all requirements except compati-
bility with dynamic loading. The technique takes its name
from graph coloring, as its computation amounts to color-
ing some particular graph2. Method coloring was first pro-
posed by (Dixon et al. 1989) under the name of selector
coloring for method invocation. (Pugh and Weddell 1990)
and (Ducournau 1991) applied coloring to attribute access
and (Vitek et al. 1997) to subtype testing (under the name of
pack encoding). Hereafter, MC denotes coloring when used
for method invocation and subtype testing, and AC denotes
attribute coloring.

The general idea of coloring is to keep the two invariants
of single inheritance, i.e. reference and position. An injective
numbering of attributes, methods and classes verifies the po-
sition invariant, so this is clearly a matter of optimization
for minimizing the size of all tables—or, equivalently, the
number of holes, i.e. empty entries. However, this optimiza-
tion cannot be done separately for each class, it requires a
global computation for the whole hierarchy. The problem of
minimizing the total table size is akin to the minimum graph
coloring problem (Garey and Johnson 1979). Like minimal
graph coloring, the coloring problem considered here has
been proven to be NP-hard in the general case. Therefore
heuristics are needed and various experiments have shown
their efficiency and that the technique is tractable. Finally,
an important improvement is bidirectionality, introduced by
(Pugh and Weddell 1990), which involves using positive and
negative offsets and reduces the hole number. Figure 6 de-
picts the implementation yielded by unidirectional coloring
in the diamond example from Figure 4. The implementation
of classes A and B is presumed to be identical to that of Fig-
ure 2. Hence, computing the tables for C must reserve some
space for B in the tables of D, their common subclass. Thus,
some holes appear in the C tables and these holes are filled,

2 This graph is a conflict graph with a vertex for each class and an edge
between any two vertices that have a common subclass and thus must have
their attributes (resp. methods or class IDs) stored at distinct offsets, since
attributes (resp. methods or class IDs) of both classes coexist in objects
(resp. method tables) of the common subclass.

in D, by all data specific to B. In bidirectional coloring, all
holes would have been saved by placing C at negative off-
sets.

A detailed presentation of coloring is beyond the scope
of this paper and readers are referred to (Ducournau 2006)
which reviews the approach. The point to get is 2-fold: (i)
in practice, object layout, method tables and code sequences
are exactly those of single subtyping, except for the pres-
ence of holes; (ii) this is obtained by rather sophisticated
algorithms which require complete knowledge of the class
hierarchy. Actually, we have exchanged multiple inheritance
for dynamic loading.

2.4 Binary Tree Dispatch (BTD)
Not all object-oriented implementations are based on method
tables. In SMART EIFFEL, the GNU EIFFEL compiler, method
tables are not used. Instead, objects are tagged by their class
identifier and all three mechanisms—particularly method
invocation—are implemented using balanced binary dis-
patch trees (Zendra et al. 1997; Collin et al. 1997). How-
ever, the approach is practical only because compilation is
global, hence all classes are statically known. Furthermore,
type analysis restricts the set of concrete types (Bacon and
Sweeney 1996; Grove and Chambers 2001) and makes dis-
patch efficient. BTD is also an interesting example of the
possible disconnection between code length, hence inlining,
and time efficiency. Indeed, here, both values are in an ex-
ponential relationship—hence proving that not all efficient
code sequences are inlinable. Anyway, BTD is not time-
constant.

The efficiency of BTDs relies on the conditional branch-
ing prediction of modern processors. Thanks to their pipe-
line architecture, the cost of well-predicted branchings is
free. On the contrary, mispredictions break the pipe and cost
about 10 cycles or more, and most undirect branches are
mispredicted—so this misprediction cost holds for all VFT-
based techniques. Readers are referred to (Driesen 2001) for
a more in-depth analysis. An overall consequence is that
BTDs are statistically more efficient than VFTs when the
number of tests is small. It however depends on the statistical
distribution of dynamic types on each call site—it is easy to
construct worst-case artificial programs whereby all predic-
tions fail, making VFTs far better than BTDs. In the follow-
ing, BTDi will denote BTDs of depth bounded by i. BTD0

corresponds to static calls and BTD∞ denotes unbounded
BTDs.

Overall, BTDs are efficient when the number of compet-
ing methods is low—the corresponding call sites are often
called oligomorphic—but coloring should be preferred when
this number is higher—megamorphic call sites. An interest-
ing tradeoff involves combining BTDk and coloring, with
k = 3 or 4. This makes the resulting technique constant-
time and inlinable. Furthermore, method tables are restricted
to the methods that have a megamorphic call site, hence at
least 2k implementations. BTDs also apply to subtype test-
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ing and attribute access but, in the context of global compi-
lation, coloring is likely better.

2.5 Perfect Hashing (PH)
In a recent article (Ducournau 2008) we proposed a new
technique based on perfect hashing for subtype testing in a
dynamic loading setting. The problem can be formalized as
follows. Let (X,�) be a partial order that represents a class
hierarchy, namely X is a set of classes and � the special-
ization relationship that supports inheritance. The subtype
test amounts to checking at run-time that a class c is a su-
perclass of a class d, i.e. d � c. Usually d is the dynamic
type of some object and the programmer or compiler wants
to check that this object is actually an instance of c. The
point is to efficiently implement this test by precomputing
some data structure that allows for constant time. Dynamic
loading adds a constraint, namely that the technique should
be inherently incremental. Classes are loaded at run-time in
some total order that must be a linear extension (aka topo-
logical sorting) of (X,�)—that is, when d ≺ c, c must be
loaded before d.

The perfect hashing principle is as follows. When a class
c is loaded, a unique identifier idc is associated with it and
the set Ic = {idd | c � d} of the identifiers of all its su-
perclasses is known—if needed, yet unloaded superclasses
are recursively loaded. So, c � d iff idd ∈ Ic. This set
Ic is immutable, hence it can be hashed with some perfect
hashing function hc, that is, a hashing function that is in-
jective on Ic (Sprugnoli 1977; Czech et al. 1997). The pre-
vious condition becomes: c � d iff htc[hc(idd)] = idd,
whereby htc denotes the hashtable of c. Moreover, the cardi-
nality of Ic is denoted nc. The technique is incremental since
all hashtables are immutable and the computation of htc de-
pends only on Ic. The perfect hashing functions hc are such
that hc(x) = hash(x, Hc), whereby Hc is the hashtable size
defined as the least integer such that hc is injective on Ic.

Two functions were considered for hash , namely modu-
lus (noted mod) and bit-wise and3. The corresponding tech-
niques are denoted hereafter PH-mod and PH-and. However,
these two functions involve a tradeoff between space and

3 With and, the exact function maps x to and(x, Hc − 1).

time efficiency. The former yields more compact tables but
the integer division latency may be more than 20 cycles,
whereas the latter is a 1-cycle operation but yields larger
tables. In a forthcoming paper (Ducournau and Morandat
2009), we improve the technique with a new hashing func-
tion that combines bit-wise and with a shift for trun-
cating trailing zeros (PH-and+shift)—it reduces the total
hashtable size at the expense of a few extra instructions that
are expected to be run in parallel.

To our knowledge, PH is the only constant-time technique
for subtype testing that allows for both multiple inheritance
and dynamic loading at reasonable spatial cost. In a static
typing setting, the technique can also be applied to method
invocation and we did propose, in the aforementioned arti-
cle, an application to JAVA interfaces. For this, the hashtable
associates, with each implemented interface, the offset of
the group of methods that are introduced by the interface.
Figure 7 recalls the precise implementation in this context.
The method table is bidirectional. Positive offsets involve
the method table itself, organized as with single inheritance.
Negative offsets consist of the hashtable, which contains, for
each implemented interface, the offset of the group of meth-
ods introduced by the interface. The object header points at
its method table by the table pointer. #hashingOffset is
the position of the hash parameter (h) and #htOffset is the
beginning of the hashtable. At a position hv in the hashtable,
a two-fold entry is depicted that contains both the imple-
mented interface ID, that must be compared to the target in-
terface ID, and the offset iOffset of the group of methods
introduced by the interface that introduces the considered
method. The table contains, at the position #methodOffset
determined by the considered method in the method group,
the address of the function that must be invoked. To our
knowledge, PH is, together with C++ subobject-based im-
plementation, the only constant-time technique for method
invocation that allows for both multiple inheritance and dy-
namic loading at reasonable spatial cost.

2.6 Incremental Coloring (IC)
An incremental version of coloring (denoted IC) has been
proposed by (Palacz and Vitek 2003) for implementing in-
terface subtype testing in JAVA. An application to method
invocation in the same style as for PH has been proposed
in (Ducournau 2008). As coloring does not work under the
OWA, IC can require some load-time recomputations. So its
data structures involve extra indirections and several unre-
lated memory locations that should increase cache misses
(Figure 8). Readers are referred to (Ducournau 2008) for de-
tailed implementation and discussion.

2.7 Accessor Simulation (AS)
An accessor is a method that either reads or writes an at-
tribute. Suppose that all accesses to an attribute are through
an accessor. Then the attribute layout of a class does not have
to be the same as the attribute layout of its superclass. A class
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The implementation resembles PH, apart from the fact that the interface position is
invariant instead of being the result of specific hashing. Moreover, the recomputable
color table requires an extra indirection, together with its size (clen) and bound
checking, and the color itself requires memory access (not represented in the diagram).

Figure 8. Incremental coloring for JAVA interfaces

will redefine the accessors for an attribute if the attribute has
a different offset in the class than it does in the superclass.
True accessors require a method call for each access, which
can be inefficient. However, a class can simulate accessors
by replacing the method address in the method table with the
attribute’s offset. This approach is called field dispatching
by (Zibin and Gil 2003). Another improvement is to group
attributes together in the method table when they are intro-
duced by the same class. Then one can substitute, for their
different offsets, the single relative position of the attribute
group, stored in the method table at an invariant position,
i.e. at the class color with coloring—Fig. 9 (Myers 1995;
Ducournau 2002). In PH and IC, the attribute-group offset is
associated with the class ID and method-group offset in the
hash- or color-table, yielding 3-fold table entries.

Accessor simulation is a generic approach to attribute ac-
cess which works with any method invocation technique—
only grouping can be conditioned by static typing, since
attributes must be partitioned by the classes which in-
troduce them. It is, however, meaningless to use it with
subobject-based implementation (SO) which provides two
different accesses to attributes according to whether the re-
ceiver’s static type (rst) is the attribute introduction class
(aic) or not. The former is identical to attribute coloring
(AC), whereas the latter is identical to accessor simulation
(AS) with method coloring (MC). For instance, in Fig. 5,
rst6=aic.

Among the various techniques that we have described,
some apply only to method invocation and subtype testing,
e.g. perfect hashing and incremental coloring. Hence, these
techniques can serve for JAVA interface implementation. Ac-
cessor simulation is a way of applying them to full multiple
inheritance. It can also replace attribute coloring, if holes in
object layout are considered to be over space-consuming.

2.8 Caching and Searching (CA)
A common implementation policy that is often used with
dynamic typing or JAVA interfaces involves some naive and
rather inefficient implementation technique coupled with
caching for memoizing the results of the last search. For

Offset
attr

attrGroup
Offsetid

class

Offset
class

Offset
attrGroup

method table

table

valueobject

object layout

The diagram depicts the precise object representation with accessor simulation coupled
with class and method coloring, to be compared with Fig. 3. The offset of the group
of attributes introduced by a class (attrGroupOffset) is associated with its class ID
in the method table and the position of an attribute is now determined by an invariant
offset (attrOffset) w.r.t. this attribute group.

Figure 9. Accessor simulation with method coloring

instance, with JAVA interfaces, each method table will cache
the class ID and the interface offset of the last succeeding
access (Alpern et al. 2001a,b; Click and Rose 2002). Of
course this cache might serve for any table-based subtyp-
ing technique and for all three mechanisms, at the expense
of caching three data, namely class ID and method and at-
tribute group offsets. Obviously, the improvement is a matter
of statistics and those presented in (Palacz and Vitek 2003)
show that, according to the different benchmarks, cache miss
rates can be as low as 0.1% or more than 50%. In our tests,
we will also consider PH and IC when they are coupled with
caching—one might expect, for instance, that caching de-
grades PH-and but improves PH-mod. Like IC and unlike
all other techniques, caching requires method tables to be
writable, hence allocated in data memory segments.

3. Compilation Schemes
Compilation schemes represent the production line of exe-
cutable programs from the source code files. They can in-
volve various processors such as compilers, linkers, virtual
machines, loaders, just-in-time compilers, etc.

3.1 Under Pure OWA—Dynamic Loading (D)
As aforementioned, object-oriented philosophy, especially
reusability, is best expressed by the OWA. Pure OWA corre-
sponds to separate compilation and dynamic loading—this
scheme will be denoted D hereafter. Under the OWA, a class
C—more generally, a code unit including several classes—
is compiled irrespective of the way it will be used in dif-
ferent programs, hence ignoring its possible subclasses and
clients4. On the contrary, a subclass or a client of C must
know the “model” (aka “schema”) of C, which contains the
interface of C possibly augmented by some extra data—e.g.
it is not restricted to the public interface. This class model
is included in specific header files (in C++) or automatically
extracted from source or compiled files (in JAVA). Without
loss of generality, it can be considered as an instance of some

4 A client of C is a class that uses C or a subclass of C, as a type annotation
(e.g. x : C) or for creating instances (new C).
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metamodel (Ducournau and Privat 2008). The code itself is
not needed.

Separate compilation is a good answer to the modular-
ity requirements of software engineering—it provides speed
of compilation and recompilation together with locality of
errors, and protects source code from both infringement
and hazardous modifications. With separate compilation, the
code generated for a program unit, here a class, is correct for
all correct future uses.

3.2 Under Pure CWA—Global Compilation (G)
Complete knowledge of the whole class hierarchy offers
many ways to efficiently implement multiple inheritance.
CWA presents several gradual advantages: (i) the class hi-
erarchy is closed and the models of all classes can be known
as a whole; (ii) the code of each class is also known; (iii) the
program entry point can also be known.

In all cases, some static type analysis is possible, from a
simple class hierarchy analysis5 (Dean et al. 1995b), when
only (i) holds, to more sophisticated algorithms (Bacon and
Sweeney 1996; Grove and Chambers 2001) when all three
points hold. With global compilation (scheme denoted G),
when the program entry point is known and the language
does not provide any metaprogramming facility, type analy-
sis can precisely compute the receiver’s concrete type at each
call site, making it easy to identify mono-, oligo- and mega-
morphic sites, so that each category can be implemented
with the best technique, i.e. static calls, BTDi and color-
ing. Other well-known algorithms are RTA (Bacon et al.
1996) and CFA (Shivers 1991). Moreover, dead code can
be ruled out and other optimizations like code specialization
(Dean et al. 1995a; Tip and Sweeney 2000) can further re-
duce polymorphism—the former decreases the overall code
size but the latter increases it. We do not consider them here.

3.3 Separate Compilation, Global Linking (S)
The main defect of coloring is that it requires complete
knowledge of all classes in the hierarchy. This complete
knowledge could be achieved by global compilation. How-
ever, leaving the modularity provided by separate compila-
tion may be considered too high a price for program op-
timization. An alternative was already noted by (Pugh and
Weddell 1990). Coloring does not require knowledge of the
code itself (point (ii)), but only of the model of the classes
(point (i)), all of which is already needed by separate com-
pilation. Therefore, the compiler can separately generate the
compiled code without knowing the value of the colors of the
considered entities, representing them with specific symbols.
At link time, the linker will collect the models of all classes
and color all the entities, before substituting values to the dif-
ferent symbols, as a linker commonly does. The linker must
also generate method tables.

5 ‘Class hierarchy analysis’ is a common term that denotes any analysis
of the class hierarchy. It is however also the label (CHA) of the specific
analysis proposed by (Dean et al. 1995b).

Scheme
D S O H G

SO • • ∗ ∗ ∗
PH • • ∗ ∗ ∗
IC • • ∗ ∗ ∗
CA • • ∗ ∗ ∗
MC × • • ∗ •
BTD × × • ∗ •
AC × • • ∗ •
AS • • • ∗ •

•: Compatible and tested, ∗: Compatible but non-tested,×: Incompatible

Table 1. Compatibility between compilation schemes and
implementation techniques

3.4 Separate Compilation, Global Optimization (O)
(Privat and Ducournau 2005) propose a mixed scheme which
relies on some link-time type analysis. As the class hierarchy
is closed, CHA can be applied, that will determine whether
a call site is monomorphic or polymorphic. Link-time op-
timization is possible if, at compile-time, the code gener-
ated for a call site is replaced by a call to a special symbol,
which is for instance formed by the name of the considered
method and the static type of the receiver. Then, at link-time,
a stub function—called a thunk like in C++ implementations
(Lippman 1996)—is generated when the call site is polymor-
phic. For monomorphic sites, the symbol is just replaced by
the name of the called procedure, thus yielding a static call.

More sophisticated type analyses are possible if a model
of internal type flow, called an internal model—in con-
trast, the model discussed in Section 3.1 is called external
model—is generated at compile time (Privat and Ducournau
2005). (Boucher 2000) proposed a similar architecture in a
functional programming setting.

Another hybrid scheme (H) would involve separate com-
pilation of common libraries, coupled with global compila-
tion of the specific program and global optimization of the
whole.

3.5 Compilation vs. Implementation
Table 1 presents the compatibility between implementation
techniques and compilation schemes. Table 2 recalls the ex-
pected efficiency that can be deduced from previous ab-
stract studies. Efficiency must be assessed from the space
and time standpoints. Space-efficiency assessment must con-
sider code length, static data (i.e. method tables) and dy-
namic data (i.e. object layout). Time-efficiency assessment
must consider run- and compile-time together with load- or
link-time.

Not all compatible combinations have been tested be-
cause many of them are not interesting. For instance, all
techniques that are compatible with the OWA are less effi-
cient than coloring and BTD. So testing them in O, H and G
schemes would be wasting time. Moreover, for these tech-
niques, there is no difference between D and S. Hence, S is
the right scheme for comparing the efficiency of implemen-
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Space Time
Code Static Dyn. Run Compile Load/Link

SO – – – – – – ++ ++
IC – + +++ – ++ – –
PH-and – – +++ – ++ +
PH-mod – + +++ – – ++ +
PH-and +CA – – – – +++ – – ++ +
PH-mod +CA – – – +++ – ++ +
MC ++ ++ +++ ++ + –
BTDi<2 +++ +++ +++ +++ ++ – –
BTDi>4 – – – +++ +++ – – – – – –
AC ++ ++ + ++ + –
AS + + +++ – + +

+++: optimal, ++: very good, +: good, –: bad, – –: very bad, – – –: unreasonable

Table 2. Expected efficiency

tation techniques like SO, PH, IC and MC. O and G are the
right ones for comparing MC and BTD. Moreover, the com-
parison can also consider various type analysis algorithms
(CHA, RTA or CFA) and polymorphism degrees for BTDs.

AC and AS can be compared in all schemes but D and the
comparison closely depends on the underlying method invo-
cation technique. Coupling AC with PH or IC is, however,
possible and provides an assessment of the use of the con-
sidered method invocation technique in the restricted case of
JAVA interfaces. On the contrary, coupling these techniques
with AS amounts to considering them in a full multiple in-
heritance setting. In contrast, the H scheme has not been
tested, partly for want of time, and partly because of the dif-
ficulty of distinguishing between libraries and program.

4. Compilation Testbed
These experiments are original, as they compare different
implementation techniques, in a common framework that
allows a fair comparison, all other things being equal.

Tested Program. We have implemented all these tech-
niques in the PRM compiler, which is dedicated to exhaus-
tive assessment of various implementation techniques and
compilation schemes (Privat and Ducournau 2005; Moran-
dat et al. 2009). The benchmark program is the compiler
itself, which is written in PRM and compiles the PRM source
code into C code. There are a lot of compilers in the picture,
so Figure 10 depicts the precise testbed. In these tests, the C
code generated by the PRM compiler and linker is the code
of the considered techniques in the considered compilation
scheme. So the code can be generated at compile or link time
according to the scheme.

The PRM compiler is actually not compatible with dy-
namic loading (D) but the code for PH or IC has been gen-
erated in separate compilation (S) exactly as if it were gen-
erated at load-time, with hash parameters and tables being
computed at link-time. In that case, all link-time optimiza-
tions are deactivated. Hence, although these tests represent a
kind of simulation, they must be quite reliable. Only the ef-
fect of cache misses is likely underestimated, especially for

compiler

v1

executable

compiler

executable

v2

compiler

executable

vn

compiler

source

compiler

executable

compiler

source
compiler

executable

....

.

Some compiler source is compiled by some compiler executable, according to different
options, thus producing different variants v1, .., vn, of the same executable compiler
(solid lines). Another compiler source (possibly the same) is then compiled by each
variant, with all producing exactly the same executable (dashed lines), and the duration
of this compilation (i.e. the dashed lines) is measured.

Figure 10. The PRM testbed

incremental coloring—all color tables are here allocated in
the same memory area, whereas load-time recomputations
should scatter them in the heap.

Table 3 presents the static characteristics of the tested
program, i.e. the PRM compiler, namely the number of dif-
ferent entities that are counted at compile-time, together
with the run-time invocation count for each mechanism. Of
course, these numbers do not depend on compilation vari-
ants, though some of them concern only some specific vari-
ants. The Table details statistics of method call sites accord-
ing to their polymorphism degree, that is, the BTDi that
can implement them, according to the CHA type analysis.
A call site is counted in BTDi if the cardinality of the re-
ceiver’s concrete type is between (2i−1 + 1) and 2i. Finally,
the cache-hit rate has been measured when coupling perfect
hashing (PH) with caching (CA)—of course, it does not de-
pend on the precise technique that is associated with CA.
The measured cache-hit rate is about 50% with attribute col-
oring (AC) but only 34% with accessor simulation (AS). The
latter is markedly lower than those reported by (Palacz and
Vitek 2003), but this is simply explained by the fact that the
cache is used here for all classes and several mechanisms,
whereas its use was restricted, in the aforementioned paper,
to interfaces and subtype testing. Cache hits and monomor-
phic calls represent similar but dual data. Monomorphism is
a permanent characteristics of a call site that is always used
for calling the same method, whereas a cache hit is a mo-
mentary characteristics of a method table that is used for an
access to the same superclass as in the previous access.

These statistics show that the program size is significant
and that it makes intensive usage of object-oriented features.
Moreover, the high number of monomorphic calls—about
79 or 64% of calls sites, according to whether static or dy-
namic statistics are considered—is consistent with statistics
that are commonly reported in the literature. Of course, the
validity of such experiments that rely on a single program
might be questioned. This is however a large program, which
is fully object-oriented and intensively uses the basic mecha-
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number of static dynamic
class introductions 531 —

instantiations 6317 36 M
subtype tests 189 130 M

method introductions 2577 —
definitions 4379 —
calls 14808 2510 M

BTD 0 11719 1607 M
1 820 62 M
2 576 424 M
3 681 23 M
4 715 28 M
> 4 297 364 M

attribute introductions 630 —
accesses 4323 4285 M
rst=aic 3019 3160 M
accessor 680 200 M

pointer adjustments 11471 1668 M
cache hits with AC — 52%

with AS — 34%

The “static” column depicts the number of program elements (classes, methods and
attributes) and the number of sites for each mechanism. The “dynamic” column
presents the number of mechanism invocations at run-time (in millions). Method call
sites are separately counted according to their polymorphism degree, i.e. the BTD
depth that can implement them. Attribute accesses are separately counted when the
access is made through an accessor or on a receiver whose static type (rst) is the
attribute introduction class (aic) (Section 2.7). The former is a special case of the
latter. Like rst=aic, pointer adjustments only concern subobjects (SO)—they consist
of all polymorphic assignments and parameter passings, when the source type is a
strict subtype of the target type, together with equality tests, when the two types are
different. Finally, the cache-hit rate is presented, with or without AS.

Table 3. Characteristics of the tested program

nisms that are tested. Moreover, as the experiments compare
two implementations with all other things being equal, the
sign of the differences must hold for all programs and only
the order of magnitude should vary6. This limitation is also
inherent to our experimentation. The PRM compiler is the
only one that allows such versatility in the basic implemen-
tation of object-oriented programs. The counterpart is that
the language has been developed with this single goal, so its
compiler is the only large-scale program written in PRM.

A last objection can be raised, namely that the PRM com-
piler might be too inefficient for allowing any firm conclu-
sion. In the following, we consider relative overheads, of
the form (test − ref )/ref . Of course, if the PRM compiler
is one order of magnitude slower than it could be, the re-
sults are meaningless. Therefore, we have also to prove that
the PRM compiler is not too inefficient. This is, however,
much more difficult to prove, since it requires an external
comparison that cannot be done with all other things being
equal. As a reference, we chose the GNU EIFFEL compiler,
SMART EIFFEL, that uses global compilation (G) and is con-
sidered as very efficient—see Section 2.4. Both languages
are fully-fledged object-oriented languages that provide sim-
ilar features, and both compilers present close characteris-

6 This is only true when the comparison focuses on a single parameter, i.e.
in the same row or column in Tables 4 and 5.

tics such as type analysis and the same target language. So
we compared the compilation time of both compilers, from
the source language (EIFFEL or PRM) to C. The compilation
times were quite similar, about 60s on the considered pro-
cessor. Although it does not mean that the PRM compiler is
as efficient as SMART EIFFEL, it is however a strong indica-
tion that the PRM compiler is not too inefficient. Of course,
further improvements will strengthen our results.

Runtime Reproducibility. Tested variants differ only by
the underlying implementation technique, with all other
things being equal. Moreover, this is true when consider-
ing executable files, not only the program logic. Indeed, the
compilation testbed is deterministic—that is, two compila-
tions of the same program by the same compiler executable
produce exactly the same executable. This means that: (i)
the compiler always proceeds along the program text and
the underlying object model in the same order; (ii) the mem-
ory locations of program fragments, method tables and ob-
jects in the heap are roughly the same. So two compiler
variants differ only by the code sequences of the considered
techniques, all program components occurring in the exe-
cutables in the same order. Moreover, when applied to some
program, two compiler variants vi and vj produce exactly
the same code—hence, the fact that all dashed arrows point
at the same executable (Fig. 10) is not only a metaphor.
All program equalities have been checked with the diff
command on both C and binary files. Overall, the effect of
memory locality should be roughly constant, apart from the
specific effects due to the considered techniques7.

However, in spite of the compilation determinism, a
compiled program is not exactly deterministic for our fine-
grained analysis. Indeed, hash structures are inherently not
deterministic when the hashed keys are object addresses.
Hence, two runs of the same program can produce different
collisions. As hash structures are PRM objects, the precise
run-time statistics (column “dynamic” in Table 3) are not
exactly reproducible. The variations are actually very low—
less than one to a thousand—and do not affect the mea-
sures. Furthermore, it does not modify the programm logic
because all hash structures used by the PRM compiler are
order-invariant—all iterations follow the input order. Over-
all, considering that the difference between two runs of the
same executable is pure noise, we took, for each measure,
the minimum value among several tens of runs.

Processors. The tests were performed on a variety of pro-
cessors (Table 4 and 5):

• I-2, I-4, I-5, I-8 and I-9, from the Intel R© PentiumTM

family;

7 In early tests, compilation was not deterministic and the variation of
compilation times between several generations of the same compiler was
marked. Hence, the variation between different variants was both marked
and meaningless.
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processor
frequency
L2 cache
year

S-1

168.8s

UltraSPARC III
1.2 GHz
8192 K
2001

I-2

111.9s

Xeon Prestonia
1.8 GHz
512 K
2001

M-3

89.5s

PowerPC G5
1.8 GHz
512 K
2003

I-4

53.2s

Xeon Irwindale
2.8 GHz
2048 K
2006

I-5

43.6s

Core T2400
2.8 GHz
2048 K
2006

technique scheme
MC-BTD∞ CHA G
MC-BTD2 CHA G
MC-BTD∞ CHA O
MC-BTD2 CHA O
MC S
SO D
IC D
PH-and D
PH-and+shift D
PH-mod D
PH-mod +CA D

AC AS AS/AC

-27.5 -14.0 18.6
-28.5 -13.5 21.0

*** *** ***
*** *** ***

0 13.3 13.3
–

12.1 40.9 25.7
16.3 58.3 36.1
17.3 62.5 38.6
95.6 289.3 99.0
64.6 245.3 109.7

AC AS AS/AC

-16.8 -7.7 11.0
-10.6 -8.1 2.9
-2.8 -2.7 0.2
-0.7 -5.0 -4.4

0 1.3 1.3
–

2.1 8.9 6.7
3.9 16.1 11.8
6.1 30.6 23.2

39.7 136.8 69.5
34.6 160.5 93.6

AC AS AS/AC

-27.9 -12.7 21.0
*** *** ***
*** *** ***

0 1.4 1.4
–

-2.3 26.6 29.5
7.9 40.0 29.7

16.2 57.4 35.5
47.2 192.9 99.0
32.9 157.7 94.0

AC AS AS/AC

-18.9 -3.9 18.4
-17.2 -5.2 14.5
-2.6 3.2 5.9
-5.2 0.9 6.4

0 8.5 8.5
–

4.5 23.3 18.0
4.3 30.0 24.6
8.7 43.2 31.8

69.2 242.7 102.6
61.6 262.7 124.4

AC AS AS/AC

-14.5 -1.3 15.5
-14.7 -4.3 12.2

4.9 21.4 15.8
1.4 15.8 14.2

0 13.3 13.3
–

6.6 32.9 24.6
8.3 47.6 36.3

16.4 69.6 45.8
29.0 149.0 93.0
33.8 155.2 90.7

Each subtable presents the results for a precise processor, with the processor characteristics and the reference compilation time. All other numbers are percentage. Each row describes
a method invocation and subtype testing technique. For SO the distinction between AC and AS does not apply. For all other techniques, the first two columns represent the overhead
vs pure coloring (MC-AC-S), respectively with attribute coloring (AC) and accessor simulation (AS). The third column is the overhead of accessor simulation vs attribute coloring.
*** Results are currently unavailable

Table 4. Compilation time according to implementation techniques and processors

• A-6 and A-7 are AMD R© processors; all x86 are under
Linux Ubuntu 8.4 with gcc 4.2.4;

• S-1 is a SUN R© SparcTM, under SunOS 5.10, with
gcc 4.2.2;

• M-3 is a Motorola R© PowerPCTM G5, under Mac OS X
10.5.3, with gcc 4.0.1.

Technical problems with linkers made global optimizations
(O) currently unavailable on processors S-1 and M-3. All
tests use Boehm’s garbage collection (Boehm 1993). The
measure itself is done with Unix function times(2) which
considers only the time of a single process, irrespective of
the system scheduler—this is required by multicore technol-
ogy. Two runs of the same compiler on the same computer
should take the same time were it not for the noise pro-
duced by the operating system. A solution involves running
the tests under single-user boot, e.g. Linux recovery-mode.
It has been done for some processors (e.g. I-2, I-4, I-8) but
this was actually not possible for remote computers. Finally,
a last impediment concerned laptops. Modern laptop proces-
sors (e.g. I-5 and I-8) are frequency-variable. The frequency
is low when the processor is idle or hot. When running a test,
the processor must first warm up before reaching its peak
speed, then it finishes by slowing down and cooling. So the
peak speed can be very high but only on a short duration.
Inserting a pause between each two runs seemed to fix the
point and I-8 provides now one of the most steady testbed.

5. Results and Discussion
Tables 4 and 5 presents, for all tested variants and proces-
sors, the time measurement and overhead with respect to the
full coloring implementation (MC/AC). The last column of
Table 5 presents similar statistics of executable size instead
of runtime time. Overall, notwithstanding some exceptions

that will be discussed hereafter, these tests exhibit many reg-
ularities.

Compilation Schemes. Regarding compilation schemes:

• As expected, global compilation (G) is markedly bet-
ter than separate compilation (S). The high ratio of
monomorphic calls mostly explains this result, since the
difference between MC-S and MC-BTD0-G results only
from monomorphic calls and BTD2 hardly improves it.

• In contrast, link-time optimization (O) does not provide
the expected improvement. It would mean that the gain
resulting from 64% of static calls is offset by the thunk
overhead in the 36% of polymorphic calls. This is un-
expected because one might have thought that pipelines
would have made the thunk almost free, apart from cache
misses.

• In contrast, dynamic loading (D) yields clear overhead
compared to S—it represents the overhead of multiple
versus single inheritance in a dynamic loading setting.
Apart from AMD processors, this overhead is, however,
slighter than between S and G.

• Summing both overheads makes the difference between
global compilation and dynamic loading impressive—
about 20%.

The differences are all the more significant that all mea-
sures include the time consumed by garbage collection,
which is constant for all variants as it does not rely on
any object-oriented mechanism. Now, the Boehm conser-
vative garbage collector is certainly not optimized for the
simple PRM object model—apart from the subobject-based
variant—and a dedicated semi-conservative collector would
reduce this common constant part and increase the relative
differences.
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processor
frequency
L2 cache
year

A-6

43.4s

Athlon 64
2.2 GHz
1024 K
2003

A-7

41.8s

Opteron Venus
2.4 GHz
1024 K
2005

I-8

36.0s

Core2 T7200
2.0 GHz
4096 K
2006

I-9

22.1s

Core2 E8500
3.16 GHz
6144 K
2008

Stripped executable
on processor I-8

ref. size: 1220 KB

technique scheme
MC-BTD∞ CHA G
MC-BTD2 CHA G
MC-BTD∞ CHA O
MC-BTD2 CHA O
MC S
SO D
IC D
PH-and D
PH-and+shift D
PH-mod D
PH-mod +CA D

AC AS AS/AC

-13.7 5.0 21.6

6.4 29.7 21.9
0 21.9 21.9

–
14.6 53.4 33.9
18.1 73.1 46.6

110.2 345.8 112.1

AC AS AS/AC

-13.4 14.6 32.3
-12.3 17.3 33.8

-1.6 23.7 25.7
-0.4 23.9 24.5

0 24.0 24.0
–

16.0 51.4 30.5
17.3 71.5 46.2
21.5 85.5 52.6
96.9 300.5 103.3
66.6 267.3 120.5

AC AS AS/AC

-14.0 7.3 24.8
-12.7 6.9 22.4

1.9 13.9 11.8
0.1 12.7 12.6

0 15.8 15.8
–

6.9 35.5 26.9
8.0 46.4 35.6

13.5 66.4 46.6
25.5 158.5 105.9
35.2 150.7 92.5

AC AS AS/AC

-14.5 -2.0 14.6
-13.9 -2.6 13.1

2.4 15.2 12.5
1.8 13.8 11.7

0 14.1 14.1
–

6.5 34.1 26.0
6.9 45.2 35.8

15.2 66.4 44.5
25.0 119.8 75.8
31.1 142.0 84.5

AC AS AS/AC

15.7 21.6 5.1
-34.1 -30.5 5.5
-25.9 -22.0 5.3
-33.1 -29.5 5.4

0 2.6 2.6
–

4.3 16.4 11.6
16.7 39.3 19.4
25.2 50.8 20.4
16.7 35.7 20.4
48.8 80.7 21.4

Last column presents statistics of stripped executable size on processor I-8, with the same conventions as for time measures.

Table 5. Compilation time according to implementation techniques and processors (cont.)

Global Optimization Levels (O and G). In contrast with
the significant differences between compilation schemes,
the differences between global optimization levels, e.g. type
analysis algorithms or BTD depths, are too weak to draw
firm conclusions. This is a consequence of statistics in Ta-
ble 3 which show that the main improvement should come
from monomorphic calls (BTD0) which represent 64% of
method calls. In contrast, BTD1 and BTD2 only amount to
30% of BTD0 and the expected improvement would be less
than proportional, because of mispredictions, hence hardly
measurable on most processors. Finally, when i > 2, the
number of BTDi is too low to conclude whether BTDi is an
improvement on coloring or not.

With both G and O, the observations confirm this expec-
tation. Therefore, this testbed is certainly unable to finely
tune the optimal level of BTDs for a given processor and
it is doubtful that any testbed could do it, since the opti-
mal closely depends on the specific program type flows. So
the decision must be drawn from theoretical considerations.
BTD1 should always be better than MC, since a mispre-
dicted conditional branching has the same cost as an undi-
rect branching. BTD2 should likely be better than MC, since
a single well-predicted branching makes it better. BTD3

and BTD4 probably represent the critical point. Overall, we
present only the statistics for BTD∞ and BTD2. It would
seem that BTD∞ often improves on BTD2 in G but not in
O. This is consistent with the fact that BTDs are inlined in
G, hence predictions are proper to a given call site, whereas
they are shared in the thunks of O. Of course, sharing in-
creases branching mispredictions. In contrast, the code is far
smaller with sharing (Fig. 5).

Similar conclusions hold with type analysis algorithms.
The difference in precision between algorithms is marked,
but not enough to change the conclusions. For want of place,
we do not present the statistics of polymorphism and run-
time measures with RTA and CFA. The latter improves the
monomorphic call rate by more than 10% and the gain of

global compilation is increased in the same proportion, i.e.
about 1-2%.

With G, the conclusion should be to use the best tradeoff
between accuracy and compilation time, for instance with
an explicit or implicit option that would allow the program-
mer to choose between various optimization levels. With O,
the conclusion might be to use the simple CHA algorithm,
which does not require any other data than external models
and simplifies the overall architecture.

Dynamic Loading (D). The comparison between the dif-
ferent techniques compatible with dynamic loading mostly
confirms previous theoretical analyses.

• When used for method invocation and subtype testing,
PH-and yields very low overhead of about 4-8% on most
processors—this is better than expected. It can be ex-
plained by the few extra loads from a memory area that
is already used by the reference technique, hence without
extra cache misses, plus a few 1-cycle instructions; the
few extra cycles represent real overhead that is, however,
slight in comparison with the overall method call cost.

• The extra instructions of PH-and+shift entails extra
overhead, that is higher than expected since the extra
instructions could have been done in parallel.

• Incremental coloring (IC) is close to PH-and, a little
bit better but the difference is below the precision of
measurement. In view of the respective load-time costs,
PH-and should be preferred.

• In contrast, the overhead of PH-mod is much higher and
highly variable, between 25 and 100%, when only used
for method invocation and subtype tests.

Overall, PH-and is better than expected for method invo-
cation and subtype testing, so it should provide very high
efficiency in JAVA virtual machines for implementing inter-
faces. When used for attribute access, the overhead becomes
less reasonable. In contrast, the integer division overhead is
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higher than expected on many processors and it confirms
that PH-mod should be reserved to processors that have ef-
ficient integer division—contrary to many processors tested
here which use the floating-point unit for integer division.

Subobjects (SO). Statistics in Table 3 show that the pointer-
adjustment count, augmented by the number of attribute ac-
cesses with rst6=aic, represents about 65% of the attribute
access count. As accessor simulation represents a pointer ad-
justment, the overhead of subobjects, when restricted to at-
tribute access and pointer adjustment, should be about 65%
of the overhead of accessor simulation with method color-
ing. On most processors, this would be greater than the over-
head of IC or PH-and. Moreover, we have not considered the
overhead in method invocation resulting from pointer adjust-
ment on the receiver. This explains why the overall overhead
of subobjects is expected to be always higher than IC and
PH-and with attribute coloring, though always lower than
the overhead of the same techniques with accessor simula-
tion.

Accessor Simulation (AS). In all cases, accessor simula-
tion entails significant overhead compared to attribute col-
oring. It was of course expected—especially in view of the
high number of attribute accesses (Table 3)—since accessor
simulation replaces the single load of attribute coloring by a
sequence similar to method invocation, apart from an actual
function call. So, it adds extra accesses to memory areas that
are possibly not in cache with attribute coloring—hence, it
increases cache-miss risks. Moreover, the single load of at-
tribute coloring can be more easily done in parallel than the
several-instruction code sequence of accessor simulation.

For all techniques used with dynamic loading (D), acces-
sor simulation provokes apparent non additive overhead, as
a kind of inverted triangular inequality. For a given tech-
nique, say IC, the overhead IC-AS/MC-AC is far greater
than the sum of IC-AC/MC-AC plus MC-AS/MC-AC. This
is partly explained by the fact that the overhead IC-AC/MC-
AC, which only concerns method invocation, must be ex-
trapolated to attributes, hence multiplied by 4285+2510

2510 ≈
2.6, according to statistics in Table 3. So IC-AS/MC-AC
must be compared to IC-AC/MC-AC (multiplied by 2.6)
plus MC-AS/MC-AC. This explains most of the observed
overhead. An explanation of the rest may be that the se-
quence forms a bottleneck that blocks instruction-level par-
allelism, whereas the single coloring load can be done in
parallel in most cases. The overhead is specially marked with
PH-mod which is quite unreasonable with accessor simula-
tion.

Nevertheless, these results are not definitive, because the
accessor simulation overhead has been overestimated in our
tests—indeed, true accessors are also intensively used in the
tested programs, in such a way that they add both overheads
of accessor methods and simulation. So accessor methods
should be implemented by direct access to the attribute,
as with AC, at least when the method is generated by the

compiler in S and D schemes. However, in view of the
statistics of accessors in Table 3, the improvement should
be slight.

Cache (CA). As aforementioned, the observed cache-hit
rate is not as high as reported by (Palacz and Vitek 2003).
So one must expect that caching can only improve PH-mod
with AC—indeed, with AS the cache-hit rate is too low,
and with PH-and, the underlying technique is too efficient.
Our observations confirm this analysis and we only include
CA with PH-mod in Tables 4 and 5, as caching markedly
degrades all other techniques. On processors I-5, I-8 and
I-9 which have rather efficient integer division, the cache
yields a slight extra overhead, hence ruling out caching. On
all other processors, the cache slightly improves PH-mod but
PH-and remains far better. As the cache markedly increases
the overall table and code size, the winner is clearly PH-and.
Moreover, the slight degradation of caching with accessor
simulation accords with cache-hit rates in Table 3. A specific
cache for attribute access might be a way of improving cache
hits, to the detriment of the overall table size.

Overall, this confirms that caching can only be a solution
if: (i) the underlying technique is unefficient and (ii) the
number of cachable entities is not too high, e.g. with JAVA
interfaces.

Size of Executable. Although the PRM testbed is not op-
timized from the memory occupation standpoint, some con-
clusions can be drawn from the statistics presented in the last
column of Table 5. Global compilation (G) or link-time op-
timizations (O) markedly reduces the executable size. More-
over, G could be far better with dead code elimination. How-
ever, one observes that BTD∞ markedly increases the pro-
gram size when BTD are inlined, as in G. However, BTDs
are expected to be time-efficient only when they are inlined.
So this is another argument for combining BTDs with color-
ing.

With dynamic loading, the statistics may be less reliable.
First, IC involves dynamic reallocation that are not taken into
account, here. Moreover, PH has not been implemented in
the most efficient way from the space standpoint (Ducournau
and Morandat 2009), so the space overhead is certainly over-
estimated. However, a firm conclusion is possible for PH-
and+shift—this technique was designed for reducing the
table size, but the statistics show that it markedly increases
the code size. So, a likely definitive conclusion would be
to rule out PH-and+shift, since it degrades both time and
space.

Finally, caching proves to be over space-consuming when
it is inlined, like all techniques considered here. So, caching
should likely be reserved to non-inlined techniques, for in-
stance the bytecode interpreter of virtual machines. An alter-
native would be to use it with shared thunks, like in O.

Processor Influence. The processor influence is also sig-
nificant, even though it does not reverse the conclusions.
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Most processors present similar behaviour, although several
provide some specific exceptions that make them unique:

• On I-2, many tests do not differ from each other by more
than 2-3%—as the processor is not specially steady, this
allows only to conclude that these techniques do not
essentially differ. M-3 presents a similar behavior on a
smaller subset of techniques (e.g. IC and MC-AS). On
all other processors, the corresponding differences are
marked.

• On AMD processors (A-6 and A-7), most overheads (e.g.
of perfect hashing or accessor simulation) are doubled.

• PH-mod is markedly more efficient on recent Pentium (I-
5, I-8 and I-9).

These aberrations might be explained, either by some arte-
fact in the experiment, or by some specific feature of the
processor—for instance, A-6 is both an early 64-bit that
might be specially inefficient and a remote computer that
might be specially noisy. Processors are presented and num-
bered in the decreasing order of the reference duration,
which is strongly correlated with the manufacturing time.
It is however hard to find strong correlations between the
observed overheads and time or overall performance.

6. Related Works, Conclusions and Prospects
Related Works. There have been many works on imple-
mentation and compilation of object-oriented languages and
programs. The most important part has been made in a dy-
namic typing setting and applied to SMALLTALK, SELF
or CECIL, and also to multiple dispatch in languages like
CLOS, CECIL or DYLAN. Although the techniques con-
sidered here often originate from these dynamic typing
studies—e.g. coloring or BTD, the latter being an improve-
ment of polymorphic inline caches (Hölzle et al. 1991)—
static typing makes them much more efficient. Besides im-
plementation techniques, a lot of works have also been done
for optimizing object-oriented programs. For instance, the
Vortex compiler is dedicated to the assessment of various op-
timizations techniques for JAVA and CECIL programs (Grove
and Chambers 2001). In the C++ context, the various imple-
mentations of pointer adjustments (VBTRs, thunks, etc.)
have been compared (Sweeney and Burke 2003) and dif-
ferent approaches have been proposed for optimizing the
generated code by devirtualization (Gil and Sweeney 1999;
Eckel and Gil 2000). However, under the CWA, these opti-
mizations are outclassed by coloring. JAVA and .NET gave
also rise to a lot of studies about interface implementation
(Alpern et al. 2001a,b; Click and Rose 2002; Palacz and
Vitek 2003) and adaptive compilers (Arnold et al. 2005). Our
testbed could not include the latter because of its incompati-
bility with dynamic loading. Regarding interface implemen-
tation, besides PH and IC, they all offer non-constant-time
efficiency and are mostly based on caching and searching.
Their scalability is doubtful but it was not possible to include

them in our testbed for a fair comparison, since PRM does
not distinguish between classes and interfaces.

Finally, the point with object-oriented implementation
does not limit to method invocation, attribute access and sub-
type testing. A lot of little mechanisms are also implied—
interested readers are referred to (Ducournau 2002) for a sur-
vey. A major efficiency concern is about genericity. The im-
plementations of generics lie between two extremes (Oder-
sky and Wadler 1997). In heterogeneous implementation,
e.g. C++ templates, each instance of the parametrized class
is separately compiled. In homogeneous implementation,
e.g. JAVA 1.5, a single instance is compiled, after replacing
each formal type by its bound (this is called type erasure).
These two extremes present an interesting time-space effi-
ciency tradeoff. Heterogeneous approach is markedly more
time-efficient than the homogeneous one when the formal
type is instantiated by a primitive type—in contrast, in such
a situation, type erasure forces automatic boxing and un-
boxing. On the other hand, the code and method tables are
duplicated for each instantiation whereas homogeneous im-
plementations share the same code and method table for
different instantiations. Intermediate policies still represent
a research issue. PRM relies on an homogeneous implemen-
tation and heterogeneous or mixed implementations are a
matter of future research.

Conclusions. In this article, we have presented the empir-
ical results of systematic experiments of various implemen-
tation techniques and compilation schemes, on a variety of
processors. To our knowledge, this is the first systematic ex-
periment that compares such a variety of implementation
techniques and compilation schemes, with all other things
being equal—the latter point was a major challenge of this
work. Although these tests were performed on an original
language and compiler, they provide reliable assessment of
the use of the considered techniques in the setting of pro-
duction languages like C++, JAVA or EIFFEL. The results
confirm that global compilation markedly improves the run-
time efficiency, even when many optimizations are not con-
sidered like dead-code elimination. In this setting, the com-
bination of coloring and BTDs certainly provides the high-
est efficiency. In contrast, dynamic loading always implies
marked overhead, even in the restricted case of JAVA inter-
faces, i.e. when coupled with attribute coloring (AC).

More specifically, the tests provide an estimation of the
difference of efficiency that must be expected between lan-
guages like EIFFEL and C++—though our testbed does not
equitably account for the template heterogeneous implementation—
that are closely related to their specific compilation scheme,
at least when the latter is used in a fully reusable way. They
also provide an empirical assessment of the overhead of
such functional features as multiple inheritance and dynamic
loading.

Another contribution is a first empirical assessment of
a new technique, perfect hashing, which is the first known
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technique that is both time-constant and space-linear in a
general multiple inheritance and dynamic loading setting.
The conclusions are two-fold. PH-and overhead is quite rea-
sonable and makes the technique recommended for imple-
menting JAVA interfaces, all the more so since recent re-
search shows that its space occupation can also be very good
(Ducournau and Morandat 2009). On the contrary, PH-mod
is unreasonably inefficient on many processors. Finally, PH-
and+shift is likely not justified—its slight gain in method
tables does not offset the slight time overhead and code
length increasing. Moreover, our tests show that caching
cannot be a solution when the underlying technique is ef-
ficient enough.

In contrast, the conclusion concerning the mixed com-
pilation scheme with link-time global optimization (O) is a
little bit disappointing. A slight improvement was expected
and the tests show instead a slight overhead on most proces-
sors. From the time standpoint, the link-time complication
of these global optimizations might not be justified since the
simple global linking (S) is functionally equivalent. How-
ever, this is only a first test. More complete optimizations,
coupled with the hybrid scheme (H), should increase the
time efficiency.

The tests were performed on a variety of processors, most
of them with the same x86 architecture. Though most pro-
cessors behave in a similar way, several exceptions lead us
conclude that language implementors should offer alterna-
tive implementations that might be customized on each spe-
cific computer and operating system.

Of course, these experiments do not allow us to defi-
nitely decide for all processors and programs. The choice
of an implementation will always depend on functional re-
quirements such as dynamic loading. If dynamic loading
is required, with full multiple inheritance, the C++ imple-
mentation likely represents the best choice from the time
standpoint—the overhead of subobjects is counterbalanced
by template heterogeneous implementation and the fact that
primitives types are not integrated in the object type sys-
tem. However, the scalability is doubtful from the space
standpoint—the worst-case table size is cubic in the number
of classes and compiler-generated fields in the object-layout
can be over space-consuming. With JAVA interfaces, PH-
and is certainly the best underlying implementation tech-
nique and adaptive compilers might focus on monomorphic
calls. If dynamic loading is not required, the hybrid compila-
tion scheme that combines separate compilation of libraries
and global compilation of programs likely provides the best
tradeoff between flexibility for rapid recompilations and ef-
ficiency of production runtimes. In this framework, the com-
bination of coloring and BTDs provides the most compact
and efficient code.

Prospects. Our experiments must be completed in several
directions. Regarding the PRM testbed:

• For want of time and space, the presented statistics
are not complete—compilation and link time, processor
cache misses, runtime memory occupation should also
be considered.

• The optimization of schemes O and G is not achieved,
especially from a space standpoint; all method tables or
object layouts are not optimized and the dead code is
not eliminated—this would be easy in global compilation
(G), more difficult with link-time optimization (O) as
usual linkers are not equipped for deleting code.

• The techniques used in the PRM compiler are fully
portable with respect to processors; however global op-
timizations involved in the O scheme closely depend on
linkers and operating systems; so a general solution is re-
quired before using this scheme in a production compiler.

• Some techniques can still be optimized—for instance,
accessor simulation. Generally, it should not be used with
accessor methods. With global compilation (G), it should
be optimized for taking possible invariance into account,
in a way similar to monomorphic calls.

• Other compilation schemes like the hybrid one (H) that
has been presented in Section 3.4 should also be tested.

• Polymorphic handling of primitives types is done in PRM
through a mixin of tagging—for small integers, charac-
ters and boolean—and automatic boxing and unboxing,
as in JAVA; the testbed should also consider a precise as-
sessment of these techniques.

• An efficient implementation of generics goes midway be-
tween homogeneous and heterogeneous implementations—
this is a matter of further research, not only of integration
into the PRM testbed.

• Apart from subobjects which might justify a fully conser-
vative collector, a dedicated semi-conservative garbage
collection should reduce the overall time, thus increasing
the relative overheads. This might reverse conclusions of
the comparison between subobjects and perfect hashing.

• Testing processors from other architectures is mandatory—
this is the condition for these techniques being widespread.
The testbed should also consider other C compilers than
gcc.

Several experiments with production virtual machines
could also take advantage of the techniques presented in this
article. First, the efficiency of perfect hashing for interface
implementation should be confirmed by large-scale tests.
Moreover, the thunk-based technique of link-time global
optimization (O) could also apply to adaptive compilers.
Instead of recompiling methods when load-time assump-
tions are invalidated by some subsequent class loading, only
thunks would need recompilation. In view of the high rate
of monomorphic calls and the overhead of all techniques
compatible with dynamic loading, this would certainly be
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an improvement for method invocation when the receiver
is typed by an interface—maybe also when its is typed by
a class. It could be tested in the PRM testbed by coupling
PH with global optimizations (O) but, like for IC, this would
not fully account for the recompilations required by adaptive
compilers.

Finally, in the state space of object-oriented program-
ming language design, there remains a blind spot—namely
a language with full multiple inheritance, like C++ and EIF-
FEL, fully compatible with dynamic loading, like C++ and
JAVA, with a clean integration of primitive types, like EIF-
FEL and JAVA. JAVA-like boxing and unboxing would de-
grade usual C++ subobject-based implementation and adap-
tive compiler techniques are likely less adapted to subob-
jects than to invariant-reference implementations. However,
the best alternative that we can currently propose, PH-and
with accessor simulation, is almost twice as slow as the most
efficient implementation with global compilation. So there is
room for further research.
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09-001, LIRMM, Université Montpellier 2, 2009. (submitted to
ACM Trans. Program. Lang. Syst.).

R. Ducournau and J. Privat. Metamodeling semantics of multiple
inheritance. Rapport de Recherche 08-017, LIRMM, Univer-
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