
Efficient Separate Compilation
of Object-Oriented Languages?

Jean Privat, Floréal Morandat, and Roland Ducournau

LIRMM
Université Montpellier II — CNRS

161 rue Ada
34392 Montpellier cedex 5, France

{privat,morandat,ducour}@lirmm.fr

Abstract. Compilers of object-oriented languages used in industry
are mainly based on a separate compilation framework. However, the
knowledge of the whole program improves the efficiency of compilation;
therefore the most efficient implementation techniques are global.

In this paper, we propose a compromise by including three global
compilation techniques in a genuine separate compilation framework.

1 Introduction

According to software engineering, programmers must write modular software.
Object-oriented programming has become a major trend because it fulfils this
need: heavy use of inheritance and late binding is likely to make code more
extensible and reusable.

According to software engineering, programmers also need to produce
software in a modular way. Typically, we can identify three advantages: (i) a
software component (e.g. a library) can be distributed in a compiled form; (ii) a
small modification in the source code should not require a recompilation of the
whole program; (iii) a single compilation of a software component is enough even
if it is shared by many programs. Separate compilation frameworks offer these
advantages since source files are compiled independently of future uses, and then
linked to produce an executable program.

The problem is that the knowledge of the whole program allows more efficient
implementation techniques. Therefore previous works use these techniques in a
global compilation framework, thus incompatible with modular production of
software. Global techniques allow efficient implementation of the three main
object-oriented mechanisms: late binding, read and write access to attributes,
and dynamic type checking.

In this paper, we present a genuine separate compilation framework that
includes three global optimisation techniques. The framework described here
can be used for any statically typed class-based languages.

? Position paper at ICOOOLPS Workshop at ECOOP 2006.



2 Jean Privat, Floréal Morandat, and Roland Ducournau

The remainder of the present paper is organised as follows. Section 2 presents
the global optimisation techniques we consider. Section 3 introduces our separate
compilation framework. We conclude in section 4.

2 Global Techniques

The knowledge of the whole program source code permits a precise analysis of the
behaviour of each component and an analysis of the class hierarchy structure.
Each of those allows important optimisations and may be used in any global
compiler.

Type Analysis. Statistics show that most method calls are actually
monomorphic calls. In order to detect them, type analysis approximates
three mutually dependent sets: the set of the classes that have instances
(live classes), the concrete type of each expression (the concrete type is the
set of potential dynamic types) and the set of called methods for each call
site. There are many kinds of type analysis [10]. Even simple ones give good
result and can detect many monomorphic calls [1].

Coloring. Coloring is an implementation technique with Virtual Function Table
(VFT) that avoids the overhead of multiple inheritance [12, 7]. It can be
applied to attributes, to methods and to classes for subtyping check [5, 17,
4, 19, 7, 8]. Coloring is a global optimization which requires the knowledge of
the whole class hierarchy and finding an optimal one is an NP-hard problem
similar to the minimum graph coloring problem. Happily, class hierarchies
seem to be simple cases of this problem and many efficient heuristics are
proposed in [17–19].

Binary Tree Dispatch. SmartEiffel [20] introduces an implementation
technique for object-oriented languages called binary tree dispatch (BTD).
It is a systematisation of some techniques known as polymorphic inline
cache and type prediction [11]. BTD has good results because VFT does
not schedule well on modern processors since the unpredictable and indirect
branches break their pipelines [6]. BTD requires a global type analysis in
order to reduce the number of expected types of each call site. Once the
analysis is performed, the knowledge of concrete types permits to implement
polymorphism with an efficient select tree that enumerates types of the
concrete type and provides a static resolution for each possible case.

3 Separate Compilation

Separate compilation frameworks are divided into two phases: a local one
(compiling) and a global one (linking). The local phase compiles a single software
component (without loss of generality, we consider the compilation units to be
classes) independently from the other components. We denote binary components



Efficient Separate Compilation 3

B external
model

A source
code

C source
code

Input

ask C model

C external
model

ask B model

A internal
model

Result

A external
model

code
A binary

Fig. 1. Local Phase

the results of this phase1. Binary components are written in the target language
of the whole compilation process (e.g. machine language) but they are not
functional because some missing information is replaced by symbols. The binary
components also contain metadata: debug information, symbol table, etc. The
global phase gathers binary components of the whole program, collects some
metadata, resolves symbols and substitutes them. The result of this phase is a
functional executable that is the compiled version of the whole program.

Application of global techniques to this framework can only be done during
the global phase since the knowledge of the whole program is needed. The
problem is that the source code of the program is already compiled into binary
components and no more available.

The idea to perform optimisations during the global phase is not new.
Computing a coloring at link-time was first proposed by [17] but, to our
knowledge, this has never been implemented. Other works, [9] and [2], propose
a separate compilation framework with global optimisation respectively for
Modula-3 and for functional languages. In both cases, the main difference
with our approach is that their local phases generate code in an intermediate
language. On linking, global optimisations are performed on the whole program
then a genuine global compilation translates this intermediate language into the
final language.

3.1 Local Phase

The local phase takes as its input the source code of a class, and produces as
its results the binary code and two metadata types: the external model and the
internal model—Fig. 1. These three parts can be included in the same file or in
distinct files but the external model should be separately available.

1 Traditionally, the results of separate compilation are called object files. Because this
paper is about object-oriented languages, we chose not to use the traditional name
to avoid conflicts.



4 Jean Privat, Floréal Morandat, and Roland Ducournau

A source

code

B source

code

B

B

external
model

A

B
binary

internal

A

A

model

external

internal
model

code
binary

code

symbol

substitution

model

global live

analysis

interclass
model

coloring

local phase

local phase

global phase

Fig. 2. Global Phase

The external model of a class describes its interface: superclasses and
definitions of methods and attributes. Even if the local phase compile classes
independently from their future use, classes still depend on superclasses and
used classes. Thus, the external model of these classes must be available or be
generated from the source file. In the latter case, a recursive generation may be
performed.

The binary code contains symbols. As in standard separate compilation,
symbols are used for addresses of functions and static variables. In our
proposition, we also introduce other symbols related to the OO mechanism:
(i) each late binding site is associated with a unique symbol, and compiled with
a static direct call to this symbol; (ii) attribute accesses are compiled with a
symbol representing the color of the attribute, i.e. the attribute index in the
instance; (iii) type checks are compiled with two symbols representing the color
and the identifier of the class to test.

The internal model of a class describes the behaviour of its methods. It
gathers class instantiations, late binding sites, attribute accesses and type checks.
It also contains the information about associated symbols. Using a type flow
analysis, the internal model of a method also contains a graph which represents
the circulation of the types between the entries (the receiver, a parameter, the
reading of an attribute, or the result of a method call) and the exits (the result
of the method, the writing of an attribute, or the arguments of a method call)
of the method.

3.2 Global Phase

The global phase is divided into three stages: (i) type analysis which determines
the live global model, (ii) coloring which computes colors and identifiers of classes
and attributes, and (iii) symbol substitution in the binary code (Figure 2).

Type analysis is based on the internal and external models of all classes. The
live classes and their live attributes and methods are identified, as well as the
information on the concrete types of the live call sites.



Efficient Separate Compilation 5

The coloring stage is performed once the live global model is obtained. A
heuristic [17, 18] produces the values of the identifiers and the colors of the live
classes, methods and attributes, as well as the size of the instances.

The last stage substitutes values to symbols. Colors and identifiers computed
during the coloring stage are substituted to the corresponding symbols. For each
late binding site, the symbol is replaced according to the polymorphism of the
call site. On a monomorphic site, the symbol is replaced by the address of the
single method: the result is a direct call. On a polymorphic site, the symbol is
replaced by the address of a resolver. Resolvers are small link-time generated
functions that select the correct method. On an oligomorphic site, BTD is the
most efficient, therefore resolvers only contain a select tree where leaves are static
jumps to the correct function. On a megamorphic site, VFT is the most efficient,
therefore resolvers only contain a jump to the required method in the function
table.

4 Conclusion

We present in this article a genuine separate compilation framework for statically
typed object-oriented languages in multiple inheritance. It includes three global
techniques of optimisation and implementation: type analysis, coloring, and
binary tree dispatch. Our proposition is a compromise between efficiency and
modularity. It brings the efficiency of these global techniques without losing the
advantages of separate compilation.

For experiments [16], we developed a compiler prototype called prmc for
Prm, an Eiffel-like language. It mainly follows the separate compilation
scheme presented in the present paper. The only difference is that there is
no external schema the global phase uses the source code to perform the type
analysis. However, the compilation is still truly separate since units are compiled
separately then linked.

In comparison with classical separate compilation, the space and time
reductions are significant. Monomorphic, oligomorphic and megamorphic
method calls are detected by the type analysis then are implemented with the
most efficient technique (respectively direct call, BTD, and VFT). Attribute
accesses and subtype checks are implemented with direct access.

Comparing with pure global compilers, the performances are honourable.
However, from the point of view of efficiency, even if the quality of the
type analysis is the same, SmartEiffel and other global compilers keep a
strong advantage with their code specialisation techniques: method inlining,
customisation [3] or heterogeneous generic class compilation [13]. At least, like
global compilers, our framework removes the justification of the two uses of the
virtual keyword in C++ because the overhead of multiple inheritance (virtual
inheritance) and monomorphic late binding (virtual functions) are removed.

The remaining question about libraries linked at load-time or dynamically
loaded at run-time stays open.



6 Jean Privat, Floréal Morandat, and Roland Ducournau

References

1. David F. Bacon, M. Wegman, and K. Zadeck. Rapid type analysis for C++.
Technical report, IBM Thomas J. Watson Research Center, 1996.

2. D. Boucher. Analyse et Optimisations Globales de Modules Compilés Séparément.
PhD thesis, Université de Montréal, 1999.

3. C. Chambers and D. Ungar. Customization: Optimizing compiler technology for
SELF, a dynamically-typed object-oriented language. In OOPSLA [14], pages
146–160.

4. N. H. Cohen. Type-extension type tests can be performed in constant time.
Programming languages and systems, 13(4):626–629, 1991.

5. R. Dixon, T. McKee, P. Schweitzer, and M. Vaughan. A fast method dispatcher
for compiled languages with multiple inheritance. In OOPSLA [14].

6. K. Driesen and U. Hölzle. The direct cost of virtual function calls in C++. In
Proc. OOPSLA’96, SIGPLAN Notices, 31(10), pages 306–323. ACM Press, 1996.

7. Roland Ducournau. Implementing statically typed object-oriented programming
languages. Technical Report 02-174, L.I.R.M.M., Montpellier, 2002.

8. Roland Ducournau. Coloring, a versatile technique for implementing object-
oriented languages. Technical Report 06-001, L.I.R.M.M., Montpellier, 2006.

9. Mary F. Fernandez. Simple and effective link-time optimization of Modula-
3 programs. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 103–115, 1995.

10. D. Grove and C. Chambers. A framework for call graph construction algorithms.
ACM Trans. Program. Lang. Syst., 23(6):685–746, 2001.

11. U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In P. America, editor, Proc.
ECOOP’91, volume 512 of LNCS, pages 21–38. Springer-Verlag, 1991.

12. S. B. Lippman. Inside the C++ Object Model. Addison-Wesley, New York (NY),
USA, 1996.

13. M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In
Proc. POPL’97, pages 146–159. ACM Press, 1997.

14. Proceedings of the Fourth ACM Conference on Object-Oriented Programming,
Languages and Applications, OOPSLA’89, New Orleans, 1989. ACM Press.

15. Proceedings of the Twelfth ACM Conference on Object-Oriented Programming,
Languages and Applications, OOPSLA’97, SIGPLAN Notices, 32(10). ACM Press,
1997.

16. J. Privat and R. Ducournau. Link-time static analysis for efficient separate
compilation of object-oriented languages. In M. Ernst and T. Jensen, editors,
Workshop on Program Analysis for Software Tools and Engineering PASTE’05,
pages 29–36, 2005.

17. W. Pugh and G. Weddell. Two-directional record layout for multiple inheritance.
In Proc. ACM Conf. on Programming Language Design and Implementation
(PLDI’90), ACM SIGPLAN Notices, 25(6), pages 85–91, 1990.

18. P. Takhedmit. Coloration de classes et de propriétés : étude algorithmique et
heuristique. Mémoire de dea, Université Montpellier II, 2003.

19. J. Vitek, R. N. Horspool, and A. Krall. Efficient type inclusion tests. In OOPSLA
[15], pages 142–157.

20. O. Zendra, D. Colnet, and S. Collin. Efficient dynamic dispatch without virtual
function tables: The SmallEiffel compiler. In OOPSLA [15], pages 125–141.


