
Implementations of a Service-Oriented
Architecture on Top of Jini, JXTA and OGSI

Nathalie Furmento, Jeffrey Hau, William Lee,
Steven Newhouse, and John Darlington

London e-Science Centre, Imperial College London, London SW7 2AZ, UK
lesc-staff@doc.ic.ac.uk

Abstract. This paper presents the design of an implementation-inde-
pendent, Service-Oriented Architecture (SOA), which is the main basis of
the ICENI Grid middleware. Three implementations of this architecture
have been provided on top of Jini, JXTA and the Open Grid Services
Infrastructure (OGSI). The main goal of this paper is to discuss these
different implementations and provide an analysis of their advantages
and disadvantages.

Keywords: Service-Oriented Architecture, Grid Middleware, Jini, JXTA,
OGSI

1 Introduction

Service-oriented architectures are widely used in the Grid Community. These
architectures provide the ability to register, discover, and use services, where the
architecture is dynamic in nature. From all the initiatives to define standards
for the Grid, a consensus seems to emerge towards the utilisation of such an
architecture, as we can for example see with the OGSI initiative of the Global
Grid Forum [4].

The ICENI Grid Middleware [5] is based on a service-oriented architecture
(SOA) as well as on an augmented component programming model [6]. The goal
of this paper is to show how the SOA has been designed to be implementation-
independent. This gives us an open model where different low-level libraries can
be plugged in.

The following of the paper is organised as follows. § 2 shows in details the
design of the Service-Oriented Architecture, the different implementations are
explained in § 3. A discussion on the current implementations is presented in § 4,
before concluding in § 5.

2 Design of the ICENI’s SOA

A typical Service-Oriented Architecture is presented in Figure 1. One can see
three fundamental aspects of such an architecture:

1. Advertising. The Service Provider makes the service available to the Service
Broker.

M. Dikaiakos (Ed.): AxGrids 2004, LNCS 3165, pp. 90–99, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Implementations of a Service-Oriented Architecture 91

Service
Provider

Service
Consumer

Service
Broker

FINDPUBLISH

INTERACT

Fig. 1. The Service-Oriented Architecture

2. Discovery. The Service Consumer finds a specific Service using the Service
Broker.

3. Interaction. The Service Consumer and the Service Provider interact.

In the context of ICENI, a Service Broker is represented by a public Compu-
tational Community or Virtual Organisation, where authorised end-users – the
Service Consumers – can connect by using their X.509 certificates to query and
access services. Once a service is advertised and discovered, any interaction with
it is controlled by the service level agreement (SLA) that is going to define the
entities that are allowed or denied access to the service, as well as the interval
time the access is allowed or denied.

The lifetime of an ICENI service can be described by the three following
steps: creation, advertising and discovery. Each of these steps is represented in
ICENI by a set of interfaces. We are now going to explain these different steps
and demonstrate them through a basic Counter Service.

2.1 Creation

A service is defined by its interface, i.e. the list of methods it provides. For
example, the interface and the implementation of a counter service providing
basic functionalities to add and subtract a value can be defined as shown in §A.

It is important at this level to notice there is no information on how the
service is going to be implemented. We will see in the following sections how this
abstract ICENI service is going to be implemented by using for example the Jini
library.

The instantiation of the service is done through a call to the IceniService-
MetaFactory, which first instantiates a IceniServiceFactory for the used im-
plementation, and asks this factory to return a new instance of the service. At
that point, all the necessary classes to implement the abstract ICENI service are
automatically generated. Calling for example the following line of code results
in the creation of an ICENI service of the type Counter.

IceniService xServ = IceniServiceMetaFactory.newInstance("Counter");



92 N. Furmento et al.

2.2 Advertising

Once created, a service can be advertised on a specific domain or virtual organ-
isation through the IceniServiceAdvertizingManager service. The service is
advertised with a SLA that defines the access policy that will be used to enforce
interaction with the service. The same service can be advertised in different or-
ganisations with different SLA’s. This gives a flexible mechanism to control how
different organisations may access the service, by allowing advertising the service
capabilities as required.

The advertising of a service is done through a XML document that defines
the SLA’s of the service for all the virtual organisations where the service is to
be made available. Appendix A shows a SLA XML document that gives access
from Monday to Friday noon to all the persons connecting from the virtual
organisation public1 and belonging to the organisation eScience.

2.3 Discovery

By connecting to a virtual organisation, a service consumer can query a service
and interact with it once discovered. ICENI provides different types of query such
as interface matching that allow to listen to all services of a specific interface,
or service data matching that allow to query services based on the value of
their service data elements. The different steps to discover services are shown in
Figure 2.

1. Instantiate a discovery manager.

IceniServiceDiscoveryManager xDiscovery =
IceniServiceDiscoveryManagerFactory.newInstance();

xDiscovery.setLocation("<address of virtual organisation>");

2. Instantiate a discovery query. Here we use the instantiation mechanism based on
the interface of the service to listen to.

IceniServiceDiscoveryQuery xQueryCounter =
IceniServiceDiscoveryQueryFactory.newInstance(CounterService.class);

3. Register a listener. For every new service matching the query, the service-

Published() method will be called with the service as a parameter. Similarly,
the serviceUnpublished() method will be called for each service disappearing
from the virtual organisation.

xDiscovery.registerListener(xQueryCounter, new IceniServiceDiscoveryListener() {
public void servicePublished(IceniService pService) {
// code to execute when a new service is available

} // end servicePublished
public void serviceUnpublished(IceniServiceId pServiceId) {
// code to execute when a service is no longer available

} // end serviceUnpublished
});

Fig. 2. Discovery and Interaction with ICENI Services



Implementations of a Service-Oriented Architecture 93

2.4 Invocation

Any interaction with the service is controlled by an external entity, it first au-
thenticates the service consumer through its X.509 certificate and authorises it
against the policy of the service it wishes to access.

2.5 Other Requirements

On top of defining an interface, ICENI services also define a set of service data
elements. A service data element is defined through a name and a value, the value
being either a simple string or a well-formed XML document. These elements
also define a liability time interval by specifying from when to when the service
data is expected to be valid. Service Data elements are for example used by the
JXTA implementation to perform discovery (See § 3.2), and are similar to the
service data notion of OGSI (See § 3.3).

One of the main concerns in grid middleware is that security should be present
at any level of the infrastructure. We need to provide basic security for remote
calls such as mutual authentication, authorisation and integrity. We also need
to know that the code downloaded across a network can be trusted. The SOA
of ICENI provides an authentication and authorisation model which allows to
check the access to its services, but this model needs to be extended into a full
security model in order to be used in any production Grid. Applications such as
health care applications dealing with patient records require strong security and
encryption mechanisms.

3 Implementation of the ICENI’s SOA

This section reviews the three different implementations of the ICENI’s SOA
by showing for each of them how the different aspects of the SOA have been
implemented, as well as its advantages and disadvantages.

3.1 Implementation Using Jini

Jini network technology [11] is an open architecture that enables developers to
build adaptive networks that are scalable, evolvable and flexible as typically
required in dynamic computing environments. The first version of the ICENI
Grid Middleware was directly implemented on top of the Jini API [7].

When using Jini, the following classes are automatically generated for a ser-
vice named MyService.

– MyServiceJiniNoAbstract.java extends the implementation of the ser-
vice MyService to provide an implementation for all the basic ICENI/Jini
mechanisms.

– MyServiceJiniStub.java is the main Jini interface extending the interface
java.rmi.Remote. It acts as a proxy for MyService service, and defines
exactly the same methods.



94 N. Furmento et al.

– MyServiceJiniStubImpl.java is the implementation of the interface My-
ServiceJiniStub. It uses a reference to MyServiceJiniNoAbstract to redi-
rect all the method calls on the service.

– MyServiceJini.java implements the interface MyService by using a refer-
ence to MyServiceJiniStub toredirect an ICENI service’s method call as a
Jini service’s method call.

Figure 3(a) shows an interaction diagram of these different classes and inter-
faces.

MyServiceJini MyServiceJiniStubImpl MyServiceJiniStub

MyServiceImplMyService MyServiceNoAbstract

Implements ExtendsHas a reference to

0.25 a) Class and interface diagram b) Instantiation diagram

Fig. 3. Jini Implementation of an ICENI Service

Creation. This step creates an object of the class MyServiceJini and initialises
it with the corresponding stub, i.e. an instance of the class MyServiceJiniStub-
Impl. We obtain an object as shown in Figure 3b).

Advertising. The object MyServiceJiniStubImpl – hold by the ICENI service
created in the previous step – extends indirectly the interface java.rmi.Remote,
it can therefore be made available in a Jini lookup service.

Discovery. The object returned from the Jini lookup service is a
MyServiceJiniStubImpl. It is going to be wrapped in an instance of the class
MyServiceJini before being returned to the listener. We obtain here a similar
object to the one obtained when creating the service.

Invocation. Any method call is done on an instance of the class MyServiceJini
and is finally redirected on an instance of the class MyServiceImpl as one can
see in Figure 3.

Advantages/Disadvantages. The functionalities provided by the SOA of
ICENI and the Jini library are basically the same. It was therefore very easy
to implement the SOA on top of Jini without tying up ICENI to Jini and get
an implementation-independent SOA. Moreover, as shown in [8], the Jini imple-
mentation is very scalable, these experiments are testing the performance of Jini
when increasing the number of Jini services, they demonstrate a good result in
the performance when discovering and accessing the Jini services. The potential
problems when using Jini lie in security and in the connection of services across
firewalls.



Implementations of a Service-Oriented Architecture 95

3.2 Implementation Using JXTA

Project JXTA [14] provides a set of XML based protocols for establishing a
virtual network overlay on top of current existing Internet and non-IP based
networks. This standard set of common protocols defines the minimum network
semantics for peers to join and form JXTA peergroups – a virtual network.
Project JXTA enables application programmers to design network topology to
best match their requirement. This ease of dynamically creating and transform-
ing overlay network topology allows the deployment of virtual organisation.

The fundamental concept of the ICENI JXTA implementation is the ICENI
peergroup. The ICENI peergroup provides a virtual ICENI space that all ICENI
JXTA services join. The peergroup contains the core ICENI services – Iceni-
ServiceDiscoveryManagerand IceniServiceAdvertizingManager.These two
services allow any services in the ICENI group to advertise their presence or
to discover other services using ICENI ServiceData embodied in JXTA adver-
tisements. Figure 4 presents an overview on how ICENI services behave when
implemented on top of JXTA.

Creation. The creation of an ICENI service is just a matter of opening two
separate JXTA pipes. Pipes are the standard communication channels in JXTA,
they allow peers to receive and send messages. One of the two required pipes is
a listening pipe that will listen for the control message broadcast to the whole
ICENI peergroup. The other is the service’s private ServicePipe. ServicePipes
provides the communication channel for invocation messages. Depending on ser-
vice functionality and requirement, these pipes could have varied properties such
as encryption, single/dual-direction, propagation, streaming, . . .

Advertising. Once joined the ICENI peergroup, a service can advertise its
presence by publishing its ServiceData elements. This is a two step process:
(1) Create a new IceniServiceAdvertisement. This is a custom advertise-
ment that contains the ICENI service identifier IceniServiceID and the service
data ServiceData. The Service Id can be automatically generated during ad-
vertisement creation and ServiceData will be converted into XML format and
embedded into the advertisement ; (2) Publish the advertisement by using the
IceniServiceAdvertizingManager service from the ICENI peergroup.

publish
discovery

JXTA RMI Pipe

peergroup
A

peergroup
B

ICENI Peergroup

IceniService IceniServiceAdvertizingManager

IceniServiceDiscoveryManagerServiceData

Fig. 4. JXTA Implementation of the SOA



96 N. Furmento et al.

Discovery. Peers in the ICENI peergroup can discover available services by
using the IceniServiceDiscoveryManager service. Search can be conducted
using service ID or service data elements.

Invocation. Invocation behaviour of ICENI JXTA services depends on the spe-
cific protocol each service is running. There are currently some projects working
on providing different service architecture over JXTA such as JXTA-rmi [15] and
JXTA-soap [16]. These projects wrap the original invocation messages (such as
SOAP) into JXTA pipe messages and transport them through JXTA pipes to
enable peers to invocate services using well-known service invocation API.

Advantages/Disadvantages. JXTA provides an architecture that gives mid-
dleware programmers the flexibility and ease of creating virtual organisations.
It also provides an easy interface for publishing and discovering data in a peer
to peer manner. Different invocation architectures can be overlayed over JXTA
pipes. And finally, it is based on lightweight, firewall-proof, interchangeable net-
work protocols. The potential problems with using JXTA as an architecture for
building Grid middleware lies in security and performance. JXTA’s P2P nature
makes it harder to secure than traditional platforms. Also it will be difficult
for the requirements of high performance grid application to be met by JXTA’s
current XML based messaging protocols.

3.3 Implementation Using OGSI

The Open Grid Services Infrastructure is an effort to build on the wide adop-
tion of web services as an inter-operable foundation for distributed computing.
The Grid Services Specification [17] describes a set of core port types using
WSDL that are essential for the Grid setting. In ICENI, important notions of
an IceniService are mapped to the relevant constructs in the GridService
port type, such as meta-data as service data, and lease as termination time.
Our implementation is based on the Globus Toolkit 3.0 [1] core distribution.
It is the Java reference implementation of the Grid Services Specification. It
allows Java objects to be deployed as OGSI services. The hosting environment
acts as a SOAP processing engine that can be executed as an embedded HTTP
server or operate as a Java Servlet inside a servlet engine. We have enhanced
the implementation with an Application Programming Interface (API) for run-
time dynamic deployment of service without the use of deployment descriptor.
It serves as the kernel for the ICENI OGSI implementation.

Creation. To transparently transform an IceniService object into an OGSI-
compliant service, the runtime system reflectively interrogate the class infor-
mation of the service object and generate adapted classes that can be deployed
through the deployment API. Adaptation is performed using the ASM byte-code
generation library [3]. The adapted class is loaded from the byte stream into the
running virtual machine using a specialised ClassLoader. The adapted object
represents a service object that conforms to the requirement of GT3, such as an
extension to the GridServiceBase interface. The adapted class acts solely as
the delegate hosted by GT3 and directs invocation to the service object.



Implementations of a Service-Oriented Architecture 97

Advertising and Discovery. OGSI currently does not mandate a particular
form of advertising and discovery mechanisms. We have chosen to use an instance
of the ServiceGroup port type as a representation of a community. A Service-
Group service is set up at a well-known location. When an IceniService is
created, the Grid Service Handle of the OGSI-service representing this service
object is published to the known ServiceGroup. Future implementations can
experiment with using UDDI directory for long-lived services, such as Factory
or Virtual Organisation Registry. For transient services, the Globus Toolkit 3.0
Index Service [2] can cater for the dynamic of temporal validity of service and its
meta-data. Also, it provides a rich query mechanism for locating service instances
based on their service data and port types.

Invocation. When a client locates an IceniService from the IceniService-
DiscoveryManager, the OGSI implementation returns a Java Reflection Proxy
implementing the interfaces expected by the client. The proxy traps all invo-
cations on the object. The invocation handler uses the JAX-RPC [13] API to
marshal the parameters into SOAP message parts based on the WSDL descrip-
tion of the service.

Advantages/Disadvantages. The OGSI-compliant implementation allows
ICENI services and clients to communicate through an open transport and mes-
saging layers instead of the proprietary RMI protocol used by Jini. Also, non-
ICENI clients can interact with ICENI services as if they are OGSI-compliant
services. The extensible nature of OGSI permits different transport and mes-
saging protocols to be interchanged. Our current implementation uses the web
service security standards for encrypting message as well as ensuring authen-
ticity of the caller. One disadvantage of the current invocation model is that
ICENI clients can only transparently invoke OGSI services that originate from
an ICENI Service. This is due to the fact that the Java interface of the OGSI
service is pre-established before the conversation. For ICENI client to invoke an
external OGSI service, stubs need to be generated at compile-time, or the Dy-
namic Invocation Interface of the JAX-RPC API could be used instead. Other
disadvantages are GT3 is resource hungry, we would need a lightweight OGSI
implementation to provide a valid ICENI/OGSI implementation. Moreover, the
XML to Java marshaling is expensive, not automatic for complex types, and
as for JXTA, XML based messaging protocols cannot meet the requirements of
high performance grid application.

4 Discussion

The three implementations we have presented all provide the basic functional-
ities needed by the ICENI Service-Oriented Architecture at different levels of
implementation difficulty. The JINI implementation offers good performances,
the two other implementations being based on XML messaging protocols are not
as promising, but offer better security models. Working on these three imple-
mentations proved to be very beneficial as it showed us that a valid and robust



98 N. Furmento et al.

SOA can only be obtained by good performances and a powerful and extensible
security model.

We believe that these concerns can be dealt with by using Jini 2.0 [12]. This
new version of the Jini Network Technology provides a comprehensive security
model which one of the main goals is to support pluggable invocation layer be-
haviour and pluggable transport provider. We could therefore use OGSI instead
of RMI as a remote communication layer, and benefit of the encryption and
authentication features of the web service security standard.

To allow our three implementations to inter-operate and hence be able of
getting a virtual organisation composed for example of ICENI/Jini services and
ICENI/JXTA services, we have developed a OGSA Gateway that allows ICENI
services to be exposed as Grid Services [5]. This allows us for example the fol-
lowing configuration: use Jini inside a local organisation, and use JXTA to cross
boundaries between networks potentially configured with firewalls.

In order to improve search capability of ICENI services, an adaptation frame-
work is being developed. The ICENI Service Adaptation Framework [9] builds on
top of ICENI middleware to provide ways of annotating services using Resource
Description Framework (RDF) and The Web Ontology Language (OWL). Se-
mantic annotated services enable users to search through capability rather than
static interface definitions. Once user’s requirement is semantically matched with
a semantic service, an adaptation proxy conforming to user’s interface require-
ment is automatically generated. The adaptation proxy provides a implemen-
tation and architecture independent way for both the client and the server to
invoke the required functionality.

5 Conclusion

We have shown in this paper the design of a Service-Oriented Architecture for
a Grid Middleware that is implementation-independent. This Service-Oriented
Architecture has been successfully implemented on top of Jini. We are currently
prototyping the JXTA and the OGSI implementations of the SOA.

These three implementations all provide a useful subset of the functionalities
of a Grid Middleware, we are now planning to work on a new implementation
which will provide a full security model by using characteristics of our existing
implementations.

The ICENI Grid Middleware has been used to develop high level grid services
such as scheduler services [18] or visualisation services [10].

References

1. The Globus Toolkit 3.0. http://www-unix.globus.org/toolkit/download.html

2. GT3 Index Service Overview. http://www.globus.org/ogsa/releases/final/

docs/infosvcs/indexsvc_overview.html

3. E. Bruneton et al. ASM: A Code Manipulation Tool to Implement Adaptable
Systems. In Adaptable and Extensible Component Systems, France, Nov. 2002.



Implementations of a Service-Oriented Architecture 99

4. Global Grid Forum. http://www.gridforum.org/
5. N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Darlington. ICENI: An

Open Grid Service Architecture Implemented with Jini. In SuperComputing 2002,
USA, Nov. 2002.

6. N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and J. Darlington.
ICENI: Optimisation of Component Applications within a Grid Environment. Par-
allel Computing, 28(12):1753–1772, 2002.

7. N. Furmento, S. Newhouse, and J. Darlington. Building Computational Communi-
ties from Federated Resources. In 7th International Euro-Par Conference, volume
2150 of LNCS, pages 855–863, UK, Aug. 2001.

8. N. Furmento et al. Performance of ICENI/Jini Service Oriented Architecture.
Technical report, ICPC, 2002. http://www.lesc.ic.ac.uk/iceni/reports.jsp

9. J. Hau, W. Lee, and Steven Newhouse. Autonomic Service Adaptation using
Ontological Annotation. In 4th International Workshop on Grid Computing, Grid
2003, USA, Nov. 2003.

10. G. Kong, J. Stanton, S. Newhouse, and J. Darlington. Collaborative Visualisation
over the Access Grid using the ICENI Grid Middleware. In UK e-Science All
Hands Meeting, pages 393–396, UK, Sep. 2003. ISBN 1-904425-11-9.

11. Jini Network Technology. http://www.sun.com/software/jini/
12. Jini Network Technology, v2.0. http://developer.java.sun.com/developer/

products/jini/arch2_0.html
13. Sun Microsystems. Java API for XML-Based RPC 1.1 Specification. http://

java.sun.com/xml/jaxrpc/index.html
14. Project JXTA. http://www.jxta.org/
15. Project JXTA-rmi. http://jxta-rmi.jxta.org/servlets/ProjectHome
16. Project JXTA-soap. http://soap.jxta.org/servlets/ProjectHome
17. S. Tuecke et al. Open Grid Service Infrastructure (OGSI) v.1.0 Specification, Feb.

2003.
18. L. Young, S. McGough, S. Newhouse, and J. Darlington. Scheduling Architecture

and Algorithms within the ICENI Grid Middleware. In UK e-Science All Hands
Meeting, pages 5–12, UK, Sep. 2003. ISBN 1-904425-11-9.

A The Counter Service Example

– Interface for a Counter Service

public interface CounterService extends ResourceService {
public int addValue(int pValue) throws IceniServiceException;
public int subtractValue(int pValue) throws IceniServiceException;

} // end interface CounterService

– Implementation for a Counter Service

public abstract class Counter extends ResourceImpl implements CounterService {
protected int _counter = 0;
public int addValue(int pValue) throws IceniServiceException {

_counter += pValue; return _counter; }
public int subtractValue(int pValue) throws IceniServiceException {

return addValue(-pValue); }
} // end class Counter

– Service Level Agreement for a Counter Service

<publicDomain name="public1">
<policy:accessPolicy>

<policy:allow startDay="monday" stopDay="friday" stopHour="12" stopMn="00">
<policy:entity type="organisation" name="eScience"/>

</policy:allow>
</policy:accessPolicy>

</publicDomain>


	1 Introduction
	2 Design of the ICENI’s SOA
	2.1 Creation
	2.2 Advertising
	2.3 Discovery
	2.4 Invocation
	2.5 Other Requirements

	3 Implementation of the ICENI’s SOA
	3.1 Implementation Using Jini
	3.2 Implementation Using JXTA
	3.3 Implementation Using OGSI

	4 Discussion
	5 Conclusion
	References
	A The Counter Service Example

