
A Component Framework for HPC Applications�

Nathalie Furmento, Anthony Mayer, Stephen McGough,
Steven Newhouse, and John Darlington

Parallel Software Group, Department of Computing, Imperial College of Science,
Technology and Medicine

180 Queen’s Gate, London SW7 2BZ, UK
icpc-sw@doc.ic.ac.uk

http://www-icpc.doc.ic.ac.uk/components/

Abstract. We describe a general component software framework de-
signed for demanding grid environments that provides optimal perfor-
mance for the assembled component application. This is achieved by
separating the high level abstract description of the composition from
the low level implementations. These implementations are chosen at run
time by performance analysis of the composed application on the cur-
rently available resources. We show through the solution of a simple lin-
ear algebra problem that the framework introduces minimal overheads
while always selecting the most effective implementation.

Keywords: Component Composition, Grid Computing, Performance
Optimisation, High Level Abstraction.

1 Introduction

Within high performance and scientific computing there has been an increasing
interest in component based design patterns. The high level of abstraction en-
ables efficient end-user programming by the scientific community, while at the
same time encapsulation encourages software development and reuse.

With the emergence of computational grids [1] it is increasingly likely that
applications built from components will be deployed upon a wide range of het-
erogenous hardware resources. Component based design reveals both potential
difficulties and opportunities within such a dynamic environment. Difficulties
may arise where a component’s performance is inhibited by the heterogenous
nature of the environment. For example, an application consisting of tightly
coupled components deployed across distant platforms will suffer performance
penalties not present when executed locally. However the abstraction provided
by the component methodology allows for a separation of concerns which en-
ables specialisation and optimisation without reducing the flexibility of the high
level design. Such resource and performance aware optimisation helps offset the
difficulties of grid-based computation.
� Research supported by the EPSRC grant GR/N13371/01 on equipment provided by

the HEFCE/JREI grants GR/L26100 and GR/M92455

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 540–548, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



A Component Framework for HPC Applications 541

Algorithmic skeletons [2] have illustrated how a high level abstraction can be
married to an efficient low-level high performance code, utilising the knowledge
of the abstraction to optimise the implementation composition. We propose a
component architecture that exploits this meta-data to optimise performance.

In this paper we describe an implementation of this architecture, which con-
sists of an abstract component description language incorporating composition
and performance information and a run time framework, together with a simple
example of a component application and its native implementations. We first
consider an overview of the architecture, and then examine different aspects of
the framework.

2 Overview of the Component Architecture

We present a layered component architecture consisting of a high level language
(an XML schema [3]), an execution framework and a component repository con-
taining the component implementations and meta-data [4]. The run time frame-
work executes the application, selecting implementations from the repository ac-
cording to the meta-data, resource availability and the application description.
The design and deployment cycle using this component framework is determined
by its layered abstraction.

1. Component Construction Component interfaces are designed and placed
within the repository, together with any implementations which may be writ-
ten in native code. The developer places meta-data describing the implemen-
tation and its performance characteristics in the component repository.

2. Problem Definition The end-user builds an application within a graphical
problem solving environment (PSE). The PSE is connected to the component
repository and is used to produce a high level XML representation of the
problem. This representation is implementation independent, using only the
component interface information.

Fig. 1. GUI showing repository and composed application



542 Nathalie Furmento et al.

3. Run Time Representation The XML representation is automatically con-
verted into a set of executable Java objects, which act as the run time support
for the application. This utilises the meta-data.

4. Implementation Selection The run time representation is deployed into
an execution environment. Here available implementations are selected ac-
cording to performance models and the available resources. High perfor-
mance native code is loaded and executed by the run time representation.
Implementation selection may occur more than once for a given component:
changing circumstances, either through a changing resources or computation,
may force the selection of a more efficient implementation.

3 XML Representation

The XML representation is the highest level of abstraction. The end-user com-
poses the XML representation by means of an application builder tool. While we
have provided a graphical user interface that enables rapid application develop-
ment (see Figure 1), our Component XML (or CXML) provides a suitable target
language for a number of possible end-user tools, without imposing constraints
on their configuration.

<application>
<network>
<instance componentName="Source" componentPackage="icpc.LinearSource" id="1">

<property name="degrees of freedom" value="100"/> </instance>
<instance componentName="Solver" componentPackage="icpc.LinearSolver" id="2"/>
<instance componentName="DisplayVector" componentPackage="icpc.Matrix" id="3"/>
<dataflow sinkComponent="2" sinkPort="matrix" sourceComponent="1" sourcePort="matrix"/>
...

</network>
</application>

The application builder produces a CXML application description docu-
ment, as shown in the example above. This consists of the <network> and
<repository> information. The network represents a composition of component
instances together with any user customisations. The composition is a simple
typed port and network mechanism, consisting of <instance> elements together
with <dataflow> connectors. The connectors are attached between source and
sink ports according to the component type. The user may customise the com-
ponent by specifying simple values that are recorded as <property> elements.

The choice of components within the builder tool is determined by those con-
tained within the repository. The repository CXML data provides the interface
information for the <component> types, specifying <port> and <property> ele-
ments. Thus ensuring that connections in a network correspond to a meaningful
composition. The types and default properties specified in the repository CXML
allow customisation where required. The repository component information also
indicates component inheritance and package information.

The repository also contains information needed to create the run time repre-
sentation, namely the meta-data for the methods in the component implementa-
tion. These are represented by <implementation> and <action> elements. The



A Component Framework for HPC Applications 543

<action> elements specify the bindings to ports and the location of correspond-
ing performance data. The package and location information for the executables
is stored alongside the implementation data in the repository. These are referred
to with <object> elements.

<repository>
<component package="icpc.LinearSource" name="Source" version="1">
<propertyDefinition type="external" name="degrees of freedom" value="1000"/>
<port behaviour="OUT" objectPackage="icpc.Matrix" objectName="DgeRC" portName="matrix"/>
<port behaviour="OUT" objectPackage="icpc.Matrix" objectName="Vector" portName="vector"/>
<implementation language="java" platform="java" url="file:.">
<action portName="matrix">
<binding method="getMatrix"> ... </binding>
<classPerformanceModel type="initial" url="http:" />

</action>
</implementation>
<implementation language="C" platform="Linux" url="file:."> ... </implementation>

</component>
<object package="icpc.Matrix" name="DgeRC" version="1">
<method name="getMatrix" type="action">
<argument mode="out" typeName="DgeRC" typePackage="icpc.Matrix" />

</method>
</object>

</repository>

4 Run Time Representation

When deployed onto a resource the CXML application description is converted
into a run time representation, consisting of a network of Java proxy objects
(JPOs), corresponding to the component instances in the application description
document. This abstraction of the component application enables the dynamic
selection of implementations, cross-component optimisation and implementation
independent management.

Each JPO provides a black box abstraction of the component’s implemen-
tation and acts as the run time interface for the component. Any interaction
between components occurs at the level of the JPO. This provides a means to
trap method calls and select the appropriate implementation when required.

The network of JPOs is created and linked by means of automatic code gen-
eration. The complete application description, including the relevant repository

PMsPMs
P1 P2

BCBC
PMsPMs

P1 P2

BCBC

Execution Object Execution Object

Data Definition 
Object

Native Code Object

Implementation
Definition

Object
Performance

Models

P1 P2

Java Proxy Object

Native Data Object

Binding Code

Port
Definition

Object

Port
Definition

Object

Fig. 2. A component’s Java Proxy Object



544 Nathalie Furmento et al.

data, is compiled from CXML into Java source code. The JPOs, together with
the connections and property information, are represented by this ‘glue code’.

The JPO contains Port Definition Objects, Implementation Definition Ob-
jects, Data Definition Objects and Execution Objects. See Figure 2.

Port Definition Objects (PDO) The CXML <port> element has an attri-
bute ‘type’ that specifies whether it is an IN or OUT port. Each OUT <port>
element has a corresponding PDO. Each IN <port> is represented by a
reference to a PDO of the appropriate type. When the JPOs are created
they are connected according to the application description by setting each
IN port to refer to the appropriate PDO on the connected component. Each
OUT <port> may offer many methods, which may then be called by any
code within the component containing the corresponding IN port. It can be
seen that this system provides a ‘pull’ model of computation.
During execution calls to a PDO are trapped, and an implementation is
selected by examining the relevant IDOs.

Implementation Definition Objects (IDO) Each IDO is associated with a
port. There are likely to be a number of different IDOs for each port, each
representing a different implementation of the port’s methods. The IDO
contains the performance model meta-data for a given implementation, to-
gether with binding code that maps the ports methods to those of the actual
implementation. When a method is called the PDO evaluates the relevant
performance models and makes a decision as to which implementation to
use. The binding code within the IDO maps the methods of the PDO to the
actual implementation within the Execution Object.

Execution Objects (EO) Where an implementation is written in a native lan-
guage (such as C), the execution object is a lightweight wrapper that makes
use of the Java Native Interface [5]. This is responsible for the loading, un-
loading and execution of the native libraries. For pure Java implementations
the EO acts as an intermediary between the actual implementation codes
and the IDO. It should be noted that while there are possibly many IDOs
for each port (corresponding to the different implementation options) there
may also be many IDOs for a given EO. This is because a particular im-
plementation may make use of shared objects and libraries appropriate for

C2 IDOC1 IDO J2 IDO
Implementation
Definition
Objects

Port
Definition 
Objects

J1 IDO

Execution
ObjectsC++ Java

Port 1 Port 2

Fig. 3. Port, Implementation and Execution Objects



A Component Framework for HPC Applications 545

a number of different method calls from distinct ports. To maintain con-
sistency a component will only select one EO at any given time. This is
illustrated in Figure 3.

Data Definition Objects (DDO) To enable the migration of the component
code between resources, and to allow the implementation selection to be
altered during execution persistent data is stored outside the execution ob-
ject. Thus the JPO needs to retain a reference to any data that may be used
in subsequent method invocations. The format of the data clearly depends
upon the implementation used to generate it. This reference together with
mappings between the data format and Java are stored in a DDO.
Access to the persistent data is by method calls exposed in a PDO. By
forcing calls to use the port mechanism, data access (often a significant part
of a computation) is taken into account by the performance modelling and
selection system. Where data is unavailable the PDO examines the respective
IDOs as described above. Property values (which are stored as pure Java
objects) are refered to by a DDO in the same way as any other data type.
When the JPOs are created from the application description property values
are assigned directly.

5 Implementation Selection

An application begins executing with an initial method call. The relevant PDO is
responsible for the choice of implementation. By forwarding the relevant perfor-
mance models from the IDOs to the framework a decision, based upon estimated
running time, is made as to which implementation to use. The performance
model usually refers to other calls the component needs to make. These calls
are then forwarded to their respective PDOs, where they are trapped and the
performance models returned. Thus a composite performance model for the ap-
plication is built. The port mechanism exposes data movement between compo-
nents allowing the data transfer time to be assessed and subsequently optimised
to eliminate unecessary data copying. The technique is entirely deterministic,
and results in a ‘dry run’ of the application. As each JPO may possess a number
of possible implementations this procedure results in a call graph.

The performance model may also refer to data within the component, for
example a property representing the number of entries in a matrix. As these

Equation

Linear
DisplaySolver

Matrix

Vector
Vector

Component instance

Dataflow connectors

Data type

Fig. 4. Linear Equation Solver



546 Nathalie Furmento et al.

properties may change during execution, or may not be known at start-up, the
implementation decision can only take place during execution. The run time
representation allows such a change of implementation with little overhead.

6 Example & Results

A composite application that solves a set of linear equations consists of three
component instances; a simple linear equation generator, a solver, and a simple
display component. See Figure 4. This example was used to provide the XML
fragments already shown, and is now used to provide experimental results.

A set of real linear equations is generated from a component with a Java
implementation. These equations are solved by one of two linear solvers written
in C. The first is a direct solver using LU factorisation, whilst the second is an
iterative Biconjugate Gradient method (BCG) [6]. These two algorithms have
different time and memory requirements allowing the JPO to select the most
appropriate implementation for the user-defined problem size. In this example
the display component is only used to verify that the solutions are correct. All
experiments were performed on a single 900MHz PC running Linux. The Java
Native Interface [5] was used to allow access to the C implementations.

Figures 5 and 6 illustrate the performance models for the LU and BCG
implementations. The performance models are generated by fitting curves to
actual performance results. In both cases two curves are fitted to the data, each
covering a range of problem sizes. Note that for the LU solver only the second
curve is shown, as the first curve deals only with small matrix sizes and is not
visible on the graph.

Figure 7 illustrates the execution time for the network, along with the solution
times for a benchmark BCG and LU solver. For small matrix sizes the LU
solution is more efficient, thus the JPO selects this implementation. It can be
seen from the graph that both the network and LU execution times are close.
For matrices of size 725 and larger the BCG method becomes more efficient and

Performance Model (size > 420)
Time to Solve using LU factorisation

Matrix Size

T
im
e
(s
)

2000150010005000

160

140

120

100

80

60

40

20

Fig. 5. Run time for LU solver

Performance Model (size < 310)
Performance Model (size � 310)

Time to Solve using BCG

Matrix Size

T
im
e
(s
)

2000150010005000

14

12

10

8

6

4

2

Fig. 6. Run time for BCG solver



A Component Framework for HPC Applications 547

LU
BCG

Network

Matrix Size

T
im
e
(s
)

2000150010005000

16

14

12

10

8

6

4

2

Fig. 7. Run time for the example sys-
tem

Overhead

Matrix Size

%

o
f
e
x
e
c
u
t
io
n

t
im

e

2000150010005000

100

10

1

0.1

Fig. 8. Overhead from component
network

the JPO selects this approach. This is again visible on the graph as the network
results follow the BCG solution.

The overhead incurred from the use of the network solution is shown in Fig-
ure 8. This is the proportion of execution time that is not spent in computation.
It can be seen from this graph that initially the overheads are high, with the value
decreasing to less than 0.1% as the matrix size increases. The large overheads,
and variations in results, for small matrices are partly due to the inaccuracy in
timings of the system. Fluctuations in the BCG solution times can be attributed
to the variable number of iterations required which effects the relative proportion
of the overhead.

7 Conclusion

We have shown that the solution of a problem described as a set of interacting
components can be implemented successfully. Furthermore it has been shown
that the cost of performing the computation through such a framework is negli-
gible, in comparison to the overall execution, when the problem size is large. In
this case, the overhead appears to be independent of the problem size. Hence it is
clear that the separation of concerns together with layered abstraction provides
flexibility without sacrificing the performance HPC applications demand.

The techniques developed here are not restricted to the example system, but
are applicable to arbitrary component networks and application domains. We
are continuing to develop this framework for distributed parallel components.

References

1. I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1999. 540

2. J. Darlington, P. Au, M. Ghanem, and Y. Guo. Co-ordinating heterogenous parallel
computation. In Proceedings of International Euro-Par Conference, pages 601–614.
Springer, August 1996. Distinguished Paper. 541



548 Nathalie Furmento et al.

3. W3 Consortium. XML: eXtensible Markup Language. http://www.w3c.org/XML.
541

4. S. Newhouse, A. Mayer, and J. Darlington. A Software Architecture for HPC Grid
Applications. In Proceedings of International Euro-Par Conference, pages 686–689.
Springer, August/September 2000. 541

5. R. Gordon. Essential JNI, Java Native Interface. Prentice Hall, 1998. 544, 546
6. William H. Press. Numerical recipes in C : the art of scientific computing. Cam-

bridge University Press, 1988. 546


	A Component Framework for HPC Applications
	Introduction
	Overview of the Component Architecture
	XML Representation
	Run Time Representation
	Implementation Selection
	Example & Results
	Conclusion


