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Abstract. Effective exploitation of computational grids can only be
achieved when applications are fully integrated with the grid middleware
and the underlying computational resources. Fundamental to this ex-
ploitation is information. Information about the structure and behaviour
of the application, the capability of the computational and networking
resources, and the availability and access to these resources by an indi-
vidual, a group or an organisation.
This paper describes an integrated grid environment that is open, ex-
tensible and platform independent. We match a high-level application
specification, defined as a network of components, to an optimal combi-
nation of the currently available component implementations within our
grid environment. We demonstrate the effectiveness of this architecture
through high-level specification and solution of a set of linear equations
by automatic and optimal resource and implementation selection.

1 Introduction

The emergence of computational grids presents a number of challenges for the
future of high performance computing. The grid, as discussed in [1], is defined as
a wide-area network of heterogeneous computing resources, characterised by dis-
tinct administrative domains, and diverse operating systems and architectures.
While it has been demonstrated that computational grids can provide a huge
pool of potential high performance resources, the dynamic nature of the environ-
ment may inhibit efficient high performance computing; resources may become
unavailable at any time, and it is impossible for the application scheduler to
control the availability or dynamic properties of the resources unless it is closely
coupled to a specific architecture.
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The computational efficiency of distributed parallel computing is strongly
determined by network bandwidth and latency, both of which may vary over
time in a grid environment. Thus the optimal mapping of the application code
to the resources can only be achieved if the grid services and scheduling software
are always aware of the application’s requirements. Such actions must also take
place within the constraints of locally defined security and usage policies.

In this paper we demonstrate an extensible component framework which
separates implementations from abstractions, and maintains those abstractions
at run-time.

This paper makes the following contributions:

• the definition of CXML (an XML schema) which is used to describe com-
ponent meta-data and act as a common intermediate language between the
elements of the component framework.

• the separation of component interfaces from their implementations through
abstraction and encapsulation. This enables component portability by en-
abling multiple architecture specific implementations for a given interface.

• the declaration of component behaviour to determine inter-component con-
trol flow dependencies.

• the run-time selection of the best combination of implementations through
composite performance modelling, using the performance and behavioural
component meta-data.

• demonstration of implementation selection for two different user specified
optimisation goals, minimising execution time, and minimising execution
cost.

2 Background

2.1 Abstraction within Scientific Computing

When an applied computational scientist develops a program to solve a particular
problem, they make use of domain-specific knowledge in the construction of the
application [2]. For example, when building a finite element model to determine
cable deflection it is known that the resulting stiffness matrices are symmetrical
and tri-diagonal. This knowledge is used in the act of programming, such as
in the choice of linear solvers and matrix storage patterns. However once the
program is written the abstraction of this knowledge is lost and only the low-
level (typically C++ or FORTRAN) code remains.

Where the programming language utilises high level abstractions as pro-
gramming constructs (such as in object-oriented programming and functional
languages [3–5]), this knowledge may be retained and used in compile-time op-
timisation, but once again may be lost in the translation to low-level high per-
formance executables.

In addition to the end-user’s knowledge regarding the application, a devel-
oper’s knowledge of the performance characteristics and behaviour of a low-level
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library is also lost once it has been linked into an application. Though dynam-
ically linked libraries are not bound until run-time, there is usually little or no
meta-data that describes such libraries that would enable intelligent scheduling,
especially within the context of the computational grid.

Retaining this high-level knowledge (application behaviour, properties, and
low-level performance characteristics) is essential to optimising the implementa-
tion at run-time [6].

2.2 Component Architectures

Component based design is a well established software engineering pattern.
Widely used general purpose component systems include JavaBeans [7], which
is based upon the Java language, CORBA [8], which provides language interop-
erability and Microsoft’s DCOM [9]. These systems provide software bindings
between components, but do not maintain any form of high-level information or
meta-data.

There are also practical examples of component based systems in use within
high performance computing, including the Linear System Analyser [10], the
Common Component Architecture [11] and Ligature [12]. These systems provide
additional compositional meta-data beyond the basic software bindings provided
by CORBA, DCOM etc. However they do not exploit performance data to guide
component optimisation, and implementation selection is not developed fully.

Component based design is intended to replicate the assembly line process
of mechanical engineering within software engineering, by providing methods of
encapsulation and abstraction that enable separate development of an individual
component without causing disruption to those components that are dependent
upon it. Encapsulation is ensured through requiring all context dependencies to
be made explicit in the component interface, which is also an abstraction of the
component.

2.3 Components within a Grid Environment

In order to exploit the high-level information for scheduling in a grid context it is
necessary to adapt the component based design pattern to provide the portabil-
ity, mobility and high performance while retaining the facility to maintain and
export the required component meta-data at run-time.

The separation between the high-level abstraction and low-level implemen-
tation allows multiple implementations to exist for a single abstraction. Within
the conventional component-based design paradigm, this feature is used to pro-
vide robust incremental software development over time, by allowing distinct
implementations of a given interface. This separation may also be used to en-
able portability of the high-level abstraction, by providing architecture specific
implementations of a machine independent abstraction. In the context of a com-
putational grid, the availability of resources may change during run-time, hence
efficient deployment within a dynamic resource environment may necessitate
changing the implementation of high level abstraction during execution.
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To support the information gathering and deployment phases of application
execution between different resources and organisations, we are developing a
grid middleware that consists of distinct private and public areas. This grid
architecture operates at a comparable level of abstraction to the Legion system
[13]. An implementation of this architecture, using Java and Jini, is being tested
over our local resources and is being used to support this work. Details of this
architecture may be found elsewhere [14, 15].

3 An Extensible Component Framework

We have defined a distributed environment for component based design and de-
ployment that makes use of component meta-data and the separation between
interface and implementation. As such it is specifically designed for use within
a dynamic heterogeneous resource environment where many correct implemen-
tations may exist for a single component interface.

This framework consists of a number of distinct tools, which are related
through the common use of an intermediate language. This is the Component
- eXtensible Markup Language, or CXML, which is a realisation of the XML
meta-language [16]. This language provides a means by which the diverse units
of the framework may communicate, and is used to describe the meta-data for
the abstract components, the component implementations, resources and appli-
cations.

The framework is outlined in Figure 1. The tools are geared towards distinct
user roles in the design cycle; there is a separation between the end-user, who
wishes to utilise existing component abstractions to complete a problem solution,
and the developer who wishes to provide components and component meta-data
for end-user use. The design and deployment cycle for an application in the
framework is straightforward.

1. Component specification When a new component is developed, its com-
ponent specification (a CXML document) is placed in the component repos-
itory, together with meta-data that describes its behaviour and interface.

2. Component Implementation All components must have at least one im-
plementation. Each component implementation corresponds to a particular
component specification. New implementations are placed within the repos-
itory, along with meta-data describing their performance characteristics and
resource requirements. The implementation meta-data is a CXML document,
distinct from but linked to the component specification.

3. Problem Definition A new application is created by composing instances
of the abstract components within the repository. The possible compositions
are indicated by the component meta-data. The end-user may use tools such
as a problem solving environment to produce the application description
document, which is a CXML specification of the complete component com-
position.

4. Run-Time Representation At deployment, the application description doc-
ument is converted to an active Java representation of the application, by
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Fig. 1. Extensible Component Framework

utilising the component specification meta-data within the repository. This
run-time representation encodes all the meta-data for the component ap-
plication, and is maintained throughout the deployment of the application
allowing further run-time optimisations to take place.
The run-time representation is described more fully in [17], where it is
demonstrated that for a simple example the run-time overheads of such a
mechanism are within acceptable bounds.

5. Implementation Selection The application mapper uses the run-time rep-
resentation, meta-data describing the available resources, provided by grid
information services, and implementation meta-data found in the repository
to decide which of the available resource and implementation combinations
are to be chosen for the application’s components. This is encoded in an
execution plan, which is passed to the grid deployment services for execu-
tion. The application mapper uses composite performance modelling, as pro-
scribed by the execution behaviour encoded in the component meta-data to
enable its decision making process.

6. Run-time optimisation During execution the grid resources may change,
due to unforeseen circumstances, administrative actions, network issues, etc.
At any point the grid services may return to the application mapper, which
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can then recreate a new execution plan utilising the latest resource informa-
tion.

All of these tools are essentially independent; though they all use CXML as a
target language, and utilise CXML specified information, they may be developed
independently. The component framework itself may be thought of as a compo-
nent based system, with CXML as a unified but extensible interface. The grid
information and deployment services do not depend upon the potential struc-
tures of the component application systems, nor are the component applications
dependent upon the format of the grid services.

A prototype environment has been produced to demonstrate the design pat-
tern described above, providing a visual environment that allows access to repos-
itory meta-data, application composition and resource acquisition through grid
services. This is described fully elsewhere [18].

4 Meta-Data for Run-Time Optimisation

Throughout this section we examine a simple example application to demon-
strate the various features of the framework.

Example: Linear Equation Solver. A canonical example of a high perfor-
mance computing problem is the solution of systems of linear equations in par-
allel. Such computation regularly occurs in a wide range of scientific computing
problems. When this application is represented as a component system, it con-
sists of three component instances; a simple linear equation generator, a solver,
and a simple display component. These are connected as shown in Figure 2.
While it is highly unlikely that such simple problems as the solution of linear
systems would use the computational grid, components such as these are likely
to form the basis of larger more complex scientific problems (as described in
section 7).

Vector
Equation

Linear
DisplaySolverUnknowns

Vector

Matrix

Data typeComponent Instance

Dataflow connectors

Fig. 2. Linear Equation Solver
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4.1 Interface Meta-Data

The repository contains meta-data that describes the interfaces for component
types. A component type may have methods which are grouped into ports, and
public data values, which are accessed via these ports. Outports are typed col-
lections of available methods, and inports are typed references to the outports of
other components. This port mechanism allows the composition of components.
Data values are represented by data elements. The CXML meta-data describ-
ing the component interface for the linear equationsolver shown in Figure 2 is
indicated in Figure 3 below:

<component package="icpc.LinearEquationSolver"

name="LinearSolverRowsColumnsUnsymmetric" version="1">

<parent package="icpc.framework.core" name="Component" />

<inPort objectPackage="icpc.framework.core" objectName="Integer"

portName="unknowns" />

<inPort objectPackage="icpc.Matrix" objectName="DgeRCj"

portName="matrix"/>

<inPort objectPackage="icpc.Matrix" objectName="RealVector"

portName="vector"/>

<data exposure="public" objectPackage="icpc.Matrix"

objectName="RealVector" dataName="solution" >

<outPort>

...

</outPort>

</data>

</component>

Fig. 3. CXML fragment: Linear Equation Solver Component

4.2 Application Descriptions

As a component may have state, a realisation or instance of a component type
is distinct from the abstract component type itself, in an analogous fashion to
the distinction between object and class in object oriented design.

An application description consists of a composition of component instances.
This composition is based upon the port mechanism, which encapsulates method
calls and data access between components. The ports are linked by connectors
that represent dataflow between the components.

The application description document for the example shown above is given
in Figure 4.

4.3 Behaviour Specification

Implementation selection requires analysis of the behaviour of the composite
application, for while a performance model may be supplied by a developer as
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<application>

<network>

<instance componentName="Source"

componentPackage="icpc.LinearSource" id="1">

<property name="degrees of freedom" value="100"/>

</instance>

<instance componentName="Solver"

componentPackage="icpc.LinearSolver" id="2"/>

<instance componentName="DisplayVector"

componentPackage="icpc.Matrix" id="3"/>

<dataflow sinkComponent="2" sinkPort="matrix" sourceComponent="1"

sourcePort="matrix"/>

...

</network>

</application>

Fig. 4. CXML Application Description fragment

implementation meta-data, the composite performance of the complete applica-
tion depends upon the relationship between the components of the application.
Component context dependencies must be explicit by definition [19], and as such
must be specified within the high-level abstraction.

Such analysis does not require a detailed programming language semantics
that expresses the complete behaviour of the component’s implementation, but
must indicate where a method call on a given component results in subsequent
calls to other components, and in what fashion such calls are made. Behavioural
specifications are implementation independent, as by definition any implemen-
tation that satisfies the interface must have the same external dependencies.

Thus the CXML component meta-data contains a specification of the inter-
component behaviour of all method calls, but does not describe that behaviour
which is internal to a given component. Behaviour is indicated for any method,
and is hence attached to the component specifications for its outports. The
behavioural specification is a recursive structure, built from <block> elements.
The leaves of this structure are either <call>s, which indicate a method of the
implementation is to be called, or <get> and <set> tags which indicate access
to data elements which may be on other components (accessed via the port
mechanism). The behavioural CXML also includes elementary control structures
such as conditional and iteration elements.

In the linear equation solver example the source component possesses a
Boolean <data> element which acts as a flag to indicate whether the matrix
and vector have been generated. When a call arrives requesting either the ma-
trix or vector, this flag is checked. If the data has been cached, it is supplied
directly. Where it hasn’t yet been generated, both matrix and vector are cre-
ated simultaneously (as they represent left and right hand sides of the linear
system their creation is a single process). This CXML behaviour is expressed in
Figure 5.
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<component package="icpc.LinearEquationSource"

name="LinearEquationSourceRowsColumnsUnsymmetric" version="1">

<parent package="icpc.framework.core" name="Component" />

<data exposure="private" objectPackage="icpc.framework.core"

objectName="Boolean" dataName="generated">

<default>FALSE</default>

</data>

<data exposure="property" objectPackage="icpc.framework.core"

objectName="Integer" dataName="unknowns">

<default>10</default>

</data>

...

<data exposure="public" objectPackage="icpc.Matrix"

objectName="DgeRCj" dataName="matrix">

<outPort>

<behaviour method="getMatrix" >

<block execute="sequential" >

<conditional dataName="generated" >

<false>

<block execute="sequential" >

<call portName="equations" method="create"/>

<set dataName="generated" >TRUE</set>

</block>

</false>

</conditional>

<return/>

</block>

</behaviour>

</outPort>

</data>

...

</component>

Fig. 5. CXML: Linear Equation Source Component

This demonstrates that the relationship between a component’s behaviour
and the meta-data may change at run-time. In this example the altering of the
meta-datum generated is trivial, but changes the way in which the matrix and
vector are accessed, which may be non-trivial for larger problem sizes within a
grid environment.
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4.4 Implementation Selection and Component Parameterisation

The run-time representation consists of a network of Java objects represent-
ing the various elements of the application description and component meta-
data [17].

The application mapper has a number of possible ways of optimising the
component deployment. The first of these is implementation selection. A given
component’s run-time representation may accept any number of available imple-
mentations at run-time, and it is the role of the application mapper to choose
the appropriate implementation for the available resource.

The application mapper selects an implementation for each component on
the basis of the composite performance model of the application. As such it
utilises the behavioural information to create a directed acyclic graph of the
application’s method calls, and from this compare the different possibilities for
implementing the run-time representation. The recursive nature of the behaviour
specification allows the composition of a performance model from atomic per-
formance models of implementation method calls, provided as implementation
meta-data and stored within the repository. These are assembled into a tree
structure which representing the application’s method calls (see Figure 6). To
produce a composite performance model the tree is traversed by the application
mapper, and those nodes of the tree that represent implementation method calls
(represented by ellipses) contribute their performance model to the composite
total. Different behavioural elements (iteration, concurrency etc.) allow different
ways of composing these atomic models.

Where an application is distributed across multiple platforms, it is possible to
utilise the application description and attendant component meta-data describ-
ing the application’s dependencies to evaluate data transfer costs and schedule
the deployment effectively.

While the application mapper may be extended to utilise any heuristic to per-
form the implementation selection, it currently provides a deterministic model,
and requires empirical performance models of the implementation methods. We
intend to use the principles developed in the AppLeS project to select imple-
mentations with complex parameterised performance models [20, 21], and to in-
corporate stochastic network information.

As the run-time representation is maintained alongside the executing imple-
mentations, it is possible for the application mapper to re-evaluate the imple-
mentation selection at any time during the application’s execution. The run-time
representation enables persistent data to be maintained between implementa-
tions [17]. In addition the application mapper may parameterise meta-data at
run-time according to the resource. For example the block-size of a parallel ma-
trix implementation, or the time step size of a finite difference problem may be
customised when run-time information becomes available. This leads to incre-
mental parameterisation and scheduling.
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5 Implementation Selection without Diagonal Dominance

The linear equation problem (introduced in Section 4) requires the selection of an
implementation for the source and solver components. The current application
mapper builds a composite performance model for every possible combination
of implementations by examining the inter-component control flow dependency
encapsulated within the CXML. The source component generates a random un-
symmetric set of real linear equations, for a given number of degrees of freedom,
through either a C or Java implementation. The solver component has a wide
choice of implementations, some of which are listed in Table 1. The performance
models for the generation of the linear equations and the solution of those sys-
tems of equations are published in the accompanying technical report [22].

System Processor Processors Language Solution

PC AMD 1 Java LU
(Linux) 900Mhz BCG

C LU
BCG

LAPACK LU

Alpha Alpha 1,4,9 ScaLAPACK LU
667Mhz BCG

AP3000 UltraSPARC 4,9,16 ScaLAPACK LU
300Mhz BCG

Table 1. Available solver implementations

In the case of the biconjugate gradient method, an empirical performance
model may be supplied for a single iteration. The number of iterations required
for convergence must be estimated. This estimate is necessarily pessimistic, with
n iterations for a problem with n degrees of freedom. In addition to the cost per
iteration is a small overhead for start up.

6 Implementation Selection with Diagonal Dominance

In many practical problems the matrices representing linear systems are diago-
nally dominant, that is the diagonal terms are significantly larger than the sum of
the other terms within the matrix’s rows or columns. The awareness of diagonal
dominance is end-user knowledge, and may be included as meta-data within the
application and repository information in order to enable further optimisation.

For example, if the linear equation source is replaced with a specifically ‘diag-
onally dominant’ source, the example application is altered to that in Figure 7.

This is represented in the CXML with the addition of the meta-data within
the component description, firstly a data object within the linear equation source
component:
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<data exposure="public" objectPackage="icpc.framework.core"

objectName="Boolean" dataName="diagonalDominance"/>

and as an inport within the solver component:

<inPort objectPackage="icpc.framework.core" objectName="Boolean"

portName="diagonalDominance" />

The performance characteristics of an iterative solver may be known with
greater reliability when the source produces a diagonally dominant matrix; the
number of iterations a biconjugate gradient algorithm takes to converge may be
known with greater certainty than in the case of a matrix where the diagonal
dominance is unknown. Our augmented linear equation source produces matrices
with diagonal terms that are increased in proportion to the size of the matrix.
In general we find that the biconjugate gradient method requires

√
n iterations

to converge when operating on these matrices.

This knowledge may be used to provide distinct performance models for cases
where the source linear system is diagonally dominant. These are provided within
the accompanying technical report [22].

Figure 8 shows the predicted overall execution time for the composite linear
equation system as the problem size increases. The application mapper selects
the best combination of implementations to yield either minimum execution time
(the solid line) or minimum resource cost. The shortest overall execution time is
found by selecting the LU solver over 9 Alpha processors for small problems and
then switching to the biconjugate gradient method for larger problems. When the
selection criteria is based around the cost of the computational resources then
the 1, 4 and 9 Alpha processors with the biconjugate gradient method are used
in turn as the problem size increases. The current composite performance model
does not include the data transfer cost between implementations on different
platforms.

The computational cost resulting from each selection decision is shown in
Figure 9. The total cost of each possible component implementation is evaluated
from the estimated execution time together with the processor count. The cost
per processor per unit time is defined as being equal for all the computational
resources. The cost model forces a balanced approach to optimal resource se-
lection with additional computational resources being used as the problem size
increases.

In Figures 8 and 9 different symbols are used to represent the different im-
plementation selections. The linear equations are always generated in either a
Linux Java or C implementation. The Alpha cluster, the fastest available com-
putational resource, is always used to solve the resulting linear equations.
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7 Conclusions & Further Work

We have demonstrated that the retention and use of high-level knowledge at
run-time allows implementation selection to be guided by the meta-data, and as
such provides opportunities for policy based optimisation to minimise execution
time or resource cost. A framework that utilises component based design to
encode that meta-data and optimise via implementation selection provides high
performance, portability and mobility in a dynamic resource environment.

Further work includes the development of the framework and its subsidiary
mechanisms along the following lines:

Data Movement Costing The incorporation of data transfer costs within the
cost model will allow a better measure of performance across a distributed
environment such as the Grid. As it has been demonstrated that the frame-
work will accept multiple costing schema, the addition of data movement
costs will not require a major alteration of the framework.

Dynamic Optimisation The framework’s extensible structure allows for the
addition of plug-in heuristics to replace the simple ‘examine all possible
configurations’.

Run Time Instrumentation The dynamic optimisation of the application
will require incremental knowledge of performance acheived and resource
conditions. Hence it is intended that the framework be built upon grid in-
strumentation tools, such as the network weather system [23] and the tools
developed as part of the GrADS project [24].

Richer Application Examples Work in progress includes the development of
component annotations of finite difference and finite element code, applicable
to a wide range of scientific disciplines.

Integration into federated Grid community As discussed in [18] and [15],
this work is designed to be integrated with a system of application scheduling
within a federated computational community, to allow the implementation
selection and parameterisation to be combined with resource brokering and
negotiation.

Such extensions to the framework will enable the benefits of component-based
design to be delivered to prospective Grid users and applications.
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Fig. 9. Computational resource cost for the composite application with different num-
ber of unknowns


