ICENI: A Next Generation Grid Middleware

Delivering e-Science

Dr Nathalie Furmento

London e-Science Centre,
Imperial College London, UK

The problem: Thermohaline circulation

- Ocean transports heat through the "global conveyor belt."
- Heat transport controls global climate.
- Wish to investigate strength of model ocean circulation as a function of two external parameters.
- Use GENIE-Trainer.

- Wish to perform $31 \times 31 = 961$ individual simulations.
- Each simulation takes ~ 4 hours to execute on typical Intel P3/1GHz, 256MB RAM, machine ⇒

\[\text{time taken for 961 sequential runs} \approx 163 \text{ days} \]
The Solution:
Delivering Grid Computing Resources

- Use flocked Condor pools between SReSC, DoC at Imperial College London, and LeSC (~200 Linux and Solaris nodes).
- time taken for 961 Condor runs \(\approx 3 \) days!!!

 Advantages of Condor:
 - simulations are nearly parallel.
 - automatic checkpointing and job migration.
 - Condor File Transfer Mechanism.

 Problems:
 - Firewalls! Overcame by designating and utilising port ranges specified by the Condor and firewall admin.

The Results:
Scientific Achievements

- Intensity of the thermohaline circulation as a function of freshwater flux between Atlantic and Pacific oceans (DFWX), and mid-Atlantic and North Atlantic (DFWY).
- Surface air temperature difference between extreme states (off - on) of the thermohaline circulation.
- North Atlantic 2°C colder when the circulation is off.

Next Steps

- Specify Experiment
- Portal
- Job Data
- Analyse Results
- Archive Results
- OGGI
- ICENI

ICENI: Imperial College e-Science Network Infrastructure

- Interoperable and Integrated Grid Middleware
- Service Oriented Architecture (SOA) with rich Metadata Description
- Augmented Component Programming Model
- Service Federation govern by Usage Policy and Service Level Agreement
- Foundation for higher-level Services and Autonomous Composition

Contract (SLA) Specified Services within ICENI

- CLIENTS (USERS)
- Compute Resources
- Service API
- Jini
- Jxta

Current Service Implementations

- Discovery API
- ICENI Core Middleware
- Netbeans
- Portal
- SOA Implementation Technology

Service Implementation
- Jini
- Jxta
- OGSA

Client Side Tools
Netbeans ICENI Service Browser

ICENI Portal
Specify location of service community

ICENI Portal
View available services

Composing and Submitting an ICENI Application

Scheduling job over Resources

ICENI Semantic Service Adaptation Framework

- Semantic Matching Service performs service discovery based on Requirement of the Client and Capability of Available Services
- Adaptation Service adapts requirement interface to service implementations.

```
add3(int a, int b, int c) sum(int[] a)
```

```
1,2,0 int[] {1,2}
```

```
AddService.add(1,2)
```
Prototype Implementation

- Semantically annotate Services with RDF and OWL (ontology)
- Semantically matching Services using the Euler inference engine
- Service Adaptation using graph transformation rules

Demonstration

- The movie of the demonstration is available at:
 http://www.lesc.ic.ac.uk/iceni/demos.html
 Item “Semantic Matching Service”

ICENI: An integrated Grid Middleware

http://www.lesc.ic.ac.uk/iceni/

ICENI Release 1.0 available !!!

- ICENI Open Source licence (extended SISSL)
- Project website & mailing lists
- Daily builds, regression & automated deployment tests
- Documentation, manuals & user guide

Acknowledgements

- Director: Professor John Darlington
- Technical Director: Dr Steven Newhouse
- Research Staff:
 - Anthony Mayer, Nathalie Furmento, Stephen McGough
 - James Stanton, Yong Xie, William Lee
 - Marko Krznaric, Murtaza Gulamali, Asif Saleem
 - Laurie Young, Gary Kong, Jeffrey Hau, Angela O’Brien
- Support Staff:
 - System:
 - Keith Sephton, David McBride
 - Operation
 - Susan Brookes, Oliver Jevons
- Contacts:
 - E-mail: lesc@ic.ac.uk
 - Web: http://www.lesc.imperial.ac.uk