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Abstract. This technical report details the performance models used
for determining the most optimal selection of components for our sys-
tem. The techniques for generating these performance models is also
described.

1 Introduction

In order to determine the best selection of component implementations, based
on execution time, cost or some other criteria, it is essential to be able to predict
with some level of accuracy the requirements of each implementation. Computa-
tion of resource requirements such as memory usage can normally be determined
accurately from inspection of the source code. However, determining the execu-
tion time for a particular implementation may not be as straight forward.

In this report a number of performance models are presented for the gener-
ation of sets of linear equations and their solution via different techniques. The
technique used for generating these models is also outlined.

Tables 1 and 2 indicate the source and solver implementations that are avail-
able for this report.

System | Processor | Processors Language
PC AMD 1 Java
(Linux) | 900Mhz
Alpha Alpha 1,4,9,16 | ScaLAPACK
(Atlas) | 667Mhz

Table 1. Available source implementations



System Processor Processors Language Solution
PC AMD 1 Java LU
(Linux) 900Mhz BCG
C LU
BCG
LAPACK LU
Alpha Alpha 1,4,9,16 ScaLAPACK LU
(Atlas) 667Mhz BCG
AP3000 | UltraSPARC 4,9,16 ScaLAPACK LU
300Mhz BCG

Table 2. Available solver implementations

2 Generating Performance Models

In all cases the models are based on actual performance results. The technique
for generating these modles is outlined below, illustrated by the 9 processor linear
equation generator on the Atlas. All other performance models were generated
in a similar manner.

A simple Java wrapper is written around the implementation. This allows for
the implementation to be executed and timings to be recorded. A set of these
execution timings can be seen in figure 1 below.
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Fig. 1. Raw results for a 3 x 3 grid generating sets of linear equations.
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A curve is then generated that approximates the initial data set using the
least squares approach. Polynomials of varying degrees (1-10) are tried in order to
determine which gives the best fit. Often with these curves, a different polynomial
is required for different ranges of unknowns. The initial polynomial is checked
for points at which it fits the original data well and points where it is most
inaccurate. Polynomials are then fitted to each of these intervals, again trying to
determine the best degree. Each sub-interval curve is then compared along with
the adjacent curves and the initial data to determine the best point to switch
between adjacent curves. In the case of the nine processor generator this gives
two curves:

if (size > —1.0 && size <= 4101.0)

time = 1.25514421974467458 + 2.7144007296198618 5 * size+
4.0451867125361384 8 % size * size
else
time = 4.4399451058772966 17 + 1.3439520756667027 12 x size+
4.31306233957342178 x size x size

In the case of the Biconjugate Gradient method two curves are generated
for each implementation. The first represents the startup time required by the
solver, and the second is the time required for each pass through the iteration
loop. These can be combined to give the total predicted execution time for the
implementation:

time = startup + i x iterationTime, (1)

where ¢ is the number of iterations to be performed.

3 Performance Models

Figure 2 shows the expected performance models for the generation of linear
equations. Figure 3 illustrate the performance models for generating the linear
equations in parallel for the Atlas cluster. It can be seen from these graphs that
there are optimal implementations to select for different numbers of unknowns.

Figures 4, 5 and 6 illustrate the performance models for solving the systems
of linear equations on the sequential Linux workstation and the clusters of Sun
and Alpha processors.
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Fig. 2. Performance model for single processor Linux generation of linear equations
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Fig. 3. Performance model for parallel generation of linear equations on a cluster of
Alpha processors
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Fig. 4. Performance model for single processor Linux solvers

10000 -

1000 [~

100 |~

10 -

Time (s)

0.01 |~

0.001 -

0.1—____—"_—‘—

0.0001 f=~ 7

1000

Number of unknowns

Fig. 5. Performance model for parallel solvers on a cluster of Sun processors
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Fig. 6. Performance model for parallel solvers on a cluster of Alpha processors

The following models utilise knowledge of the linear system’s diagonal dom-

inance:



1000

100
Time (s) 11 - ]

0.1 // =
001 - __

BCG ——

LUl i

0.001 [ - | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of unknowns

Fig. 7. Performance model for single processor Linux solver i = /n
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Fig. 8. Performance model for parallel solver ¢ = \/n on a cluster of Sun processors
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Fig. 9. Performance model for parallel solver ¢ = y/n on a cluster of Alpha processors

Figure 7 illustrates the expected execution times for the solvers on the Linux
box when the digonal dominance is chosen such that the numnber of iterations
required for the BCG solver is approximatly equal to the square root of the
number of unknowns. Likewise figures 8 and 9 illustrate the expected execution
times on the AP3000 and Atlas clusters, under the same diagonal dominance.

It can be seen from Figures 8 and 9 that where there are a large number of
unknowns in a system deployed upon a small number of processors the predicted
execution time may become very large. This is due to the limited memory avail-
able to each processor. Such characteristics may be included within the CXML
component descriptions.



