
ICENI Dataflow and Workflow: Composition and Scheduling

in Space and Time

Anthony Mayer Steve McGough Nathalie Furmento William Lee
Steven Newhouse John Darlington

London e-Science Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Email: lesc-staff@doc.ic.ac.uk

Abstract

With the prevalence of component based and service oriented architectures used to support
e-Science activities, we examine different views of application composition supported within
these systems, which tend to be spatial composition in the former case, and temporal compo-
sition (workflow) in the latter. We consider the advantages of each view; spatial composition
enables, dynamic programming, while temporal composition provides information useful for
performance analysis. ICENI uses a spatial composition view to allow maximum flexibility, but
provides an inferred temporal composition to support scheduling optimisation. We describe
the graph based language used to annotate component behaviours, and discuss optimisations
derived from estimating execution time - with or without loops - and resource sharing. Two
examples drawn from e-Science pilot projects are used to illustrate these techniques.

1 Introduction

1.1 Component and Service Ori-
ented Architectures

In order to deliver e-Science, applications re-
quire transparent configuration and deploy-
ment within a grid environment. This require-
ment is driving the increasing interest in com-
ponent based programming models and ap-
proaches to application assembly. e-Science
applications typically require multiple software
resources even where the core application is
a monolithic code - visualisation, collabora-
tion, database access, file transfer support and
numerous other auxiliary features are often
called upon, hence the seamless deployment
of a composite application is at the heart of
the e-Science enterprise. Existing component
based systems designed for Grid and high per-
formance support include the Common Com-
ponent Architecture [1] effort in the United
States, and Triana [9] and ICENI [5] within
the UK.

A parallel but in many cases separate de-
velopment path in the Grid community has
been the adoption of the service oriented mech-

anisms pioneered and developed in the B2B
sphere of E-Commerce. Mechanisms such as
Jini, Jxta and Web Services enable the pro-
cess of publishing and discovering resources,
whether software, hardware, or information, on
a very large distributed network, typically the
internet, and to cope with issues such as vari-
able performance and unreliability. The Global
Grid Forum has ratified the first standards doc-
ument, the Grid Service Specification [10], for a
Grid based service architecture (OGSA) based
on Web Services.

ICENI (Imperial College e-Science Net-
worked Infrastructure) features an implemen-
tation independent service oriented architec-
ture, providing a core API which can be
mapped either onto Jini or a prototype Jxta
implementation. Additionally all services can
be presented as GT3-based Grid Services by
using a gateway service [3]. On top of this
core API is a component based runtime frame-
work, which uses open extensible XML meta-
data descriptions of components to support the
deployment process, together with higher level
services, such as client-side tools, domain and
identity managers, and scheduling and launch-
ing services.

Proc UK e-Science All Hands Meeting 2003, © EPSRC Sept 2003, ISBN 1-904425-11-9

627



1.2 Relationship between Ser-
vices and Components

As ICENI provides component based program-
ming model together with a service oriented
architecture, it is well placed to serve as a case
study for the intersection of component and
service based systems, in particular the repre-
sentation of the composite application. The is-
sue of representing how a desired application
or activity is to be composed from its con-
stituent parts, whether they be components
or services, is of importance, particularly since
service based models tend to favour a temporal
view of composition, and component systems a
spatial one. We shall examine how both views
are expressed in ICENI and other systems, and
the benefits from using both orthogonal models
to understand the composition.

2 Views

The composition we describe is not of the run-
time structure, the architectural plumbing that
supports the interaction between components
or services, which in any case is very specific
to each system, whether it be SOAP messages
or sockets, or some other technology. Nor in
terms of the abstract description of a compo-
nent or service, which in either case is almost
always based on a interface / ports model, but
rather in terms of the context in which the
units are being assembled.

There are at least two orthogonal views of
an application composition,

Spatial Composition With this view of
composition, all the units that make up
the application are represented simul-
taneously, with detail representing how
they relate and interact with each other.
There is no ordering between the units.
It is implicit that all the units exist con-
currently, and while they may exist on
the same machine, perhaps on the same
processor, they require independent and
distinct resource commitment (memory
space, some proportion of the processor’s
time etc), which is not shared. Connec-
tions in a spatial composition represent
movement of data (whether through calls
or streams).

Temporal Composition Under this view-
point, all units are ordered with respect

to their temporal dependence. Concur-
rency, where it exists, is explicit. A tem-
poral composition may include instances
that at no time exist simultaneously, and
thus may share resources. Connections
in a temporal composition represent se-
quencing of activities; it is a workflow
view.

These two aspects of description exist for
any composition, but a particular view of a
composition illustrates only the single model.

3 Expressing Spatial Com-
position

Spatial composition is analogous to declara-
tive programming in that no procedural as-
pects are explicitly described. It is a form
of expression that is extremely easy to rep-
resent using a visual programming paradigm,
and within ICENI we utilise two different vi-
sual programming tools to support spatial ap-
plication composition. The first is a dedicated
java Swing based tool for application launch-
ing, the second is a plugin to Sun Microsys-
tem’s integrated Netbeans environment which
provides additional facilities and views to the
user.

In both cases a component is represented
by a rectangle on screen, and an application a
set of rectangles, connected between ports by
pipes that represent potential interactions be-
tween the components. This model is familiar
to scientists, as it resembles a wiring diagram
for electronics, flow diagrams in hydraulics,
and organisational and mechanical processes.
It is a highly intuitive form - and inherently
functional.

This is not to say that a spatial view of
composition can only be represented by a vi-
sual programming model. The underlying doc-
ument that represents a composition in ICENI,
known as the execution plan, is derived from
the visual representation. This script has three
essential elements, “create new component ser-
vice instance”, “reference to existing compo-
nent service” and “establish a new link be-
tween two component services”. There is no
ordering information in the execution plan. Of
course the statement to create a new compo-
nent instance is extremely detailed, and is sub-
sequently augmented with annotations provid-
ing additional information by scheduler and

Proc UK e-Science All Hands Meeting 2003, © EPSRC Sept 2003, ISBN 1-904425-11-9

628



application mapper services (the latter choos-
ing an implementation for the abstract com-
ponent chosen). Nevertheless, the same spa-
tial composition is represented in a textual
form. While creating execution plans by hand
in with a text editor is cumbersome and un-
suitable, there is no reason why a spatial com-
position could be expressed with a clear and
elegant scripting system, or even using an al-
ready known scripting system such as Perl or
Python.

The spatial view of composition is used by
other systems comparable to ICENI, such as
Triana, and is the model used by the Common
Component Architecture group.

3.1 Enhancements to Spatial
Composition

This simple expression system can be aug-
mented with the use of operators that can be
applied to components or links. Within ICENI
we make use of the quantity operator, which
can be applied to a new component instance,
to represent the creation of an arbitrary num-
ber of new instances. This is not represented
within the visual environment, in order to re-
duce the complexity of the diagram presented
to the user, and thus the cognitive load they ex-
perience. An example is the parameter sweep
discussed below in Section 3.3.1. The applica-
tion mapper expands the execution plan auto-
matically to produce the required number of
component instances.

Within ICENI components are connected
by abstract communication links which exist
between ports. A user-defined component may
only have ports that accept one-to-one con-
nections. Multiple connectivity is provided
by special collective communication compo-
nents, each with a particular behaviour. One-
to-many collectives include broadcasts, split-
ters (in which large data set messages are di-
vided and routed to the appropriate receiver),
routers and filters. Many-to-one collectives in-
clude gatherers, buffers, and funnels (which
simply act to route messages to a single re-
ceiver).

When a user defined component with a
quantity operator is connected to another user
defined component with a quantity operator,
the connection is only deemed valid when the
quantities are the same. In this way NxN con-
nections are allowed, but NXM are not - the

complexities of the mapping require user guid-
ance and cannot be automated. If such an NxN
mapping occurs, the ports are connected pair-
wise.

Where a user defined component with a
quantity operator is attached to a single multi-
way port on a special collective component, the
mapping is also allowed, and is performed in a
one-to-many fashion. This is demonstrated in
Figure 1 below.

3.2 Comparative Advantages of a
Spatial Composition

The spatial composition view really comes into
its own in terms of dynamic component assem-
bly. An existing application can be viewed in
terms of a spatial composition, and can then
be modified easily by adding new components,
deleting or adding new links etc. This is sig-
nificantly more difficult in a temporal compo-
sition, as the act of adding to the composition
occurs at some moment in time, and as such
only modifications to future plans are possible.
As the user examines the application, the con-
tent that is meaningfully modifiable changes,
and worse, any changes could have different se-
mantic impact if made at different times. Thus
transparent, dynamic programming requires a
spatial composition.

Within ICENI all deployed components ap-
pear individually as Grid Services, but addi-
tionally each application submission also ap-
pears as an additional Grid Service, represent-
ing the composition. This parent service can
provide its own execution plan to a client tool,
which enables the e-Scientist to modify the ap-
plication at run-time. This has been of par-
ticular interest in the development of collab-
orative visualisation environments in connec-
tion with Access Grid, allowing multiple par-
ties to connect to a complex composite applica-
tion, adding their own visualisation and steer-
ing components during the process of the sim-
ulation. It is to support capabilities such as
these, essential for deliver of e-Science, that
ICENI uses a spatial composition model as
its primary method of expressing application
structure.

Proc UK e-Science All Hands Meeting 2003, © EPSRC Sept 2003, ISBN 1-904425-11-9

629



3.3 e-Science Applications Ex-
pressed with Spatial Compo-
sition

3.3.1 Example A: Parameter Sweep

Parameter studies are a common form of e-
Science application: within the London e-
Science Centre experiments are being per-
formed to deploy highly distributed BLAST
searches 1. Figure 1 illustrates the spatial com-
position of such an application, with the use
of two simple collective communicators. To
avoid excessive drag-and-drop, the user con-
nects a single BLAST representation between
the splitter and the collector, and states the
number of BLASTs required. The application
mapper expands the spatial representation au-
tomatically.

Figure 1: Example A: Parameter Sweep’s Spatial
Composition

Setup

BLAST 1

BLAST 2 Display

...

BLAST 3

DisplaySetup BLAST 

x 10

3.3.2 Example B: GENIE

Grid Enabled Integrated Earth system model
(GENIE) 2 aims to simulate the long term evo-
lution of the Earth’s climate, by coupling to-
gether individual models of the climate sys-
tem. The constituents may include models for
the Earth’s atmosphere, ocean, sea-ice, marine
sediments, land surface, vegetation and soil,
hydrology, ice sheets and the biogeochemical
cycling within and between components. GE-

NIE aims to be a modular and scalable simu-
lation of the Earth’s climate, allowing for indi-
vidual models in the system to be easily added
or replaced by alternatives.

Figure 2 illustrates the organisation of the
application. The simulation components com-
municate with each other through an integra-
tion component. This component also per-
forms tasks requiring data from all the sim-
ulation components (e.g. describing the heat
exchange between the surface of the ocean and
the base of the atmosphere), and is designed to
be extendable to allow further simulation com-
ponents to be added to the system in future.

A control component manages the flow of
information between each of the components
in the GENIE framework. It also allows com-
munication of the simulation data with exter-
nal resources such as visualisation and steering
components.

Figure 2: Example B: GENIE’s Spatial Compo-
sition

Setup Control Integration

Atmosphere Ocean Sea-ice

Display

...

4 Expressing Temporal
Composition

Temporal composition is typically expressed in
a procedural fashion, in which the ordering of
interactions is important. Temporal composi-
tion is essentially the workflow of the applica-
tion.

There are numerous modelling mechanisms
which support the description of changing
state and interaction of application compo-
nents. Petri net based models, clearly ex-
press the ordering and dependency of appli-
cation activities, and allow a wealth of pre-
vious research and literature to be utilised in

1as part of the Proteome Grid, an e-Science Pilot Project funded by the Biotechnology and Biological Sciences
Research Council

2an e-Science pilot project funded by the Natural Environment Research Council

Proc UK e-Science All Hands Meeting 2003, © EPSRC Sept 2003, ISBN 1-904425-11-9

630



exploiting the information. Conversely, state
transition systems provide an alternative graph
based model, with nodes representing complete
system states, and arcs transitions [11]. Such
graph based models allow both a textual and
visual representation, in the manner of a flow
chart, of the composition.

Application workflow is usually described
either with a textual scripting language that
is used to provide the “glue” that links units
together, or a special bespoke workflow lan-
guage, of which a great many exist and are
discussed in the literature. For Web Services,
there have been a number of efforts to pro-
duce a workflow description language, which
in effect describes the temporal composition of
web services. These include BPEL4WS (Busi-
ness Process Execution Language For Web Ser-
vices) [2], WSCI (Web Services Choreography
Language) [6] and other earlier efforts. Though
no standard has yet been agreed upon, experi-
ments have begun with Grid Service Workflow
Languages, such as GSFL [7]. All of these ef-
forts are textual in representation.

4.1 Workflow within ICENI

ICENI’s primary view is a spatial one, as de-
scribed above. Nevertheless there is value in
being able to describe the temporal compo-
sition of an application. Thus the temporal
dependency is a derived view, in that the ap-
plication must first be defined with a spatial
view, and additional information, provided by
the component developer (and stored as meta-
data describing the component’s behaviour [8])
is used to provide a workflow view of the ap-
plication.

Within ICENI we use a model similar to
that of YAWL (Yet Another Workflow Lan-
guage) [12], but simplified in certain respects.
Each component has attached workflow infor-
mation information, which consists of a graph
in which the directed arcs represent temporal
dependence i.e. a node’s behaviour occurs after
those which have an arc directed to it. Each
node represents some behaviour, and the be-
haviour happens in an ordered fashion, begin-
ning with the Start nodes, and finishing with
the Stop nodes. The types nodes include:

Activity Represents computation and com-
munication that occurs within the
bounds of a component. An activity has
duration, and possesses one child and one

parent arc.

Send, Receive Communication through the
component’s interface is indicated with
such nodes. Send has a single parent arc,
receive a single child arc.

Start, Stop These nodes represent the
creation and destruction of threads.
Though they have no duration, they can
occur at arbitrary points in a compo-
nent’s or application’s lifecycle, as new
threads spawn or are terminated. Start
has a single child arc, stop a single par-
ent.

AndSplit This node represents concurrency,
in terms of spawning a new thread or
threads. All the children of this node are
activated simultaneously. AndSplit has
a single parent arc, but possibly many
child arcs.

OrSplit This node represents choice within
the workflow. Each arc may be given a
condition, or a probability, that they will
be followed. The child arcs of an OrSplit
are exclusive - only one can be followed.
OrSplit has a single parent arc, but pos-
sibly many child arcs.

AndJoin The counterpart to AndSplit, this
represents the end of concurrent execu-
tion. All parent arcs must be activated
before the child arc is activated. In this
was the AndJoin acts as a barrier syn-
chronisation. Naturally it has possibly
many parent arcs and a single child arc.

OrJoin Similar to AndJoin, the OrJoin re-
quires only one of its parent arcs to tran-
sition before the child arc is activated.
Thus it allows multiple branches of work-
flow to converge to a single set of actions.

Once the components and links of an appli-
cation are determined by the spatial compo-
sition, the execution plan is parsed, and each
component’s workflow is connected to produce
a complete application workflow. The appli-
cation graph is assembled due to the associa-
tion between Send and Receive nodes with the
component’s ports. As the ports of two com-
ponents may be linked within the execution
plan, an additional arc is added which makes
the Send the parent node of the Receive on the
corresponding component.

Proc UK e-Science All Hands Meeting 2003, © EPSRC Sept 2003, ISBN 1-904425-11-9

631



The application workflow is presented in
graphical form upon submission of the appli-
cation, and is allows the e-Scientist to examine
the Activities of the application. By attaching
each node to a line representing it’s containing
component, the effect is similar to that of a
UML activity diagram - a model that is read-
ily recognisable by end users.

4.2 Comparative Advantages of a
Temporal Composition

A temporal, workflow view provides informa-
tion unavailable to a spatial view, concerning,
naturally, issues such as the concurrency struc-
ture of the application, execution times, and
scheduling. Within ICENI, once the tempo-
ral view is derived from the spatial one, in-
formation can be extracted and passed to the
scheduling service, a key part of the ICENI
stack, which can utilise this in decision mak-
ing regarding placement of new component in-
stances.

4.2.1 Execution Time

The most information that can be gleaned from
the workflow graph is the maximum expected
execution time - found by searching for the
critical path through the graph from any start
node to all stop nodes. This can be determined
recursively with a simple algorithm.

By determining the expected expected exe-
cution time on a number of different platforms
(assuming that the Activity Nodes have an-
notations giving performance models for dif-
ferent platforms) composite models of applica-
tion performance can be compared, and this
comparison used by the scheduling service [4].
Note that the mapping of components to re-
sources selected by the scheduler need not be
the one with the quickest estimated execution
time, as other information may also be brought
into play, such as reservation, cost, user con-
straints and so forth, as required by the par-
ticular scheduling algorithm in question . The
most important feature of this process is the
that performance model is given for the appli-
cation, rather than the components, and it may
well be the case that due to synchronisation is-
sues a particular component’s performance is
of no relevance to the entire application per-
formance, implying that a cheaper (and more
time consuming) resource would be optimal.

Issues arise with critical path analysis
where the workflow graph is not acyclic. This
is in fact quite frequent in scientific applica-
tions, occurring whenever two components are
call each other, or there is a loop in the appli-
cation between components. In many applica-
tions loops can be concealed behind the bound-
ary of the component interface, (in which case
they are considered part of the corresponding
Activity Node), but in applications where com-
ponents represent aspects of a larger loop, this
is impossible. In this case the entire body of
the application is in loop.

Loops are dealt with by elimination: cycle
detection is a relatively straightforward graph
algorithm. Once the cycles in a workflow have
been identified, they themselves can be given
a performance model in the same manner as
the complete application. Their contribution
to the overall application performance is a mul-
tiple of the estimated loop execution time.

There are then two possibilities: either the
user provides an estimated number of loops
(this can be stored as component meta-data, or
provided at submission) to determine the com-
plete model, or the loop is considered in isola-
tion. This latter case occurs where the loop is
certain to dominate the execution time of the
application: for example, in the GENIE case
the application requires only an initialisation
phase before beginning the loop. Where the
loop dominates, the loop performance model is
taken in place of the application performance
model for purposes of scheduling, ignoring the
multiple for loop iterations - the scheduling de-
cision for a single iteration will be the same for
all (if non-loop activities are ignored).

4.2.2 Interleaving Resources & De-
ferred Deployment

In addition to providing a composite perfor-
mance model, the temporal composition may
may act as a guide to the sharing of resources
between components that do not operate at
that same time. Where one component’s ac-
tivities have ceased, the resources assigned to
it may be redeployed to support another com-
ponent, and if necessary, returned to the initial
component. This is especially useful in cases
where a small number of components perform
most of the work in an application - in which
case the other component’s resources can be
reassigned. The actual process of assignment
is carried out by the scheduling algorithm, and

Proc UK e-Science All Hands Meeting 2003, © EPSRC Sept 2003, ISBN 1-904425-11-9

632



depends upon issues such as reservation pos-
sibilities, queue lengths and the like, so it is
impossible to determine what is pragmatically
possible from the workflow graph alone. How-
ever the workflow information does at least al-
low these optimisations to be made, by indi-
cating at which phase of the application’s exe-
cution a component requires resources.

4.3 e-Science Applications in
ICENI: Temporal Composi-
tion

Both of the examples given above for spa-
tial composition have derived workflow models
which represent the temporal composition of
the application. In order to simplify the dia-
grams, we have omitted the send and receive
nodes, which are present between all commu-
nications between components.

4.3.1 Example A: Parameter Sweep

The parameter sweep’s workflow model is ex-
tremely simple, and acyclic. The critical path
is the entire application. Opportunities for de-
ferring the final display activity exist - and the
initial set-up component’s resources could be
reassigned following the completion of its ac-
tivities.

Figure 3: Example A: Parameter Sweep’s Tem-
poral Composition

BLAST 1 Display

Collector

BLAST 3

BLAST 2Splitter

Set Up

Action

AndJoin

Action

AndSplit

Action Action Action

Start

Stop

4.3.2 Example B: GENIE

The GENIE application workflow is very simi-
lar to that of the parameter sweep, but features
a main loop. In the case of GENIE, the user in-
dicates, once the workflow is analysed and pre-
sented, that the loop is the main body of the

program. The scheduling system then consid-
ers deployment choices using the performance
model for a single loop as a guide. Opportu-
nities for deferred deployment are restricted to
those components that do not feature in the
main loop, which leaves only the display com-
ponent at the end. Similarly the set-up com-
ponent’s resources may be redeployed following
startup.

Figure 4: Example B: GENIE’s Temporal Com-
position

Sea Ice DisplayCollectorOceanAtmosphereSplitterSet Up

AndJoin

Stop

Action

AndSplit

Action Action Action

Control Integrator

Action

Action

OrSplit

Start

Action

5 Implementation Status &
Further Work

At this present time the workflow language
is fully supported within the ICENI compo-
nent meta-data system, and complete workflow
view is presented upon application submission,
along with a service view (indicating the loca-
tion of the components-as-services within their
federated domains) and the spatial view, used
for dynamic application construction.

The workflow graph provides methods
which offer information on critical paths, and
opportunities for optimisation, and our current
set of scheduling services utilise this informa-
tion.

Future implementation work will enable the
workflow view to become more interactive,
both by instrumenting the services so that the
flow of activities is visible to the user in real
time, but also so that the application builder
can add their domain specific knowledge with
regards to loop completion and importance to
facilitate optimisation.

A further possibility will be to allow the
user to describe their application entirely from

Proc UK e-Science All Hands Meeting 2003, © EPSRC Sept 2003, ISBN 1-904425-11-9

633



a temporal viewpoint, using either a graph
based tool, or an existing workflow language.
The units of composition would be composites
of activities and other nodes, and appear inde-
pendently of their software component, which
could then be inferred. This is the converse
of the existing system, and would allow the a
spatial composition to be determined by a tem-
poral one.

6 Conclusions

In this paper we have shown that

• Spatial Composition, the typical model
for component based systems, often
graphical in nature, is useful for dynamic
assembly of applications

• Temporal Composition, the typical work-
flow description for service oriented ar-
chitectures, can provide useful informa-
tion for application scheduling.

• ICENI uses as spatial composition view,
based upon component meta-data as its
primary model, and infers the temporal
composition from the user defined spa-
tial composition, by using a graph based
workflow language

• This behavioural information may be
used to support optimisations in schedul-
ing, by providing composite performance
models and indicating opportunities for
resource sharing.

References

[1] R. Armstrong, D. Gannon, A. Geist,
K. Keahey, S. Kohn, L. McInnes,
S. Parker, and B. Smolinski. Toward
a Common Component Architecture for
High-Performance Scientific Computing.
In The Eighth IEEE International Sym-
posium on High Performance Distributed
Computing, HPDC’99, August 1999.

[2] BPEL4WS Consortium. Business Pro-
cess Execution Language for Web Ser-
vices, May 2003.

[3] N. Furmento, W. Lee, A. Mayer, S. New-
house, and J. Darlington. ICENI: An

Open Grid Service Architecture Imple-
mented with Jini. In SuperComput-
ing 2002, Baltimore, Baltimore, USA,
November 2002.

[4] N. Furmento, A. Mayer, S. McGough,
S. Newhouse, T. Field, and J. Darling-
ton. Optimisation of Component-based
Applications within a Grid Environment.
In SuperComputing 2001, Denver, USA,
November 2001.

[5] N. Furmento, A. Mayer, S. McGough,
S. Newhouse, T. Field, and J. Darling-
ton. ICENI: Optimisation of Compo-
nent Applications within a Grid Environ-
ment. Journal of Parallel Computing,
28(12):1753–1772, 2002.

[6] Intalia, Sun Microsystems, and BEA Sys-
tems san SAP. Web Services Choreog-
raphy Interface (WSCI) 1.0 Specification,
2002.

[7] S. Krishnan, P. Wagstrom, and
G. Laszewski. GSFL: A workflow
framework for grid services, July 2002.

[8] A. Mayer, S. McGough, M. Gulamali,
L. Young, J. Stanton, S. Newhouse, and
J. Darlington. Meaning and Behaviour in
Grid Oriented Components. In 3rd In-
ternational Workshop on Grid Comput-
ing, Grid 2002, volume 2536 of Lecture
Notes in Computer Science, Baltimore,
USA, November 2002.

[9] Ian Taylor, Matt Shields, Ian Wang, and
Roger Philp. Distributed p2p computing
within triana: A galaxy visualization test
case. In IPDPS 2003, 2003.

[10] S. Tuecke, K. Czajkowski, I. Foster,
J. Frey, S. Graham, and C. Kesselman.
Grid service specification. Open Grid Ser-
vice Infrastructure WG, Global Grid Fo-
rum, June 2003.

[11] S. Uchitel, R. Chatley, J. Kramer, and
J. Magee. LTSA-MSC: Tool support for
behaviour model elaboration using im-
plied scenarios. In Ninth International
Conference on Tools and Algorithms for
the Construction and Analysis of Systems
(TACAS), April 2003.

[12] W. van der Aalst and A. Hofstede. Yawl:
Yet another workflow language, 2002.

Proc UK e-Science All Hands Meeting 2003, © EPSRC Sept 2003, ISBN 1-904425-11-9

634


