
Optimizing Metacomputing
with Communication-Computation Overlap

Françoise Baude, Denis Caromel, Nathalie Furmento, and David Sagnol

OASIS – Joint Project CNRS / INRIA / University of Nice Sophia – Antipolis
INRIA - 2004 route des Lucioles - B.P. 93 - 06902 Valbonne Cedex, France

FirstName.LastName@sophia.inria.fr

Abstract. In the framework of distributed object systems, this paper
presents the concepts and an implementation of an overlapping mecha-
nism between communication and computation. This mechanism allows
to decrease the execution time of a remote method invocation with pa-
rameters of large size. Its implementation and related experiments in the
C++// language running on top of Globus and Nexus are described.

Keywords: Distributed Objects, C++, Metacomputing, Nexus/Globus,
Lightweight Process, Remote Method Invocation, Pipelining, Future,
Overlapping communication and computation

1 Introduction

1.1 General Objective

Distributed supercomputing applications require large amounts of computational
resources that often only computational grids environments can provide. The
price to pay when executing on such environments is the mandatory use of
a high latency, low throughput network. As a consequence, any solution that
could help to lower communication costs would be worth considering.

A basic idea is to overlap communication with computation, thus yielding to
a pipeline effect regarding messages transmission. Any attempt to exploit this
opportunity needs to rely on non-blocking elementary communications, such as
for instance, asynchronous send and receive primitives as provided by well-known
message-passing libraries (e.g. PVM [11] or MPI [15]).

For code readability and portability purposes, one additional requirement is
to make the use of the overlapping technique as much transparent as possible for
programmers. As such, we reject distributed hand programmed solutions where
the programmer would himself split the data to be sent into smaller pieces,
asynchronously send each piece in turn thus “feeding” the pipeline, while at the
receiver side, explicitly and repetitively receive each new piece and goes on with
it in the related computation.

Previous attempts to automatically make use of an overlapping mechanism
between communication and computation have been successful in the context
of data-parallel compiled languages. But as far as we know, this idea has never
been investigated in the area of distributed object-oriented languages.

V. Malyshkin (Ed.): PaCT 2001, LNCS 2127, pp. 190–204, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Optimizing Metacomputing with Communication-Computation Overlap 191

1.2 Formulation of the Problem

The general idea featuring the concept of overlapping is that during a remote
computation dealing with large data requiring transmission, communication and
computation are automatically split in steps with a smaller data volume; then,
it is only a question of pipelining these steps in order to achieve overlapping
between the current step of the remote computation and the data transmission
related to the next step of the remote computation. This requires executing a
computation and a transmission step at the same time. One way to achieve
this is to use non-blocking communications.

Schematically, in the SPMD or SIMD programming models, a similar compu-
tation has to be executed on each element of a large but fixed size data structure.
So, the compiler or the run-time system is quite easily able to split it into small
pieces, send each one in turn, apply the computation on each piece once it is re-
ceived. If the compiler or the run-time system is not able to automatically decide
how to split the data, the programmer can help. Thus, the implementation of
this technique has generally been restricted to the field of data-parallel languages
for parallel architectures with distributed memory: HPF [3], FortranD [17], but
also in LOCCS [8], a library for communication routines and computation.

But, how should the same problem be tackled with, in the area of distributed
object-oriented languages ? In this context, the whole computation taking place
on the distributed entities can be expressed as remote service invocations through
method calls as RMI [16] in Java or RPC in C/C++ [2], even if ultimately very
low-level communications, e.g., network communications, are used. In order to
exhibit parallelism between distributed computations, a solution is to use asyn-
chronous – or non-blocking – service invocations instead of blocking ones as
featured by classical RPCs. Many models and languages have exploited this
idea [4]. In particular, we have designed and implemented distributed exten-
sions to object-oriented languages such as Eiffel, C++ and Java, that enforce
sequential code reuse in a parallel and distributed setting [6,7]. In such languages
extensions, each service invocation can be executed in parallel with the on-going
computation. Once the result of the service is required, a wait-by-necessity mech-
anism comes to help [5]. More information related to this model will be given in
Sect. 3.

In the implementation of such remote method invocation-based settings, all
arguments of the method call must generally be received before the method
execution starts.

Main idea. The essence of our proposition is thus to apply a classical pipelin-
ing idea to the arguments of a remote call: once the first part of the ar-
guments has arrived, the method execution will be able to start. Moreover, it is
only the type of the arguments that will automatically indicate how to split the
data to send. In this way, programmers will be able to express, at a very high
level, opportunities to introduce an overlapping of communications with compu-
tation operations. Optimisation of the parameter copying process, as in [18] is a
different but complementary approach.

192 F. Baude et al.

As the rest of the paper will show, the way the technique is designed and
implemented implies an easy and flexible usage for programmers, and, in some
circumstances, remarkable performance gains on a LAN-based environment as
well as on a WAN-based one (i.e. on a grid).

1.3 Design Guidelines

To implement this general idea, several problems have to be solved:

1. design and implement elementary mechanisms, such as: data splitting, com-
putation steps that can deal with partial data, . . . ;

2. make it as much as possible a transparent mechanism for programmers, but
give them the possibility to guide the data splitting;

3. try to determine the appropriate size for data packets (i.e. try to estimate
the duration of the different steps).

Our contribution is to design, implement, and evaluate it within the con-
text of an object-oriented language extended with mechanisms for parallelism
and distribution, C++// [6]. Only points 1 and 2 are resolved in this paper.
Automatically solving point 3 would require more precise information about the
computation and the underlying communication performances (a strategy for
data-parallelism languages running on dedicated parallel machines is developed
for instance in [8]).

As communication performances in the context of grid computing are quite
unpredictable and vary dynamically, solving point 3 would be essentially man-
ual (even if the programmer could be helped by some performance measurement
tool) knowing that the benefits of the overlapping would also vary dynamically.
As slicing of data into smaller units and also the corresponding slicing of com-
putations seem to have to be manually done by the programmer, our solution
can help: it provides an easy way in terms of programming effort, and a cheap
way in terms of running cost, to describe and try to take advantage of pipelining
in distributed object-oriented applications.

Structure of the paper. In Sect. 2, requirements and steps for point 1 are dis-
cussed. Then, strategies for splitting requests (point 2) are presented. Section 3
introduces an implementation for this technique using the C++// language,
whose runtime is based on both standard and lightweight processes (through
Nexus and Globus). In Sect. 4, we present some benchmarks whose main pur-
pose are to validate the technique and its implementation while exhibiting some
cases where the gain is almost optimal. This work is an extension of [1] in the
sense that, excepted the design, the implementation, experiments, analysis and
learned lessons are new, as they arise in a broader context (multithreading plus
metacomputing).

2 Communication/Computation Overlap

This section presents the overlapping technique and the requirements for its
implementation.

Optimizing Metacomputing with Communication-Computation Overlap 193

2.1 Elementary Mechanisms

The following items are the building blocks of the technique:

– send a request in pieces (without taking into account the strategy used for
splitting it);

– be able to rebuild a partial request in such a way that service execution can
be started;

– be able to integrate missing data when it arrives even if service execution
has started;

– be able to block the computation if it tries to use missing data.

Step for Request Creation. In every system that proposes an RPC mechanism,
the remote service request has to contain the method ID and the different pa-
rameters of the call which are marshalled using a deep (i.e. recursive) copy of
the objects graph1. After that, the request is sent.

Requirement 1. Have access to the runtime code that sends requests in order
to be able to decide when to send a request piece.

Step for Request Rebuilding. Once arrived in the remote system, the request is
rebuilt: each parameter is reconstructed with the corresponding data and then
the service can start. For implementing the overlapping technique, we have to
be able to put a mark for the missing data. This mark informs the service that
data are, temporarily, unavailable.

Requirement 2. Have access to the runtime code that deals with the unmar-
shalling of the request in order to manage marks of missing pieces.

When the remote context receives a new part of a request that is already
partially rebuilt, the context has to be able to deal with it in an automatic and
transparent way regarding the service that is already executing.

Requirement 3. A mechanism that receives and manages messages transpar-
ently.

Step for Service Execution. The service can run without any problem as long
as it does not attempt to access missing data. An automatic and transparent
blocking mechanism is required when it tries to use a missing data. In the same
way, resumption has to be transparent and automatic. This requires a wait-by-
necessity mechanism [5]. Such a mechanism is provided by the classical future
mechanism as originally designed in Multilisp [12].

Requirement 4. Future types available from the programming language.

Assuming the previous requirement is fulfilled, each missing data at the in-
stantiation time of the request object is replaced with a data type presenting a
future semantic.
1 If a field of an object is a reference to a remote object, i.e. a proxy, we just flatten
a copy of this proxy.

194 F. Baude et al.

2.2 Strategies for Splitting a Request

This section deals with the point 2 mentioned in the introduction. The crucial
idea is to break, in the most transparent way for the programmers, the request
parameters. It requires a modification of the marshalling/unmarshalling routines
of objects. Whether these routines are generic or not, we have to be able to
overload them.

Requirement 5. Be able to change the default marshalling/unmarshalling rou-
tines.

Strategies can be split in two groups whether they modify or not the class of
the objects involved in a request.

With Class Modification A new class called later is introduced, from which
all objects that require to be sent latter have to inherit from (see Code 1 for an
example). Objects from these classes must not be sent (eventually also, not be
marshalled) during the first inspection of the objects belonging to the request,
but later, each one in a new message (as would be done for m2 when calling
dom → rang(m1, m2) in Code 2 for example). According to the previous re-
quirements, later objects behave the same as future objects: automatic blocking
when one tries to access to the value, transparent update of the object with the
incoming value.

This technique applies whether objects of later type sit at the first level (i.e.
they are parameters of the remote call as m2 in Code 2), or at lower levels (i.e.
they are parts of non-later parameters; for example each line of a matrix could be
declared later whereas the matrix itself not). Notice that if needed, it is possible
to cast an object declared as inheriting from later to the original type (e.g. from
Matrix Later to Matrix), and vice-versa. For example, if a later object must
be used at the very beginning of the next remote call, it would be worth to cast
it now to its original type in order to send it immediately.

Code 1 (Definition of a later class).

class Matrix_Later :
public Later, public Matrix {

...
};

Without Class Modification. Two kinds of strategies come to mind:

1. either a new routine could replace the one used by default by the language
runtime in order to flatten the objects graph corresponding to a request. The
new routine would split the graph, each obtained part being subsequently
sent in a new message. Splitting strategies could rely on the algorithm used
for traversing the graph (either breadth or depth first);

Optimizing Metacomputing with Communication-Computation Overlap 195

2. or, if the language allows that a class member function be used for the
flatten operation instead of the standard one, a class could define its own
customised flatten-splitting routine, in the same spirit as done when defining
derived datatypes in MPI. For example, assume one parameter of the request
be an instance of a Matrix class, the flatten routine overriding the default
one could tell independently for each line how to flatten it and when to send
it.

Considering the first strategy implies that all arguments that need to be mar-
shalled been split, whatever the potential benefit, i.e. without taking into account
the use order of those arguments for instance. Whereas considering the second,
while not transparent, gives the opportunity to give a more adequate splitting
and even sending order. As such, one can consider that these two strategies lie
at the two extremes of the spectrum, while the one using later types lies in-
between. Indeed, casting an object to later or back to its original type, and be
careful of argument positions in method signatures is a satisfactory compromise:
it is not completely transparent for programmers which thus have some control
on the splitting, but it does not require to define a specific marshalling routine
for each type, which would be quite boring. So, we decided to only experiment
with the strategy which relies on using later types.

3 Prototype Environment

We briefly present in this section our implementation of the overlapping mecha-
nism. We use for this a parallel and distributed extension of C++, called C++//,
whose runtime is based on communicating lightweight processes using theNexus
library and Globus [9].

3.1 C++//

The C++// language [6] (http://www.inria.fr/oasis/c++ll/) was designed
and implemented with the aim of importing reuse into parallel and concurrent
programming. It does not extend the language syntax, and requires no modi-
fication of the C++ compiler, since C++// is implemented as a library and a
preprocessor (relying on a Meta-Object Protocol [13] – MOP).

C++// provides a heterogeneous model with both passive and active ob-
jects. Active objects act as sequential processes serving requests (i.e. method
invocations) in a centralized and explicit manner by default (such objects are
instances of subclasses of the specific C++// class Process). Communications
towards active objects are systematically asynchronous. There are no shared pas-
sive objects (only call-by-value between processes, implying making deep copies
of request/reply parameters, like serialization in Java RMI).

The MOP is centered around points concerning RPC, where some reification
is applied: request send, request receive, reply send, reply receive. These points
manipulate requests or replies as first-class objects. Generic flatten and rebuild

196 F. Baude et al.

functions are used for these objects. The reply of a service invocation is trans-
parently built as a future. Access through method invocation to any object of
future type is reified and blocks the caller if the result is not back yet.

Part of C++// runtime based on Nexus. Nexus [10] is a library used for both
communications and lightweight processes (threads) in distributed applications,
which provides the notion of remote service execution.
A C++// active object is implemented by using a lightweight process on a pos-
sibly remote Nexus context. A requests queue of an active C++// object can
be remotely referenced thanks to the definition of a Nexus global pointer. A
request for an active object is remotely queued by invoking a remote service
at the Nexus level (named Queue a request). This service takes as arguments
a C++// service request id, and a list of C++// objects as parameters. Each
such object is flattened using the generic flat() method of C++//. Execut-
ing a Queue a request service implies launching a new thread whose code is the
effective queuing of the C++// request in the queue of the target C++// ob-
ject, after its parameters have been unmarshalled (the generic C++// build()
method is used for this purpose). Concurrency between request queue filling
and request queue extracting is managed with Nexus local mutual exclusion
primitives.

Part of C++// runtime based on Globus. C++//relies on the GRAM mecha-
nism [9] to acquire nodes on a remote host and allocate active objects on a new
machine. To help the programmer in this task, C++//provides a simple file to
specify the mapping. For example :

m0 ll.inria.fr GLOBUS /0/sloop2/dsagnol/ecll/tests/gtk2/sc99Demo_slave
m1 pitcairn.mcs.anl.gov GLOBUS /nfs/dsl-homes02/caromel/sc99Demo_slave
m2 das3fs.tn.tudelft.nl GLOBUS /home/caromel/sc99Demo_slave
m3 bolas.isi.edu GLOBUS /nfs/v6/caromel/sc99Demo_slave

The strings m0 . . .m3 are the virtual names of the machines that we use in the
program. With this mechanism, we can change the mapping of the application
without recompiling it.

3.2 Implementation of the Overlapping Technique in C++//

At the MOP level, the main modification is to write a new generic function
to flatten requests (see Requir. 5): this function builds a first fragment which
holds the request header and the non-later parameters, and then one fragment
for each parameter of later type. Then at the runtime level (see Requir. 1),
the Queue a request service is remotely called for the first fragment, while a
new defined service Update Later is called for the remaining fragments. The
Queue a request service has been slightly modified in order to manage marks for
missing objects (see Requir. 2). The newly defined service Update Later trans-
parently updates the corresponding awaited request parameters (see Requir. 3).
As seen here, implementing the overlapping technique requires only minor mod-
ifications in the C++// language runtime support.

Optimizing Metacomputing with Communication-Computation Overlap 197

In order to switch from a later type to the original type and vice-versa,
the MOP of C++// provides two primitives. Being of type later implies being
accessed through a proxy, casting to the original type means discarding the proxy
and returning a pointer to the original object.

4 Validation

4.1 Benchmark

We designed a simple test and benchmarked it. This test must not be considered
as a real application, but as a means to validate the effectiveness of the technique.

Program. The test is based on the remote call of the method OpMatrix::rang()
(see Code 2) which takes two matrices, squares the first one, and adds the second
one. As the second matrix m2 is of type Matrix Later, it can be used as a
parameter of OpMatrix::rang(). The remote service can start as soon as the
request id and the non-later parameters have been received. Experiments not
using the overlapping technique are easily conducted : define m2 as an instance
of Matrix instead of Matrix Later.

Code 2 (Definition and use of a C++// remote service with later parameter).

class OpMatrix : public Process {
virtual int rang(Matrix *m1,

Matrix *m2) {
m1->square();
m2->plus(m1);
int res = m2->result();
return (res);

}
};

OpMatrix *dom = CppLL_new(("host"),OpMatrix,());
Matrix *m1 =

new Matrix(COLUMN, LINE);
Matrix *m2 =

CppLL_new (Matrix_Later, (COLUMN, LINE));
// set the values for m1 and m2
CLOCK_Call_Time_START;
int res = dom->rang(m1, m2);
CLOCK_Call_Time_STOP;

The technique should allow to overlap the remote execution requiring only
m1 (i.e. the method m1→square()) with the transmission and reception of the
later parameter (i.e. the matrix m2) that is only useful for the second part of the
service execution (i.e. m2→plus(m1)). Compared with an execution not using
the overlapping technique, the duration of m1→square() should increase, since,
at the same time, the remote processor has also to manage the reception and
update of the matrix m2.

In the framework of this test, we measure various durations (see Fig. 1). The
first, total duration is the total duration of the complete call as perceived by the
caller. This is the duration that will be reduced using the overlapping technique.
Duration d1 is the time when using only m1 in the computation (m1→square()),
while d2 is the time requiring both matrices (i.e. m2→plus(m1)). Both compu-
tations depend on the matrix size (for simplicity, both matrices are of the same
size). Moreover, in order to experiment with longer computations thus with
situations where there is more opportunity for some overlapping to occur, the
duration d1 can vary: a parameter, say p ≥ 1, is given to the test, and the
computation inside m1→square() is called p times.

198 F. Baude et al.

d2

transfer duration before

d1Total

duration

being able to start the service

CALLER SIDE CALLEE SIDE

Fig. 1. Temporal decomposition of a – blocking – remote service call

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 20000 40000 60000 80000 100000

Matrix size (total number of integers)

With Overlapping
Without Overlapping

Fig. 2. Execution of the remote service (caller side, total duration in µs)

4.2 Results using C++//

Apart from proving the correctness of the overlapping technique implementation,
we will show that the obtained results are scalable and can yield optimal gains.
The formal definition of what we mean by gain will be given at the end of this
subsection. We begin by some LAN-based tests (two Sun Solaris 2.6 workstations
with 128 MB of RAM, interconnected by a 10 Mbits Ethernet are used), followed
by some Globus -based ones.

The two curves plotted in Figs. 2 and 3 show that when the remote com-
putation duration that does not access to later parameters increases (d1), then
the benefit also increases. Indeed, because of the use of lightweight processes,
computation using only m1 and reception of m2 have more opportunity to be
interleaved when d1 increases.

Moreover, the reception related operations do not disturb very much the
on-going computation (see Fig. 4), although they arise while m1→square() is
being executed. To claim this, we must be sure that the reception related oper-
ations indeed arise while m1→square() is being executed (and not latter when

Optimizing Metacomputing with Communication-Computation Overlap 199

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 20000 40000 60000 80000 100000

Matrix size (total number of integers)

With Overlapping
Without Overlapping

Fig. 3. Execution of the remote service (caller side, total duration in µs).
m1→square() (d1) is 4 times longer than in Fig. 2

0

100000

200000

300000

400000

500000

600000

0 20000 40000 60000 80000 100000

Matrix size (total number of integers)

With Overlapping
Without Overlapping

Fig. 4. Duration in µs of the remote computation not using later parameters (d1).
The tests correspond to those of Fig. 3

m2→plus(m1) is already started). The answer is given by Fig. 5 where one can
observe that almost no reception related operations have arisen in m2→plus(m1).

The overlapping technique used in this context where lightweight processes
are available, scales very well, as Fig. 6 shows it. As distributed computing on grid
environments is mainly justified by huge data sets, this is an interesting property.
Moreover, we deduce against our past experiences that only runtime supports
using lightweight processes can scale so well. Indeed, benchmarks conducted in
the context of C++// on top of Pvm [1] proved that the amount of data that
could be sent and received while the remote service is in progress, is bounded by
the remote receiving buffer size. The fundamental reason is that the transport-
level layer can not gain the receiver process attention while this latter is engaged
in a remote computation (i.e. m1→square()), due to the lack of a dedicated
concurrent receiving thread.

We have also tested the use of a multi-processor workstation for the remote
service execution. All experiments we have conducted on this platform occurred
while it was unloaded, so that we could assume that at least 2 CPUs were idle.
In this case, the computation not using later parameters (i.e. m1→square())

200 F. Baude et al.

0

10000

20000

30000

40000

50000

60000

0 20000 40000 60000 80000 100000

Matrix size (total number of integers)

With Overlapping
Without Overlapping

Fig. 5. Duration in µs of the remote computation using later parameters (d2). The
tests correspond to those of Fig. 3

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Matrix size (total number of integers)

With Overlapping
Without Overlapping

Fig. 6. Execution of the remote service with large matrix sizes (caller side, to-
tal duration in µs). Same configuration as tests of Fig. 3

is absolutely not disturbed compared with experiments where the overlapping
technique is not active. This confirms the fact that the reception of later pa-
rameters is effectively executed in parallel with the computations not using later
parameters. This gives us confidence that the way the technique is implemented,
i.e. based on lightweight processes, provides really concurrent activities that can
even be executed in parallel, in this case yielding an unmeasurable overhead.

Gain. Let us define a gain (G) in order to give a concrete estimation of the
benefit.

G =
durationnot using overlap − durationusing overlap

later parameters transfer duration
. (1)

duration... using overlap represents the total duration of the remote service exe-
cution in either case (using or not the overlapping technique). The duration for
transferring later parameters, i.e. m2, is estimated by sending a C++// object of
the same size, not counting the – small – additional cost that would be required
for managing a later parameter (a few milliseconds).

Optimizing Metacomputing with Communication-Computation Overlap 201

-1.5

-1

-0.5

0

0.5

1

0 20000 40000 60000 80000 100000
Matrix size (total number of integers)

Fig. 7. Benefit (G) obtained from using the overlapping technique on a LAN. Corre-
spond to the tests of Fig. 3

Expected values of G are in [0, 1[: it means that the transfer duration of later
parameters has been overlapped by some useful computation occurring at the
callee side (i.e. m1→square()). To avoid negative values forG, the only condition
is that later parameters and computation duration be sufficiently large, such as
to mask the – small – overhead of the technique (see Fig. 7). Obtaining a value of
G greater than 1 is not related to the overlapping technique but of the variable
network loads (especially noticeable on a WAN, see Fig. 9 and [1]).

4.3 Discussion

Using an environment where computation and reception executions are parallel
or pseudo-parallel enables to really take advantage of our technique, thus leading
to a gain close to the optimal possible value, as computed by G and shown in
Figs. 7 and 8.

But, one should notice that the duration of the remote computation is of
course an other crucial point. Indeed, if it is really too short compared with
the transmission speed, almost no communication overlapping occurs. This is
why the grid-based experiments plotted in Figs. 8 and 9 assigned d1 to be 300
times higher than in experiments plotted in Fig. 3. Even if the matrix size was
4 times smaller, this arbitrary choice for such a high value for d1 lead to a
sufficiently high remote computation duration, in the same order of magnitude
as communication delays. It is reasonable to expect that transmitting a large or
even huge volume of data to remote computers (especially on a grid) is justified
by the need to execute quite costly computations on these data.

An other important factor is related to the transmission delays. If they are
very low because either the number of transmitted bytes is small, or the network
speed is really good as on a LAN, then the technique can yield to a gain but which
can prove in fact to be negligible (for instance, if we spare a few milliseconds
only). If we now integrate the overhead oft the technique (a few milliseconds
of computation time only), then we can see that the benefit (even if optimal if
all the transmission has been overlapped) can sometimes be overridden by the
overhead. This can effectively arise on LAN-based environments as Fig. 7 plots
it for small matrix sizes (observe the negative values for G). On the contrary, on

202 F. Baude et al.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

0 5000 10000 15000 20000 25000 30000

Matrix size (total number of integers)

With Overlapping
Without Overlapping

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5000 10000 15000 20000 25000 30000

G
ai

n
fo

r
th

e
gl

ob
us

 b
as

ed
 te

st

Matrix size (number of integers)

Gain

Fig. 8. Execution of the remote service (caller side, total duration in µs) and corre-
sponding gain. This corresponds to one Globus-based test between Argonne and INRIA
during night period, with (d1) 300 times longer than in Fig. 3

WAN-based environments, sparing the transmission time of even a few bytes2

yields a positive gain that the overhead of the technique can not override (due
to so high transmission delays): observe for instance in Fig. 8 the fact that G is
greater than 0.

We thus advocate to turn the overlapping technique on for every remote
service invocation whose related communications occur on a WAN. Depending
on the remote computation algorithm and its parameters usage (which implies
how to best split parameters transmission through their cast into later type),
the benefit can in some cases even rise close to the optimal possible value, i.e.
where the whole transmission time of later parameters has been spared.

5 Conclusion

In this paper, we have defined and implemented a mechanism to overlap com-
putations with communications in distributed object-oriented languages.

2 More precisely, the total duration for the test in Fig. 8 using matrices m1 and m2
of 2500 integers decreases from 680816 microseconds not using the overlapping tech-
nique to 556446 microseconds when using it.

Optimizing Metacomputing with Communication-Computation Overlap 203

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

0 5000 10000 15000 20000 25000 30000

Matrix size (total number of integers)

With Overlapping
Without Overlapping

Fig. 9. Execution of the remote service (caller side, total duration in µs). This corre-
sponds to one Globus-based test between Argonne and INRIA during day period, with
(d1) 300 times longer than in Fig. 3

Performances. This mechanism is interesting for environments based on light-
weight processes, because they enable to make the transfer of later objects par-
allel with the on-going remote service execution. The technique scales very well,
and its use dramatically decreases the total duration of the service execution as
soon as operations on non-later parameters take enough time to enable the par-
allel execution of later parameters transmission. In this last case, this becomes
clearly an advantage for applications running on high latency WANs (see Figs. 8
and 9) where several seconds in transmission time can be spared. Nevertheless,
be aware that there is a small overhead when accessing objects of later type be-
cause the access is reified. An experiments-&-measurements analysis tool could
help programmers to decide when to turn the overlapping mechanism on or off.
Such a tool could extract the same kind of numerical results than described in
Sect. 4 (e.g. extract d1, d2, . . . dn and total duration out of the experiments with
or without using the overlapping mechanism, compute the related value for G).

Ease of use. As exemplified in Code 2, the programmer has to manually split
data into smaller units, but this only requires to change the type of the pa-
rameters (make them inherit from the later class). To take advantage of the
mechanism, the remote computation does not necessarily need a specific design
(or redesign). The only important point is that the order the various param-
eters are first used should closely follow the order they are sent and received.
So, the position of later parameters in method signatures becomes important.
This ease of use is an argument in favour of a systematic usage of the technique,
even if the benefits are not always here as they could depend from unpredictable
communication durations especially on the grid.

Implementation. The requirement to implement the overlapping technique in
an object-oriented distributed language is mainly to have free access to the
transport layer and a MOP for the language. If so, essentially only the flatten
and rebuild phases of remote procedure calls need to be modified: the object

204 F. Baude et al.

representing the remote call has to be fragmented into several pieces. Those
phases need only to use a mechanism offering a future semantic. Transparent
reception and management for later fragments is required at the runtime support
level. Such a mechanism is of widespread use, and is in particular available in
Nexus, and in PM2 [14], both of them acting as “low-level” runtime supports
for parallel and distributed computations.

References

1. F. Baude, D.Caromel, N. Furmento, and D. Sagnol. Overlapping Communication
with Computation in Distributed Object Systems. In HPCN Europe’99 LNCS
1593, 744-753, 1999.

2. A.D.Birrell and B.J.Nelson. Implementing Remote Procedure Calls. ACM Trans-
actions on Computer Systems, 2(1): 39–59, Feb. 1984.

3. T.Brandes and F.Desprez. Implementing Pipelined Computation and Communi-
cation in an HPF Compiler. In Euro-Par’96, J:459-462, Aug. 1996.

4. J.-P. Briot, R. Guerraoui and K.-P. Lhr. Concurrency and Distribution in Object-
Oriented Programming. ACM Computing Surveys, 30(3), Sep. 1998.

5. D.Caromel. Towards a Method of Object-Oriented Concurrent Programming.
Communications of the ACM, 36(9):90-102, Sep. 1993.

6. D.Caromel, F. Belloncle and Y.Roudier. Parallel Programming Using C++, chap-
ter The C++// System, p 257-296. MIT Press, 1996. ISBN 0-262-73118-5.

7. D.Caromel, W.Klauser and J.Vayssiere, Towards Seamless Computing and Meta-
computing in Java, Concurrency Practice and Experience, 10(11-13), Nov. 1998.

8. F.Desprez, P.Ramet, and J.Roman. Optimal Grain Size Computation for
Pipelined Algorithms. In Euro-Par’96, T:165-172, Aug. 1996.

9. I. Foster, C.Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Inter-
national Journal of Supercomputer Applications, 11(2):115-128, 1997.

10. I. Foster, C.Kesselman, and S.Tuecke. The Nexus Approach to Integrating Multi-
threading and Communication. JPDC, 37:70-82, 1996.

11. A.Geist et al. Pvm Parallel Virtual Machine: a user’s guide and tutorial for net-
worked parallel computing. MIT Press, 1994.

12. R. Halstead. Parallel Symbolic Computing, Computer, 19(8):35–43, Aug. 1986
13. G.Kiczales, J. des Rivières, and D.G.Bobrow. The Art of the Metaobject Protocol.

MIT Press, 1991.
14. R.Namyst and J-F.Méhaut. PM2: Parallel Multithreaded Machine. A Comput-

ing Environment for Distributed Architectures. In ParCo’95, Gent, Belgium,
Sep. 1995.

15. M. Snir and W. Gropp et al. MPI: The Complete Reference. MIT Press, 1998.
16. Sun Microsystems. Java RMI Tutorial, Nov. 1996. http://java.sun.com.
17. C.W.Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory

Machines. PhD thesis, Rice University, Jan. 1993.
18. C.Videira Lopes. Adaptive Parameter Passing. In ISOTAS’96, Mar. 1996.

	Introduction
	General Objective
	Formulation of the Problem
	Design Guidelines

	Communication/Computation Overlap
	Elementary Mechanisms
	Strategies for Splitting a Request

	Prototype Environment
	C++//
	Implementation of the Overlapping Technique in C++//

	Validation
	Benchmark
	Results using C++//
	Discussion

	Conclusion

