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1 Introduction

We are interested in the existence of pure and stationary optimal strategies
in Markov decision processes. We restrict to Markov decision processes with
finitely many states and actions and infinite duration.

In a Markov decision process, each state is labelled by an immediate payoff
and each infinite history generates a stream of immediate payoffs.

The final payoff associated with an infinite history may be computed in
several ways. For example, the final payoff may be the discounted sum [12] of
all immediate payoffs or their average value[3]. Also some authors considered the
supremum or the infimum limit of the stream of immediate payoffs [10]. Even
more exotic is the so-called ”parity condition”, a prominent tool in automata
theory and logic [8].

Surprisingly, these five kinds of Markov decision processes share a common
property: they admit pure and stationary optimal strategies. A natural question
is the following: what do the discounted, mean, limsup, liminf and parity payoff
functions have in common, which explains this surprising fact?

In this paper, we introduce the class of prefix-independent and submixing
payoff functions, and we prove that all Markov decision processes equipped
with such payoff functions admit pure and stationary optimal strategies.

This result partially solves our problem, since the parity, limsup and mean-
payoff functions are prefix-independent and submixing.

Our result has several interesting consequences. First, it unifies and short-
ens disparate proofs of existence of pure and stationary optimal strategies for
Markov decision processes equipped with the parity [2], limsup [10] and mean [1,
11] payoff function. Second, it allows us to generate a bunch of new examples
of pure and stationary payoff functions.

∗This research was supported by Instytut Informatyki of Warsaw University, and European
Research Training Network: Games and Automata for Synthesis and Validation.
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Plan. This paper is organized as follows. In section 1, we introduce notions of
Markov decision process, payoff function and optimal strategy. In section 2, we
state our main result : if a payoff function is prefix-independent and submixing,
this guarantees the existence of pure and stationary strategies (cf. Theorem 1).
In section 3, we show that our main result unifies various disparate proofs. In
section 4, we present new examples of pure and stationary payoff functions. In
section 5, we prove Theorem 1.

1 Markov decision processes

Let S be a finite set. The set of finite (resp. infinite) sequences on S is denoted
S∗ (resp. Sω). A probability distribution on S is a function δ : S→ R such that
∀s ∈ S, 0 ≤ δ(s) ≤ 1 and

∑
s∈S δ(s) = 1. The set of probability distributions

on S is denoted D(S).

Definition 1. A Markov decision process i a tuple M = (S,A, (A(s))s∈S, p),
with S a finite set of states, A a finite set of actions, for each state s ∈ S, a set
A(s) ⊆ A of actions available in s, transition probabilities p : S×A→ D(S) .

When the current state of the chain is s, then the controller chooses an
available action a ∈ A(s), and the new state is t with probability p(t|s, a).

A triple (s, a, t) ∈ S ×A × S such that a ∈ A(s) and p(t|s, a) > 0 is called
a transition.

A history inM is an infinite sequence h = s0a1s1 · · · ∈ S(AS)ω such that for
each n, (sn, an+1, sn+1) is a transition. State s0 is called the source of h. The
set of histories with source s is denoted Pω

M,s . A finite history inM is a finite
sequence h = s0a1 · · · an−1sn ∈ S(AS)∗ such that for each n, (sn, an+1, sn+1) is
a transition. s0 is the source of h and sn its target. The set of finite histories
(resp. of finite histories with source s) is denoted P∗M (resp. P∗M,s).

A strategy inM is a function σ : P∗M → D(A) such that for any finite history
h ∈ P∗M with target t ∈ S, the distribution σ(h) puts non-zero probabilities only
on actions that are available in t, i.e. (σ(h)(a) > 0) =⇒ (a ∈ A(t)). The set
of strategies in M is denoted ΣM .

As explained in the introduction, certain types of strategies are of particular
interest, such as pure and stationary strategies. A strategy is stationary when
choices only depend on the current state, and not on the past finite history. A
strategy is pure if no lottery is used to choose actions.

Definition 2. A strategy σ ∈ ΣM is said to be pure if for every finite history
h and action a, either σ(h)(a) = 0 or σ(h)(a) = 1. A strategy σ is said to be
stationary if for every finite history h ∈ P∗M with target t, σ(h) = σ(t) .

We use the following random variables on the set Pω
M,s of infinite histories.
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For n ∈ N, and t ∈ S,

Sn(s0a1s1 · · · ) = sn the (n+ 1)-th state,
An(s0a1s1 · · · ) = an the n-th action,
Hn = S0A1 · · ·AnSn the finite history of the first n stages,
Nt = |{n > 0 : Sn = t}| ∈ N ∪ {+∞} the number of visits to state t. (1)

With every initial state s and strategy σ is associated a probability mea-
sure Pσs on Pω

M,s, equipped with the σ-algebra generated by random variables
S0, A1, S1, . . .. We abuse the notation: for every finite history h ∈ P∗M,s of
length n + 1 ∈ N with target t ∈ S, and for every a ∈ A(t), the event
{S0A1 · · ·AnSn = h} is simply denoted h and the event {S0A1 · · ·AnSnAn+1 =
ha} is denoted ha. With this notation, Pσs is the only probability measure on
Pω
M,s such that:

Pσs (ha | h) = σ(h)(a) , (2)
Pσs (har | ha) = p(r|t, a) . (3)

1.1 Payoff functions

After an infinite history, the controller gets some payoff. There are various ways
for computing this payoff.

Mean payoff. In a mean-payoff Markov decision process, each transition
(s, a, t) of is labeled with a daily payoff r(s, a, t) ∈ R. An history s0a1s1 · · ·
gives rise to a sequence r0r1 · · · of daily payoffs, where rn = r(sn, an+1, sn+1).
The final payoff is:

φmean(r0r1 · · · ) = lim sup
n∈N

1
n+ 1

n∑
i=0

ri . (4)

The mean-payoff function has been introduced by Gillette [3] and is used to
evaluate average performance.

Discounted payoff. Each transition (s, a, t) is labeled not only with a daily
payoff r(s, a, t) ∈ R but also with a discount factor 0 ≤ λ(s, a, t) < 1. The
final payoff associated with a sequence (r0, λ0)(r1, λ1) · · · ∈ (R× [0, 1[)ω of daily
payoffs and discount factors is:

φdisc((r0, λ0)(r1, λ1) · · · ) = r0 + λ0r1 + λ0λ1r2 + · · · . (5)

The discounted payoff has been introduced by Shapley [12].
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Parity payoff. The parity condition is used in automata theory and in the
study of certain temporal logic [8]. Each transition (s, a, t) is labeled with an
integer c(s, a, t) ∈ {0, . . . , d}, called a priority. The controller receives payoff 1 if
the highest priority seen infinitely often is odd, and 0 otherwise. For c0c1 · · · ∈
{0, . . . , d}ω,

φpar(c0c1 · · · ) =

{
0 if lim supn cn is even,
1 otherwise.

(6)

General payoff functions. Observe that in the examples we gave above,
the transitions were labeled with various types of data: real numbers for the
mean-payoff, couple of real numbers for the discounted payoff and integers for
the parity payoff.

We wish to treat those examples in a unified framework. For this reason,
we consider now that each Markov decision process M comes together with
a finite set of colours C and a mapping col : S × A × S → C, which colors
transitions. In the case of the mean payoff, transitions are coloured with real
numbers hence C ⊆ R, whereas in the case of the discounted payoff colours
are couples C ⊆ R × [0, 1[ and for the parity game colours are integers C =
{0, . . . , d}. Each infinite history h = s0a1s1 · · · generates an infinite sequence of
colours col(h) = col(s0, a1, s1) col(s1, a2, s2) · · · , and the final payoff is computed
by a payoff function:

Definition 3. Let C be a finite set. A payoff function on C is a function
φ : Cω → R which is bounded and Borel-measurable..

After an infinite history h, the controller receives payoff φ(col(h)) .

1.2 Values and optimal strategies in Markov decision pro-
cesses

Let M be a Markov decision process with payoff function φ. After history h,
the controller receives payoff φ(col(h)) ∈ R. We extend the definition domain
of φ to Pω

M,s :
∀h ∈ Pω

M,s, φ(h) = φ(col(h)) .

The expected value of φ under the probability Pσs is called the expected payoff
of the controller and is denoted Eσs [φ]. It is well-defined because φ is measurable
and bounded. The value of a state s is the maximal expected payoff that the
controller can get :

val(M)(s) = sup
σ∈ΣM

Eσs [φ] .

A strategy σ is said to be optimal in M if for any state s ∈ S,

Eσs [φ] = val(M)(s) .
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2 A sufficient condition for the existence of pure
and stationary optimal strategies

Our result is based on the notion of prefix-independent and stationary payoff
functions.

Definition 4. Let φ be a payoff function on Cω. We say that φ is prefix-
independent if for any finite word u ∈ C∗ and infinite word v ∈ Cω, φ(uv) =
φ(v). We say that φ is submixing if for any sequence of finite non-empty words
u0, v0, u1, v1, . . . ∈ C∗,

φ(u0v0u1v1 · · · ) ≤ max { φ(u0u1 · · · ) , φ(v0v1 · · · ) } .

The notion of prefix-independence is classical. The submixing property is
close to the notions of fairly-mixing payoff functions introduced in [5] and of
concave winning conditions introduced in [9]. We are now ready to state our
main result.

Theorem 1. Let φ be a prefix-independent and submixing payoff function. Then
in any Markov decision process M with payoff function φ, there exists pure and
stationary optimal strategies.

The proof of Theorem 1 is postponed to Section 5.

3 Unification of classical results

We now show how Theorem 1 unifies several proofs of the existence of pure and
stationary optimal strategies in the parity [2], the limsup and liminf [10] and
the mean-payoff [1, 11] Markov decision processes.

The parity, mean, limsup and liminf payoff functions are denoted respectively
φpar, φmean, φlsup and φlinf. Both φpar and φmean have already been defined in
subsection 1.1. φlsup and φlinf are defined as follows. Let C ⊆ R be a finite set
of real numbers, and c0c1 · · · ∈ Cω. Then

φlsup(c0c1 · · · ) = lim sup
n

cn

φlinf(c0c1 · · · ) = lim inf
n

cn .

The four payoff functions φpar, φmean, φlsup and φlinf are very different. In-
deed, φlsup may measure peak performances of a system, φlinf its worst perfor-
mances, and φmean its average performances. The function φpar may encode
logical specifications, expressed in MSO or LTL for example [8].

Proposition 1. The payoff functions φlsup, φlinf, φpar and φmean are submixing.

Proof. Let C ⊆ R be a finite set of real numbers and u0, v0, u1, v1, . . . ∈ C∗

be a sequence of finite non-empty words on C. Define u = u0u1 · · · ∈ Cω,
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v = v0v1 · · · ∈ Cω and w = u0v0u1v1 · · · ∈ Cω. The following elementary fact
immediately implies that φlsup is submixing.

φlsup(w) = max{φlsup(u), φlsup(v)} . (7)

In a similar way, φlinf is submixing since

φlinf(w) = min{φlinf(u), φlinf(v)} . (8)

Now suppose that C = {0, . . . , d} is a finite set of integers and consider
function φpar. Remember that φpar(w) equals 1 if φlsup(w) is odd and 0 if
φlsup(w) is even. Then using (7) we get that if φpar(w) has value 1 then it is
the case of either φpar(u) or φpar(v). It proves that φpar is also submixing.

Now let us consider function φmean. A proof that φmean is submixing already
appeared in [5], and we reproduce it here, updating the notations. Again C ⊆ R
is a finite set of real numbers. Let c0, c1, . . . ∈ C be the sequence of letters of C
such that w = (ci)i∈N. Since word w is a shuffle of words u and v, there exists
a partition (I0, I1) of N such that u = (ci)i∈I0 and v = (ci)i∈I1 . For any n ∈ N,
let In0 = I0 ∩ {0, . . . , n} and In1 = I1 ∩ {0, . . . , n}. Then for n ∈ N,

1
n+ 1

n∑
i=0

ci =
|In0 |
n+ 1

 1
|In0 |

∑
i∈In

0

ci

 +
|In1 |
n+ 1

 1
|In1 |

∑
i∈In

1

ci


≤ max

 1
|In0 |

∑
i∈In

0

ci,
1
|In1 |

∑
i∈In

1

ci

 .

The inequality holds since |I
n
0 |

n+1 + |In
1 |

n+1 = 1. Taking the superior limit of this in-
equality, we obtain φmean(w) ≤ max{φmean(u), φmean(v)}. It proves that φmean

is submixing.

Since φlsup, φlinf, φpar and φmean are clearly prefix-independent, Proposi-
tion 1 and Theorem 1 imply that those four payoff functions are pure and
stationary. Hence, we unify and simplify existing proofs of [2, 10] and [1,
11]. In particular, we use only elementary tools for the mean-payoff function,
whereas [1] uses martingale theory and relies on other papers, and [11] uses a
reduction to discounted games, as well as analytical tools.

4 Generating new examples of pure and station-
ary payoff functions.

We now present three different techniques for generating new examples of Markov
decision processes with pure and stationary optimal strategies.
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4.1 Mixing with the liminf payoff

In last section was presented the limsup payoff function, which intuitively mea-
sure the peak performances of a system and the liminf payoff function, which
intuitively measures its worst performances. The compromise payoff function
is used when the controller wants to achieve a trade-off between good peak per-
formances and not too bad worst performances. It was introduced in [5]. We
fix a factor λ ∈ [0, 1], a finite set C ⊆ R and for u ∈ Cω, we define

φλcomp(u) = λ · φlsup(u) + (1− λ) · φlinf(u) .

The fact that φλcomp is submixing is a corollary of the following proposition.

Proposition 2. Let C ⊆ R, 0 ≤ λ ≤ 1 and φ be a payoff function on C.
Suppose that φ is prefix-independent and submixing. Then the payoff function

λ · φ+ (1− λ) · φlinf (9)

is also prefix-independent and submixing.

The proof is straightforward, using (8) above. According to Theorem 1 and
Proposition 1, any payoff function defined by equation (9), where φ is either
φmean, φpar or φlsup, is pure and stationary.

4.2 The approximation operator

Consider an increasing function f : R → R and a payoff function φ : Cω →
R. Then their composition f ◦ φ is also a payoff function and moreover, if φ
guarantees the existence of pure and stationary optimal strategies then f ◦ φ
also does. Indeed, a strategy optimal for an Markov decision process M with
payoff function φ is also optimal for the Markov decision processM with payoff
function f ◦ φ. In fact, it is straightforward to check that composition by f
conserves the prefix-independent and submixing properties.

An example is the threshold function f = 1≥0 which associates 0 with strictly
negative real numbers and 1 with positive number. Then f ◦φ indicates whether
the performance evaluated by φ reaches the critical value of 0.

4.3 The hierarchical product

Now we define a binary operator between payoff functions, which stabilizes
the family of prefix-independent and submixing payoff functions. We call this
operator the hierarchical product.

Let φ0, φ1 be two payoff functions on sets of colours C0 and C1 respectively.
We do not require C0 and C1 to be identical nor disjoints.

The hierarchical product φ0 Bφ1 of φ0 and φ1 is a payoff function on the set
of colours C0 ∪C1 and is defined as follows. Let u = c0c1 · · · ∈ (C0 ∪C1)ω and
u0 and u1 the two projections of u on C0 and C1 respectively. Then

(φ0 B φ1)(u) =

{
φ0(u0) if u0 is infinite,
φ1(u1) otherwise.
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This definition makes sense : although each word u0 and u1 can be either finite
or infinite, at least one of them must be infinite.

The hierarchical product conserves the prefix-independence and submixing
properties.

Proposition 3. Let φ0 and φ1 be two payoff functions. If φ0 and φ1 are prefix-
independent and submixing, then φ0 B φ1 also is.

Now we give two examples of the use of the hierarchical product. For e ∈ N,
let 0e and 1e be the payoff functions defined on the one-letter alphabet {e} and
constant equal to 0 and 1 respectively. Let d be an odd number, and φpar be
the parity payoff function on {0, . . . , d}. Then

φpar = 1d B 0d−1 B · · ·B 11 B 00 .

Another example of hierarchical product is given in, which deals with Also
hierarchical products of mean-payoff function have been considered, the corre-
sponding Markov decision processes are tightly linked with discounted Markov
decision processes [6, 7].

5 Proof of Theorem 1.

The proof of Theorem 1 is organized as follows. In the first subsection, we
establish two useful elementary lemmas. Then in subsection 5.2, we establish a
property about Markov chains. In subsection 5.3, we establish that the expected
value of histories that never reach their initial state is no more than the value
of that state. Then in subsection 5.4, we introduce the notion of a split of an
arena. Basic properties of the split operation are described in Proposition 4, and
Theorem 4 shows how one can simulate a strategy in an arena with strategies
in the split of that arena. Theorem 5 and 6 are the key results to show that
value of a state in an arena is no more than its maximal value in splits of the
arena, i.e. Corollary 1. End of proof of Theorem 1 is given in subsection 5.7.

5.1 Preliminary lemmas

In the proof of Theorem 1, we will often use the following lemmas. Recall that
we abuse the notation and for every finite play h of length n+ 1, we denote also
by h the event {S0A1S1 · · ·Sn = h}.

First Lemma is called the shifting lemma.

Lemma 1 (shifting lemma). LetM be a Markov decision process, s, t ∈ S some
states, h ∈ P∗M,s a finite history with source s and target t, σ a strategy in M,
and X a real valued random variable such that supX 6= +∞ or inf X 6= −∞.
Then

Eσs [X | h] = Eσ[h]
t [ X[h] ], (10)

where σ[h] is the strategy defined as σ[h](s0a1 · · · sn) = σ(ha1 · · · sn) and X[h]
is the random variable defined by X[h](s0a1s1 · · · ) = X(ha1s1 · · · ).
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Proof. First prove the Lemma when X is the indicator function of an event h′,
with h′ a finite history. Then deduce that it holds for any random variable X.

The following lemma will also be very useful.

Lemma 2. Let M be an Markov decision process, s a state of M, E ⊆ Pω
M,s

an event and σ and τ two strategies. Let us suppose that σ and τ coincide on
E, in the sense that for all finite history h ∈ P∗M,s,

(h is a prefix of an history in E) =⇒ (σ(h) = τ(h)) .

Then for any event F ,

Pσs (F | E) = Pτs (F | E) . (11)

Proof. Start with proving:
Pσs (E) = Pτs (E) (12)

This is easy to prove when E is the event h, where h is a finite play. Since these
events generate all events, (12) holds in general. Since σ and τ coincide on F ,
we obtain 11.

5.2 About Markov chains

Second step consists in proving theorem 2, which establishes a property of
Markov chains. A Markov decision process M is a Markov chain when ∀s ∈
S, |A(s)| = 1. In that case, there is a unique strategy σ in M. The probability
measure on Pω

M,s associated with that unique strategy is denoted Ps instead of
Pσs .

Theorem 2. Let M be an Markov decision process with payoff function φ.
Suppose that M is a Markov chain and φ is prefix-independent. Let s be a
recurrent state of M. Then

Ps(φ > val(M)(s)) = 0 . (13)

Proof. Let E be the event E = {φ > val(G, s)}. Event E is a tail-event hence
according to the 0-1 law, E has probability either 0 or 1. Suppose for a second
that Ps(E) = 1 and find a contradiction. Then Ps(φ > val(M, s)) = 1, hence
Es[φ] > val(M, s), which contradicts the definition of val(M, s). We deduce
that Ps(E) = 0 which gives (13) and achieves the proof of this theorem.

5.3 Histories that never reach again their initial state

Consider the definition of Ns given by equation (1). The event {Ns = 0} is
the set of histories that never reach again s after the first stage. The following
theorem states a property about the expected value of those histories.
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Theorem 3. Let M be a Markov decision process with payoff function φ, s a
state of M and σ a strategy. Suppose that φ is prefix-independent. Then

Eσs [φ | Ns = 0] ≤ val(M)(s). (14)

Proof. Let f : P∗M,s → P∗M,s be the mapping that “forget cycles on s”, defined
by:

f(s0a1 · · · sn) = skak+1 · · · sn, where k = max{i | si = s} .
Let τ the strategy that consists in forgetting the cycles on s, and apply σ.
Formally τ is defined by τ(h) = σ(f(h)). We are going to show that:

Eσs [φ | Ns = 0] = Eτs [φ], (15)

which implies immediately (14), by definition of the value of a state. Even
if (15) may seem obvious, we proof it for the sake of completeness.

We suppose that
e = Pσs (Ns = 0) > 0 , (16)

otherwise (14) is not defined, and there is nothing to prove. Then clearly:

Pτs (Ns =∞) = 0. (17)

Define lasts, the last date where history reaches s:

lasts = sup{n ∈ N, Sn = s}.

Then {Ns =∞} = {lasts =∞}, hence (17) implies Pτs (lasts <∞) = 1, and

Eτs [φ] =
∑
n∈N

Eτs [φ | lasts = n] · Pτs (lasts = n).

=
∑
n∈N

∑
h∈P∗M,s

Eτs [φ | lasts = n,Hn = h] · Pτs (lasts = n,Hn = h). (18)

Let n ∈ N and h ∈ P∗M,s such that Pτ,s(lasts = n,Hn = h) > 0. Then

Eτs [φ | lasts = n,Hn = h] = Eτ [h]
s [φ | lasts = 0]

= Eτs [φ | lasts = 0]
= Eσs [φ | lasts = 0]. (19)

The first equality is obtained using the shifting lemma and the prefix-independence
of φ. The second equality comes from the fact that since Pτ,s(lasts = N,HN =
h) > 0, h is s and by definition of τ , τ [h] = τ . The third equality comes from
the fact that τ and σ coincide on the set {lasts = 0}, and applying the lemma 2.

Eventually, (19) and (18) give Eτs [φ] = Eσs [φ| lasts = 0]. Since {Ns = 0} =
{lasts = 0}, we get

Eτs [φ] = Eσs [φ|Ns = 0] . (20)

By definition of the value of a state, val(M)(s) ≥ Eτs [φ], which together with (20)
gives (14) and achieves the proof of this theorem.
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5.4 Submixing payoff functions and split of a Markov de-
cision process

The proof of 1 is by induction on the number of actions in the Markov decision
process. For that purpose, we introduce the notion of split of an Markov decision
process, and associated projections.

Definition 5. Let M be an Markov decision process and s ∈ S a state such
that |A(s)| > 1. Let (A0(s),A1(s)) a partition of A(s) in two non-empty sets.

LetM0 = (S,A0, (A0(s))s∈S, p, col) be the Markov decision process obtained
from
M = (S,A, (A(s))s∈S, p, col) in the following way. We restrict the set of actions
available in s to A0(s). For t 6= s, nothing changes, i.e. A0(t) = A(t). The
transition probabilities p and the colouring mapping col do not change. Let M1

be the Markov decision process obtained symmetrically, restricting the set of
actions available in s to A1(s).

Then (M0,M1) is called a split of M on s.

Now consider a split (M0,M1) of a Markov decision process M on a state
s. There exists a natural projection (π0, π1) from finite histories h ∈ P∗M,s to
couples of finite histories (h0, h1) ∈ P∗M0,s

×P∗M1,s
. Let us describe informally

this projection.
Consider a finite history h ∈ P∗M,s. Then h factorizes in a unique way in a

sequence
h = h0h1 · · ·hkhk+1 , (21)

such that

• for 0 ≤ i ≤ k, hi is a simple cycle on s,

• hk+1 is a finite history with source s, which does not reach s again.

For any 0 ≤ i ≤ k + 1, the source of hi is s hence the first action ai in hi
is available in s, i.e. ai ∈ A(s). Since (A0(s),A1(s)) is a partition of A(s),
we have either ai ∈ A0(s) or ai ∈ A1(s). Then π0(h) is obtained by deleting
from the factorization (21) of h every simple cycle hi which first action ai is in
A1(s). Symmetrically, π1(h) is obtained by erasing every simple cycle hi such
that ai ∈ A0(s).

Let us formalize this construction in an inductive way. First we define in-
ductively the mode of a play. For h ∈ P∗M,s, a ∈ A(h) and t ∈ S

mode(hat) =


mode(h) if the target of h is not s.
0 if the target of h is s and a ∈ A0(s)
1 if the target of h is s and a ∈ A1(s)

(22)

For i ∈ {0, 1}, the projection πi is defined by πi(s) = s, and for h ∈ P∗M,s,
a ∈ A(h) and t ∈ S,

πi(hat) =

{
πi(h)at if mode(hat) = i

πi(h) if mode(hat) = 1− i.
(23)
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The definition domain of π0 and π1 naturally extends to Pω
M,s, in the follow-

ing way. Let h = s0a1s1 · · · ∈ Pω
M,s be an infinite history, and for every n ∈ N,

let hn = s0a1 · · · sn. Then for every n ∈ N, π0(hn) is a prefix of π0(hn+1). If
the sequence (π0(hn))n∈N is stationary equal to some finite word h′ ∈ P∗M0,s

,
then we define π0(h) = h′. Otherwise, the sequence (π0(hn))n∈N has a limit
h′ ∈ Pω

M0,s
, and we define π0(h) = h′. Let us define the random variables:

Definition 6. The two random variables

Π0 = π0(S0A1S1 · · · ) with values in P∗M0,s ∪Pω
M0,s

Π1 = π1(S0A1S1 · · · ) with values in P∗M1,s ∪Pω
M1,s

are called the projections associated with the split (M0,M1).

Useful properties of Π0 and Π1 are summarized in the following proposition.

Proposition 4. LetM be a Markov decision process, s, t states ofM, (M0,M1)
a split of M on s, and Π0 and Π1 the projections associated with that split.

• Let h0 ∈ P∗M0,s
be a finite history in M0, with source s and target t, and

a ∈ A0(t). Let v be the prefix order relation on finite and infinite words.
Then

∀r ∈ S, Pσs (h0ar v Π0 | h0a v Π0) = p(r|t, a). (24)

• Let x ∈ R and φ be a prefix-independent submixing payoff function. Then

{Ns =∞ and φ > x} ⊆
{Π0 is infinite and Ns(Π0) =∞ and φ(Π0) > x}⋃

{Π1 is infinite and Ns(Π1) =∞ and φ(Π1) > x} . (25)

Proof. We first prove (24). Let π0 and π1 be the functions defined by (23)
and (22) above. Remark that their definition show that they are both v-
increasing. For h ∈ P∗M,s we denote the event {h v S0A1S1 · · · } as Oh. Fix a
finite history h0 in M0, an action a ∈ A0(s) and define:

Y = {h ∈ P∗M,s | π0(h) = h0 and ∃r ∈ S, π0(har) = h0ar}.

Let us start with proving

∀r ∈ S, {h0ar v π0} =
⋃
h∈Y

Ohar . (26)

We start with inclusion ⊆. Let r ∈ S, h ∈ Y and l ∈ Pω
M,s such that har v l.

Since h ∈ Y , and by definition (22) and (23), we deduce that ∀r,mode(har) =
0 and π0(har) = h0ar. Since π0 is v-increasing, and har v l, we get π0(har) v
π0(l), hence h0ar v π0(l) thus l ∈ {h0ar v Π0}. It proves inclusion ⊆ of (26).

Let us prove now inclusion ⊇ of (26). Let r ∈ S and l ∈ {h0ar v Π0}.
Then h0ar v π0(l). Rewrite l as l = s0a1s1 · · · . Since Π0 is v-increasing,
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∃n ∈ N s.t. h0ar v π0(s0 · · · sn−1ansn) and h0ar 6v π0(s0 · · · sn−1). Define
h = s0a1 · · · sn−1, then last equation rewrites as h0ar 6v π0(h) and h0ar v
π0(hansn). According to definition (23) of π0, it necessarily means that h0 =
π0(h) and h0ar = π0(h)ansn. Hence h ∈ Y , an = a and sn = r, thus har v l
and l ∈ ∪h∈Y {har}. It achieves to prove (26).

Let X the prefix-free closure of Y , i.e.

X = {h ∈ Y |6 ∃h′ ∈ Y s.t. h′ 6= h and h′ v h} .

Then
∀r ∈ S,

⋃
h∈Y

Ohar =
⋃
h∈X

Ohar,

and the second union is in fact a disjoint union. Hence, according to (26),

∀r ∈ S, (Ohar)h∈X is a partition of {h0ar v π0} , (27)

and (Oha)h∈X is a partition of {h0a v π0} . (28)

From (27), we get for r ∈ S,

Pσs (h0ar v π0) =
∑
h∈X

Pσs (Ohar)

=
∑
h∈X

p(r|t, a) · Pσs (Oha) from (3)

= p(r|t, a) ·
∑
h∈X

Pσs (Oha)

= p(r|t, a) · Pσs (h0a v π0) from (28).

It achieves the proof of (24).
Now let us prove (25). Let φ be a prefix-independent submixing payoff

function, and x ∈ R. Let h ∈ {Ns = +∞ and φ > x}.
Suppose first that π1(h) is a finite word. Then according to (23), the set

{h′ ∈ P∗M,s | h′ v h and mode(h′) = 1} is finite. According to (23) again,
it implies that h and π0(h) are identical, except for a finite prefix. Since φ is
prefix-independent, it implies φ(h) = φ(π0(h)). Moreover, since Ns(h) = +∞,
we have Ns(π0(h)) = +∞. This two last facts prove (25) in the case where
π1(h) is finite.

The case where π0(h) is finite is symmetrical.
Let us suppose now that both π0(h) and π1(h) are infinite. We prove that

there exists u0, v0, u1, v1 ∈ (SA)∗ such that

h = u0v0u1v1 · · ·
π0(h) = u0u1u2 · · · (29)
π1(h) = v0v1v2 · · · .

13



Write h = s0a1s1 · · · . Let

{n0 < n1 < . . .} = {n > 0 | mode(s0a1 · · · sn) = 0 and mode(s0a1 · · · sn+1) = 1} ,
{m0 < m1 < . . .} = {m > 0 | mode(s0a1 · · · sm) = 1 and mode(s0a1 · · · sm+1) = 0} .

Then, by definition (22),

∀i ∈ N, sni
= smi

= s . (30)

Without loss of generality suppose a1 ∈ A0(s). Then by (22), mode(s0a1s1) = 0
hence 0 < n0 < m0 < n1 < · · · . Define u0 = s0a1 · · · sn0−1an0 , for i ∈ N define
vi = sni

· · · ami
and for i ∈ N define ui+1 = smi

· · · ani+1 . Then by (23) we
get (29).

Since φ is submixing, (29) implies φ(h) ≤ max{φ(π0(h)), φ(π1(h)}. Since
φ(h) > x we deduce x < max{φ(π0(h)), π1(h)}, i.e.

(φ(π0(h)) < x) or (φ(π1(h)) < x). (31)

Moreover, by (30) and (29), histories π0(h) and π1(h) reaches infinitely often
s, hence Ns(π0(h)) = Ns(π1(h)) = +∞ . This last fact together with (31)
implies (25) which achieves this proof.

The following theorem shows that any strategy σ inM can be simulated by
a strategy σ0 in A0, in a way that for any Π0-measurable event E in M, the
probability of E under σ in A is less than the probability of Π0(E) under σ0 in
A0.

Theorem 4. Let M be a Markov decision process, σ a strategy in M, s a
state of M such that |A(s)| ≥ 2, (M0,M1) a split of M on s, and Π0 he
associated projection. Then there exists a strategy σ0 in M0 such that for any
event E0 ⊆ Pω

M0,s
,

Pσ,s(π0 ∈ E0) ≤ Pσ0,s(E0). (32)

Proof. The symbol v denotes the prefix ordering on finite and infinite words.
For two words u, v, we write u @ v if u is a strict prefix of v i.e. if u v v and
u 6= v.

For any state t 6= s, let us choose in an arbitrary way an action at ∈ A(t),
and let us also choose an action as ∈ A0(s). For any h ∈ P∗M0,s

with target t
and for any action a ∈ A(t), we define

σ0(h)(a) =


Pσs (ha v Π0 | h @ Π0) if Pσs (h @ Π0) > 0

1 if Pσs (h @ Π0) = 0 and a = at

0 if Pσs (h @ Π0) = 0 and a 6= at

Then σ0 is a strategy in M0 since by definition of @,

Pσs (h @ Π0) =
∑

a∈A(t)

Pσs (ha v Π0) .
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We first show (32) in the particular case where there exists h0 ∈ P∗M0,s
such

that E0 = {l ∈ Pω
M0,s

| h v l}. Remember that we abuse the notation and
write simply E0 = h. With this notation, we wish to prove that:

∀h′ ∈ P∗M0,s, Pσs (h′ v Π0) ≤ Pσ0
s (h′). (33)

We prove (33) inductively. If h′ = s then since Π0 has values in P∗M,s ∪Pω
M,s,

we get Pσs (s v π0) = 1 = Pσ0
s (s). Now let us suppose that (33) is proved for

some finite history h ∈ P∗M0,s
. Let t be the target of h and a ∈ A0(t), and

let us prove that (33) holds for h′ = hat. First case is Pσs (h @ Π0) = 0, then
a fortiori Pσs (har v Π0) = 0, and (33) holds for h′ = hat. Now let us suppose
Pσs (h @ Π0) 6= 0. Then,

Pσs (har v Π0) = p(r|t, a) · Pσs (ha v Π0)
= p(r|t, a) · Pσs (ha v Π0 | h @ Π0) · Pσs (h @ Π0)
= p(r|t, a) · σ0(h)(a) · Pσs (h @ Π0)
≤ p(r|t, a) · σ0(h)(a) · Pσs (h v Π0)
≤ p(r|t, a) · σ0(h)(a) · Pσ0

s (h)
= Pσ0

s (har).

The first equality comes from (24), and the third is by definition of σ0. The
last inequality is by induction hypothesis and the last equality by (2) and (3).
It achieves the proof of equality (33).

Let us achieve the proof of Theorem 4. Let E be the collection of events
E0 ⊆ Pω

M0,s
such that (32) holds. Then observe that E is stable by enumerable

disjoint unions and enumerable increasing unions. According to (33), E contains
all the events (Oh0)h0∈P∗M0,s

. Since E is stable by enumerable disjoint unions,
it contains the collection {

⋃
h0∈H0

Oh0 | H0 ⊆ P∗M0,s
}. This last collection is

a Boolean algebra. Since E is stable by enumerable increasing union, it implies
that E contains the σ-field generated by (Oh0)h0∈P∗M0,s

, i.e. all measurable sets
of Pω

M0,s
. This achieves this proof.

5.5 Histories that never come back in their initial state.

We deduce from theorem 3 the following result.

Theorem 5. Let M be a Markov decision process with payoff function φ, s a
state, σ a strategy and (M0,M1) a split of M on s. Let us suppose that φ is
prefix-independent. Then

Eσs [φ | Ns <∞] ≤ max{val(M0)(s), val(M1)(s)}. (34)

Proof. Let us define v0 = val(M0, φ) and v1 = val(M1)(φ). For any action
a ∈ A(s) we denote σa the strategy in M defined for h ∈ P∗M,s by:{

σa(h) = σ(h) if the target of h is not s
σa(h) chooses action a with probability 1 otherwise.
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Remark that the strategy σa always chooses the same action when plays reaches
state s, hence it is a strategy either inM0 or inM1. From Theorem 3, we deduce

∀a ∈ A(s), Eσa
s [φ | Ns = 0] ≤ max{v0, v1}. (35)

Since σ and σa coincide on {Ns = 0, A1 = a}, lemma 2 implies :

Eσs [φ | A1 = a,Ns = 0] = Eσa
s [φ | A1 = a,Ns = 0]

= Eσa
s [φ | Ns = 0] ,

where the last equality holds since by definition of σa, Pσa
s (A1 = a) = 1. To-

gether with (35), we get Eσs [φ | A1 = a,Ns = 0] ≤ max{v0, v1}, whatever be
action a and strategy σ. It implies :

∀σ ∈ ΣM, Eσs [φ | Ns = 0] ≤ max{v0, v1}.

Conditioning on the last moment where history reaches s, and using the shifting
lemma and the prefix-independence of φ, this last equation implies :

Eσs [φ | Ns <∞] ≤ max{v0, v1}.

It achieves the proof of Theorem 5.

5.6 Histories that infinitely often reach their initial state.

The following theorem shows that if an history reaches infinitely often its initial
state, then its value is no more than the value of that state.

Theorem 6. Let M be a Markov decision process with payoff function φ, s
a state and σ a strategy. Suppose that φ is prefix-independent and submixing.
Then

Pσs (φ > val(M)(s) | Ns =∞) = 0. (36)

Moreover, suppose that |A(s)| ≥ 2 and let (M0,M1) be a split ofM on s. Then

Pσs (φ > max{val(M0)(s), val(M)(s)} | Ns =∞) = 0. (37)

Proof. We prove that theorem by induction on N(M) =
∑
s∈S(|A(s)| − 1).

If N(M) = 0 then M is a Markov chain. In that case, Pσs (Ns =∞) > 0 iff
s is a recurrent state iff Pσs (Ns = ∞) = 1. Hence (36) is a direct consequence
of Theorem 2. Moreover, since N(M) = 0, then ∀s, |A(s)| = 1 and we do not
need to prove (37).

Now let us suppose that N(M) > 0 and that Theorem 6 is proved for any
M′ such that N(M′) < N(M). We first prove (37). Let s be a state, σ a
strategy, suppose that |A(s)| > 2 and let (M0,M1) be a split of M on s. Let
M0 = (M0, φ), M1 = (M1, φ), v0 = val(M0, φ), v1 = val(M1, φ), and Π0,Π1

the associated projections. Let

E0 = {h0 ∈ Pω
M0,s | φ(h0) > v0 and Ns(h0) = +∞}

E = {h ∈ Pω
M,s | π0(h) ∈ E0} .
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We start with proving that
Pσs (E) = 0. (38)

From Theorem 4, there exists a strategy σ0 in M0 such that Pσs (Π0 ∈ E0) ≤
Pσ0
s (E0). Hence

Pσ,s(E) = Pσ,s(Π0 ∈ E0) ≤ Pσ0,s(E0)
= Pσ0,s(φ > v0 and Ns = +∞)
= 0,

where this last equality holds by induction hypothesis, since N(M0) < N(M).
Hence we have shown (38) and by symmetry, we obtain for i ∈ {0, 1},

Pσs (Πi is infinite and Ns(Πi) =∞ and φ(Πi) > vi) = 0 .

Now consider (25) of Proposition 4, with x = max{v0, v1}. Together with the
last equation, it gives (37).

Now we prove that (36) holds.
First we show that (36) holds for any state s such that |A(s)| ≥ 2. Every

strategy inM0 orM1 is also a strategy inM, hence val(M)(s) ≥ max{v0, v1}
and we deduce from (37) that Pσs (φ > val(M)(s) | Ns =∞) = 0. Hence the set

T = {s ∈ S | ∀σ ∈ ΣM, Pσs (φ > val(M)(s) and Ns =∞) = 0} (39)

contains any state s ∈ S such that |A(s)| ≥ 2. Hence (36) holds for any s such
that |A(s)| ≥ 2. Let U = S\T . We have proved that :

∀s ∈ U, |A(s)| = 1 . (40)

For achieving the proof of (36) we must prove that T = S, i.e. U = ∅.
Suppose the contrary, and let us search a contradiction. If U 6= ∅, then the set

W = {s ∈ U | val(M)(s) = min
t∈U

val(M)(t)}

is not empty and contains a state s ∈ W . According to (40), there exists a
unique action a available in s.

Now we show that ∀t ∈ S such that p(t|s, a) > 0,

if t ∈ U then val(M)(t) ≥ val(M)(s) (41)
if t ∈ T then val(M)(t) > val(M)(s) . (42)

The case where t ∈ U is clear since we choose s with minimal value in U . Now
let t ∈ T such that p(t|s, a) > 0 and let us prove 42. Since s ∈ U , s 6∈ T and by
definition of T ,

∃σ ∈ ΣM s.t. Pσs (φ > val(M)(s) and Ns =∞) > 0 . (43)

Now remark that since p(t|s, a) > 0 we have Pσs (Nt = ∞ | Ns = ∞) = 1.
Together with (43), it implies

Pσs (φ > val(M)(s) and Nt =∞) > 0 .
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Conditioning this probability on the first moment the history reaches state t,
we deduce that there exists a finite history h ∈ P∗M,s with source s and target
t such that

Pσs (φ > val(M)(s) and Nt =∞ | h) > 0 .

Since φ is prefix-independent, and according to the shifting lemma it implies :

Pσ[h]
t (φ > val(M)(s) and Nt =∞) > 0.

Since t ∈ T , the definition of T implies :

Pσ[h]
t (φ > val(M)(t) and Nt =∞) = 0 .

Those two last equations imply val(M)(t) > val(M)(s), which achieves the
proof of (42).

Now we are close to get the contradiction we are looking for. Since φ is
prefix-independent, we deduce :

val(M)(s) =
∑

t:p(t|s,a)>0

p(t|s, a) · val(M)(t).

Together with (42) we get :

∀t ∈ S, (p(t|s, a) > 0) =⇒ (t ∈ U) and (val(M)(t) = val(M)(s)) .

This last equation holds for any s ∈ W . Thus any transition with source in W
has target in W . It implies that any history inM with source in W stays in W
with probability 1, hence the restriction M[W ] of M to the set of states W is
an Markov decision process, and

∀s ∈W, val(M)(s) = val(M[W ])(s) (44)

LetM[W ] = (M[W ], φ). By definition of U , there exists a strategy σ inM[W ]
such that Pσ,s(φ > val(M)(s) and Ns =∞) > 0 and together with (44) we get

Pσs (φ > val(M[W ])(s) and Ns =∞) > 0 .

Since W ⊆ U and according to (40), M[W ] is a Markov chain. According to
the last equation, PsNs =∞ > 0 hence s is a recurrent state. Hence the last
equation contradicts Theorem 2.

Finally we get a contradiction, hence U = ∅. This achieves the proof of
Theorem 6.

5.7 Proof of Theorem 1

The above results aggregate as follows.

Corollary 1. Let M be a Markov decision process with payoff function φ, s
a state of M and (M0,M1) a split of M on s. Suppose that φ is prefix-
independent and submixing. Then

val(M)(s) = max{val(M0)(s), val(M1)(s)}. (45)
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Proof. Let σ ∈ ΣM. Then

Eσs [φ] = Eσs [φ | Ns <∞] · Pσs (Ns <∞) + Eσs [φ | Ns =∞] · Pσs (Ns =∞)
≤ max{val(M0)(s), val(M1)(s)} · (Pσs (Ns <∞) + Pσs (Ns =∞))
= max{val(M0)(s), val(M1)(s)}

The second inequality is a consequence of Theorems 6 and 5. Since it is true
for any strategy σ, we get :

val(M)(s) ≤ max{val(M0)(s), val(M1)(s)} .

To conclude, notice that a strategy for the Markov decision process M0 or
M1 is also a strategy for the Markov decision process M, hence val(M0)(s) ≤
val(M)(s) and val(M1)(s) ≤ val(M)(s).

Now we can achieve the proof of Theorem 1.

Proof. of Theorem 1. We prove Theorem 1 by induction onN(M) =
∑
s∈S(|A(s)|−

1).
First case is the case where N(M) = 0, i.e. M is a Markov chain. In that

case, there exists a unique strategy, which is necessarily optimal and positional.
Now let us suppose that N(M) =

∑
s∈S(|A(s)|−1) > 0 and that Theorem 1

is proved for anyM′ such that N(M′) < N(M). Since N(M) > 0, there exists
a state s of M such that |A(s)| ≥ 2. Let (M0,M1) be a split of M on s.
Without loss of generality, we can suppose that :

val(M0)(s) ≥ val(M1)(s) , (46)

and according to corollary 1, we deduce :

val(M0)(s) = val(M)(s) . (47)

By inductive hypothesis, there exists a positional strategy σ0 optimal for the
Markov decision process M0. We are going to prove that σ0 is also optimal for
the Markov decision process M. Let σ ∈ ΣM and t ∈ S. Then

Eσt [φ] = Eσt [φ | ∃n, Sn = s] · Pσt (∃n, Sn = s)+
Eσt [φ | ∀n, Sn 6= s] · Pσt (∀n, Sn 6= s). (48)

Let τ ∈ ΣM defined as follows :

τ(s0a1 · · · sn) =

{
σ(s0a1 · · · sn) if ∀0 ≤ i ≤ n, si 6= s,

σ0(sn) otherwise.

Then we have the three following equalities. First, since σ and τ coincide on
the event {∀n, Sn 6= s}, lemma 2 implies :

Eσt [φ | ∀n, Sn 6= s] · Pσt (∀n, Sn 6= s) = Eτt [φ | ∀n, Sn 6= s] · Pτt (∀n, Sn 6= s). (49)
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Second, by definition of τ ,

Pσt (∃n, Sn = s) = Pτt (∃n, Sn = s) . (50)

And finally,

Eσt [φ | ∃n, Sn = s] ≤ val(M)(s) (51)
= val(M0)(s) (52)
= Eσ0

s [φ] (53)
= Eτt [φ | ∃n, Sn = s] , (54)

(55)

where the inequality comes from the shifting lemma and the prefix-independence
of φ, the first equality from (46), the second from the fact that σ0 is optimal in
M0 and the third by the shifting lemma again.

Finally, (50), (49) and (54) together with (48) prove that

∀t ∈ S, ∀σ ∈ ΣM, Eσt [φ] ≤ Eτt [φ] . (56)

By definition, τ always chooses an action of A0(s) when the history has target
s, hence τ is a strategy in M0. Since σ0 is optimal in M0 hence we get :

∀t ∈ S, Eτt [φ] ≤ Eσ0
t [φ] .

Since σ0 is also a strategy in M, this last equation together with (56) proves
that σ0 is optimal in M. Since σ0 is positional, it achieves the proof of the
inductive step, and of Theorem 1.

6 Conclusion

In that paper, we have introduced the class of prefix-independent and submixing
payoff functions, and we proved that they guarantee the existence of pure and
stationary optimal strategies. Moreover, we have defined three operators on
payoff functions, that can be used to generate new examples of Markov decision
processes with pure and stationary optimal strategies.

Most of the results of this paper can be extended to the broader framework
of two-player zero-sum stochastic games with perfect information [4].

To conclude, let us formulate the following conjecture about pure and sta-
tionary payoff functions. “Let φ be a prefix-independent payoff function. Sup-
pose that in every non-stochastic one player game with payoff function φ, there
exists pure and stationary optimal strategies. Then the same holds in every
Markov decision process with payoff function φ.
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