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Abstract

We consider two-players stochastic reachability games with partial ob-
servation on both sides and finitely many states, signals and actions. We
prove that in such games, either player 1 has a strategy for winning with
probability 1, or player 2 has a strategy for winning with probability 1, or
both players have strategies that guarantee winning with strictly positive
probability (positively winning strategies). We give a fix-point algorithm
for deciding in doubly-exponential time which of the three cases holds.

Introduction

We prove two determinacy and decidability results about two-players stochastic
reachability games with partial observation on both sides and finitely many
states, signals and actions. Player 1 wants the play to reach the set of target
states, while player 2 wants to keep away the play from target states. Players
take their decisions based upon signals that they receive all along the play, but
they cannot observe the actual state of the game, nor the actions played by
their opponent, nor the signals received by their opponent. Each player only
observes the signals he receives and the actions he plays. Players have common
knowledge of the initial state of the game.

Our determinacy result is of a special kind, it concerns two notions of so-
lutions for stochastic games. The first one is the well known notion of almost-
surely winning strategy, which guarantees winning with probability 1 against
any strategy of the opponent. The second one is the notion of positively winning
strategy: a strategy is positively winning if it guarantees a non-zero winning
probability against any strategy of the opponent. This notion is less known, to
our knowledge it appeared recently in [Hor08]. The notion of positively winning
strategy is different from the notion of positive value, because the non-zero win-
ning probability can be made arbitrarily small by the opponent, hence existence
of a positively winning strategy does not give any clue for deciding whether the
value is zero or not. Existence of a positively winning strategy guarantees that
the opponent does not have an almost-surely winning strategy, however there is
no straightforward reason that one of these cases should always holds. Actually,
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if we consider more complex classes of games than reachability games, there are
various examples where neither player 1 has a positively winning strategy nor
player 2 has an almost-surely winning strategy.

Our first result (Theorem 2) states that, in reachability games with partial
observation on both sides, either player 1 has a positively winning strategy or
player 2 has an almost-surely winning strategy. Moreover which case holds is
decidable in exponential time. Notice that an almost-surely winning strategy
for player 2 in a reachability game is surely winning as well.

Our second result (Theorem 3) states that either player 1 has an almost-
surely winning strategy or player 2 has a positively winning strategy, and this
is decidable in doubly-exponential time.

Both these results strengthen and generalize in several ways results given
in [CDHR07]. Actually, in this paper is addressed only the particular case where
player 2 has perfect information and target states are observable by player 1.
Moreover in [CDHR07] no determinacy result is established, the paper ”only”
describes an algorithm for deciding whether player 1 has an almost-sure winning
strategy.

1 Reachability games with partial observation

on both sides

We consider zero-sum stochastic games with partial observation on both sides,
where the goal of Player 1 is to reach a certain set of target states. Players only
partially observe the state of the game, via signals. Signals and state transitions
are governed by probability transitions: when the state is k and two actions i

and j are chosen, player 1 and 2 receive respectively signals c and d and the
new state is l with probability p(c, d, l | k, i, j).

1.1 Notations

We use the following standard notations [Ren00].
The game is played in steps. At each step the game is in some state k ∈ K.
The goal of player 1 is to reach target states T ⊆ K. Before the game starts,
the initial state is chosen according to the initial distribution δ ∈ D(K), which
is common knowledge of both players. Players 1 and 2 choose actions i ∈ I

and j ∈ J , then player 1 receives a signal c ∈ C, player 2 receives a signal
d ∈ D, and the game moves to a new state l. This happens with probability
p(c, d, l | k, i, j) given by fixed transition probabilities p : K × I × J → D(C ×
D × K), known by both players. We denote p(l | k, i, j) =

∑
c,d p(c, d, l |

k, i, j). Players observe and remember their own actions and the signals they
receive, it is convenient to suppose that in the signal they receive is encoded
the action they just played, formally their exists act : C ∪D → I ∪ J such that
(p(c, d, k′ | k, i, j) > 0) =⇒ ((i = act(c) and j = act(d)). We denote p(c, d, l |
k) = p(c, d, l | k, act(i), act(j)). This way, plays can be described by sequences
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of states and signals for both players, without mentioning which actions were
played. A sequence p = (k0, c1, d1, . . . , cn, dn, kn) ∈ (KCD)∗K is a finite play if
for every 0 ≤ m < n, p(cm+1, dm+1, km+1 | km, act(cm+1), act(dm+1)) > 0. An
infinite play is a sequence p ∈ (KCD)ω whose prefixes are finite plays.

A strategy of player 1 is a mapping σ : D(K) × C∗ → D(I) and a strategy
of player 2 is τ : D(K) × D∗ → D(J).

In the usual way, an initial distribution δ and two strategies σ and τ define
a probability measure P

σ,τ
δ (·) on the set of infinite plays, equipped with the

σ-algebra generated by cylinders.
We use random variables Kn, In, Jn, Cn, Dn for designing respectively the

n-th state, action of player 1, action of player 2, signal of player 1, signal of
player 2. The probability to reach a target state someday is:

γ1(δ, σ, τ) = P
σ,τ
δ (∃m ∈ N, Km ∈ T ) ,

and the probability to never reach the target is γ2(δ, σ, τ) = 1 − γ2(δ, σ, τ).
Player 1 seeks maximizing γ1 while player 2 seeks maximizing γ2.

1.2 Winning almost-surely or positively

Definition 1 (Almost-surely and positively winning). A distribution δ is almost-
surely winning for player 1 if there exists a strategy σ such that

∀τ, γ1(δ, σ, τ) = 1 . (1)

A distribution δ is positively winning for player 1 if there exists a strategy σ

such that
∀τ, γ1(δ, σ, τ) > 0 . (2)

If the uniform distribution on a set of states L ⊆ K is almost-surely or positively
winning then L itself is said to be almost-surely or positively winning. If there
exists σ such that (1) holds for every almost-surely winning distribution then σ

is said to be almost-surely winning .
Positively winning strategies for player 1 and almost-sure winning and pos-

itively winning strategies for player 2 are defined similarly.

2 Winning almost-surely and positively with fi-

nite memory

Of special algorithmic interest are strategies with finite memory.

Definition 2 (Strategies with finite memory). A strategy σ with finite memory
is described by a finite set M called the memory, a strategic function σM : M →
D(I), an update function updateM : M × C → M , an initialization function
initM : P(K) → M .

For playing with σ, player 1 proceeds as follows. Let L be the support of the
initial distribution, then initially player 1 puts the memory in state initM (L).
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When the memory is in state m, player 1 chooses his action according to the
distribution σM (m). When player 1 receives a signal c and its memory state is
m, he changes the memory state to updateM (m, c).

A crucial tool for establishing decidability and determinacy result is the class
of finite memory strategy whose finite memory if based on the notions of beliefs
or pessimistic beliefs.

2.1 Beliefs and pessimistic beliefs

The belief of a player at some moment of the play is the set of states he thinks
the game could possibly be, according to the signals he received up to now. The
pessimistic belief is similar, except the player assumes that no final state has
been reached yet. One of the motivations for introducing beliefs and pessimistic
beliefs is Proposition 1.

Beliefs of player 1 are defined by mean of the operator B1 that associates
with L ⊆ K and c ∈ C,

B1(L, c) = {k ∈ K | ∃l ∈ L, ∃d ∈ D, p(k, c, d | l) > 0} . (3)

We defined inductively the belief after signals c1, . . . , cn by B1(L, c1, . . . , cn, c) =
B1(B1(L, c1, . . . , cn), c).

Pessimistic beliefs of player 1 are defined by

Bp
1(L, c) = B1(L\T, c) .

Beliefs B2 and pessimistic beliefs Bp
2 for player 2 are defined similarly. We

will use the following properties of beliefs and pessimistic beliefs.

Proposition 1. Let σ, τ be strategies for player 1 and 2 and δ an initial distri-
bution with support L. Then for every n ∈ N,

P
σ,τ
δ (Kn+1 ∈ B1(L, C1, . . . , Cn)) = 1 ,

P
σ,τ
δ (Kn+1 ∈ B2(L, D1, . . . , Dn)) = 1 ,

P
σ,τ
δ (Kn+1 ∈ Bp

1(L, C1, . . . , Cn) or Km ∈ T for some 1 ≤ m ≤ n) = 1 ,

P
σ,τ
δ (Kn+1 ∈ Bp

2(L, D1, . . . , Dn) or Km ∈ T for some 1 ≤ m ≤ n) = 1 .

Suppose τ and δ almost-surely winning for player 2, then for every n ∈ N,

P
σ,τ
δ (B2(L, D1, . . . , Dn) is a.s.w. for player 2) = 1 .

Suppose σ and δ almost surely winning for player 1, then for every n ∈ N,

P
σ,τ
δ (Bp

1(L, C1, . . . , Cn) is a.s.w. for player 1 or ∃1 ≤ m ≤ n, Km ∈ T ) = 1 .

Proof. Almost straightforward from the definitions.
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2.2 Belief and pessimistic belief strategies

A strategy σ is said to be a belief strategy for player 1 if it has finite memory
M = P(K) and

1. the initial state of the memory is the support of the initial distribution,

2. the update function is (L, c) → B1(L, c),

3. the strategic function P(K) → D(I) associates with each memory state
L ⊆ K the uniform distribution on a non-empty set of actions IL ⊆ I.

The definition of a pessimistic belief strategy for player 1 is the same, except
the update function is Bp

1 .

3 Determinacy and decidability results

In this section, we establish our main result, a determinacy result of a new kind.
Usual determinacy results in game theory concern the existence of a value. Here
the determinacy refers to positive and almost-sure winning:

Theorem 1 (Determinacy). Every initial distribution is either almost-surely
winning for player 1, surely winning for player 2 or positively winning for both
players.

Theorem 1 is a corollary of Theorems 2 and 3, in which details are given
about the complexity of deciding whether an initial distribution is positively
winning for player 1 and whether it is positively winning for player 1.

Deciding whether a distribution is positively winning for player 1 is quite
easy, because player 1 has a very simple strategy for winning positively: playing
randomly any action.

Theorem 2 (Deciding positive winning for player 1). Every initial distribution
is either positively winning for player 1 or surely winning for player 2.

The strategy for player 1 which plays randomly any action is positively win-
ning. Player 2 has a belief strategy which is surely winning.

The partition of supports between those positively winning for player 1 and
those surely winning for player 2 is computable in time exponential in |K|,
together with an almost-surely winning belief strategy for player 2.

Proof of Theorem 2. Let L∞ ⊆ P(K\T ) be the greatest fix-point of the mono-
tonic operator Φ : P(P(K\T )) → P(P(K\T )) defined by:

Φ(L) = {L ∈ L | ∃j ∈ J, ∀d ∈ D, if j = act(d) then B2(L, d) ∈ L},

and let σR be the strategy for player 1 that plays randomly any action. To
establish Theorem 2 we are going to prove that:

(A) every support in L∞ is surely winning for player 2, and
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(B) σR is positively winning from any support L ⊆ K which is not in L∞.

We start with proving (A). For winning surely from any support L ∈ L∞,
player 2 uses the following belief strategy: if the current belief of player 2 is
L ∈ L∞ then player 2 chooses an action jL such that whatever signal d player
2 receives (with act(d) = jL), his next belief B2(L, d) will be in L∞ as well. By
definition of Φ there always exists such an action j, and this defines a belief-
strategy σ : L → jL for player 2. When playing with this strategy, beliefs of
player 2 never intersect T hence according to Proposition 1, against any strategy
σ of player 1, the play stays almost-surely in K\T , hence it stays surely in K\T .

Conversely, we prove (B). We fix the strategy for player 1 which consists
in playing randomly any action with equal probability, and the game is a one-
player game where only player 2 has choices to make: it is enough to prove (B)
in the special case where the set of actions of player 1 is a singleton I = {i}.
Let L0 = P(K\T ) ⊇ L1 = Φ(L0) ⊇ L2 = Φ(L1) . . . and L∞ be the limit of this
sequence, the greatest fixpoint of Φ. We prove that for any support L ∈ P(K),
if L 6∈ L∞ then:

L is positively winning for player 1 . (4)

If L ∩ T 6= ∅, (4) is obvious. For delaing with the case where L ∈ P(K\T ), we
define for every n ∈ N, Kn = P(K\T )\Ln, and we prove by induction on n ∈ N

that for every L ∈ Kn, then for every initial distribution δL with support L, for
every strategy τ ,

P
τ
δL

(∃m ∈ N, Km ∈ T, 2 ≤ m ≤ n + 1) > 0 . (5)

For n = 0, (5) is obvious because K0 = ∅. Suppose that for some n ∈ N,
(5) holds for every L ∈ Kn, and let L ∈ Kn+1. If L ∈ Kn then by induc-
tive hypothesis, (5) holds. Otherwise by definition of Kn+1, L ∈ Ln\Φ(Ln)
hence by definition of Φ, whatever action j is played by player 2 at the first
round, there exists a signal dj such that act(dj) = j and B2(L, dj) 6∈ Ln.
Let τ be a strategy for player 2 and j an action such that τ(δL)(j) > 0. If
B2(L, dj) ∩ T 6= ∅ then according to Proposition 1, P

τ
δL

(K2 ∈ T ) > 0. Other-
wise B2(L, dj) ∈ P(K\T )\Ln = Kn hence according to the inductive hypothesis

P
τ [dj]

B2(L,dj)
(∃m ∈ N, 2 ≤ m ≤ n + 1, Km ∈ T ) > 0. Since player 1 has only one

action, by definition of beliefs, for every state l ∈ B2(Ld, j), P
τ
δL

(K2 = l) > 0.
Together with the previous equation, we obtain
P

τ
δL

(∃m ∈ N, 3 ≤ m ≤ n + 2, Km ∈ T ) > 0. This achieves the inductive step.
The computation of the partition of supports between those positively win-

ning for player 1, and those surely winning for player 2 and a surely winning
strategy for player 2 amounts to the computation of the largest fixpoint of Φ.
since Φ is monotonic, and each application of the operator can be computed in
exponential time, the overall computation can be achieved in exponential time
and space.

Deciding whether an initial distribution is positively winning for player 1 is
easy because player 1 has a very simple strategy for that: playing randomly.

6



Figure 1: A game where player 2 needs a lot of memory.

Player 2 does not have such a simple strategy for winning positively: he has
to make hypotheses about the beliefs of player 1, as is shown in the example
depicted by fig. 1.

Theorem 3 (Deciding positive winning for player 2). Every initial distribution
is either almost-surely winning for player 1 or positively winning for player 2.

Player 1 has an almost-surely winning strategy which is pessimistic belief.
Player 2 has a positively winning strategy with finit ememory P(P(K) × K).

The partition of supports between those almost-surely winning for player 1
and those positively winning for player 2 is computable in time doubly-exponential
in |K|, together with the winning strategies for both players.

The finite memory P(P(K)×K) of the positively winning strategy of player
2 is used by player 2 to remember what are the possible pairs of current state
and pessimistic belief of player 1.

The proof of Theorem 3 is based on the following intuition. First, if player
2 wins surely from a support L then, a fortiori, he wins positively from that
support L. Now suppose L is a support positively winning for player 2. If from
another support L′ player 2 can force the pessimistic belief of player 1 to be
L with positive probability, it can be shown that the support L′ is positively
winning for player 2 as well. Hence if player 1 wishes to win almost-surely, he
should surely avoid his pessimistic belief from being L′. However, doing so,
player 1 may prevent the play from reaching target states, which may create
another positively winning support L for player 2, and so on...

The reader familiar with fix-point characterizations of winning sets should
easily translate this intuition into a fix-point characterization of beliefs positively
winning for player 2. Moreover, since there are finitely many supports, this fix-
point is computable.

There are a few technical details we take care of in the following lemmatas.
We start with formalizing what it means for player 1 to force his pessimistic

beliefs to stay in a certain set.

Definition 3. Let L ⊆ P(K) be a set of supports. We say that player 1 can
enforce his pessimistic beliefs to stay outside L if player 1 has a strategy σ

such that for every strategy τ of player 2 and every initial distribution δ whose
support is not in L,

P
σ,τ
δ (∀n ∈ N,Bp

1(L, C1, . . . , Cn) 6∈ L) = 1 .

Equivalently, for every L 6∈ L, the set:

I(L) = {i ∈ I such that ∀c ∈ C, if i = act(c) then Bp
1(L, c) 6∈ L} ,

is not empty.
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Proof. The equivalence is straightforward from definitions and Proposition 1.
On one hand, if IL is not empty for every L 6∈ L then σ consists in playing any
action in IL when the pessimistic belief is L. Conversely, any action played with
positive probability by σ with the property above is necessarily in IL.

The following proposition provides a fix-point characterization of almost-
surely winning supports for player 1.

Proposition 2 (Fix-point characterization of almost-surely winning supports).
Let L ⊆ P(K) be a set of supports. Suppose player 1 can enforce his pessimistic
beliefs to stay outside L. Then,

(i) either every support L 6∈ L is almost-surely winning for player 1,

(ii) or there exists a set of supports L′ ⊆ P(K) and a strategy τ for player 2
such that:

(a) L′ is not empty and does not intersect L,

(b) player 1 can enforce his pessimistic beliefs to stay outside L ∪ L′,

(c) for every strategy σ and initial distribution δ with support in L′,

P
σ,τ
δ (∀n ∈ N, Kn 6∈ T | ∀n ∈ N,Bp

1(L, C1, . . . , Cn) 6∈ L) > 0 . (6)

There exists an algorithm running in time doubly-exponential in the size of
K for deciding which of cases (i) or (ii) holds. In case (i) holds, the algorithm
computes at the same time a pessimistic-belief almost-surely winning strategy
for player 1. In case (ii) holds, the algorithm computes at the same time L′ and
a finite memory strategy τ with memory P(L′ ×K)\{∅} such that (6) holds for
every σ.

The proof of Proposition 2 is based on the notion of L-games.

Definition 4 (L-games). Let L be a set of supports such that player 1 can en-
force his pessimistic beliefs to stay outside L. For every support L 6∈ L, let I(L)
be the set of actions given by definition 3. The L-game has same actions, tran-
sitions and signals than the original partial observation game, only the winning
condition changes: player 1 wins if the play reaches a target state and moreover
player 1 does not use actions other than IL whenever his pessimistic belief is L,
formally given an initial distribution δ with support L and two strategies σ and
τ the winning probability of player 1 is:

P
σ,τ
δ (∃n ≥ 1, Kn ∈ T and ∀n ∈ N, In ∈ I(Bp

1(L, C1, . . . , Cn))) .

Actually L-games are special cases of reachability games, as illustrated by
the following lemma and its proof, which are based on Theorem 2.

Proposition 3 (L-games). Let L be a set of supports such that player 1 can
enforce his pessimistic beliefs to stay outside L.
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(i) In the L-game, every support is either positively winning for player 1 or
surely winning for player 2. The set of surely winning supports for player
2 in the L-game contains L. We denote L′′ the set of supports that are
not in L but are surely winning for player 2 in the L-game.

(ii) Suppose L′′ is empty. Then every support not in L is almost-surely win-
ning for player 1 both in the L-game and in the original game. Moreover,
the strategy σ for player 1 which consists in chosing randomly any action
in I(L) when its pessimistic belief is L is almost-surely winning in the
L-game.

(iii) Suppose L′′ is not empty. Then player 2 has a strategy τ for winning surely
the L-game from any support in L′′, and τ has finite memory P(L′ ×K).

(iv) There is an algorithm running in doubly-exponential time in K for com-
puting L′′ and σ or τ .

Proof. We make the synchronized product GL of the original game with pes-
simistic beliefs of player 1. Pessimistic beliefs of player 1 are hidden to both
players, signals, actions and transitions remain the same, only an extra sink is
added for punishing player 1 whenever the current state is (l, L) ∈ K × P(K)
and player 1 plays an action i which is not in I(L).

Applying Theorem 2 to the reachability game GL, we get (i) and (iii).
Now we suppose L′′ is empty and prove (ii). According to Theorem 2, any

support not in L is positively winning for player 1 in GL and moreover the
strategy consisting in playing randomly any action is positively winning for
player 1. Since playing an action i which is not in I(L) leads immediatly to
a non-accepting sink state, the pessimistic belief strategy σ for player 1 which
consists in playing randomly any action in I(L) when the pessimistic belief of
player 1 is L is positively winning as well.

To prove (ii) it is enough to show that:

σ is almost-surely winning for player 1 . (7)

For proving (7), we start with proving that for each L 6∈ L there exists
NL ∈ N such that for every strategy τ , for every distribution δ with support L,

P
σ,τ
δ (∃n ≤ NL, Kn ∈ T ) ≥

1

NL

. (8)

We suppose such an NL does not exist and seek for a contradiction. Suppose
for every N there exists τN and δN such that (8) does not hold. Without loss of
generality, we can choose strategies τN that are deterministic i.e. τN : D∗ → J ,
and such that δN converges to some distribution δ, whose support is included
in L. Using Koenig’s lemma, it is easy to build a strategy τ : D∗ → J such that
for infinitely many N ,

P
σ,τ
δN

(∃n ≤ N, Kn ∈ T ) <
1

N
.
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Taking the limit when N → ∞, we get:

P
σ,τ
δ (∃n ≥ 1, Kn ∈ T ) = 0 ,

which contradicts the fact that σ is positively winning from L, since the support
of δ is included in L. This proves the existence of NL such that (8) holds.

Now we can achieve the proof of (ii). Let N = max{NL | L 6∈ L}. Then
according to (8), when playing σ, every N steps there is probability at least
1
N

to reach a target state, knowing that a target state was not reached before.
Hence there is probability 0 of never reaching a target state. Consequently, σ

is almost-surely winning from any support L 6∈ L. This proves (7) and the last
statement of (iii).

Proof of Proposition 2. Let L′′ be the set of supports surely winning for player
2 in the L-game. Let τU be the strategy for player 2 playing randomly any
action. Let L′ be the set of supports L such that,

∀σ, P
σ,τU

δL
(∃n ∈ N,Bp

1(L, C1, . . . , Cn) ∈ L′′ ∪ L) > 0 , (9)

where δL is the uniform distribution on L.
Suppose first that L′′ is empty. Since player 1 can enforce his pessimistic

beliefs to stay outside L, then L′ is empty as well. Moreover, according to (ii)
of Proposition 3, every support not in L is almost-surely winning for player 1
in the original game, hence we are in case (i) of Proposition 2.

Suppose now that L′′ is not empty, and let us prove (ii)(a), (ii)(b) and
(ii)(c) of Proposition 2. Since L′′ ⊆ L′, then L′ is not empty either, hence
(ii)(a). Property (ii)(b) holds by definition (9) of L′.

It remains to prove (ii)(c). According to (iii) of Proposition 3, there exists a
strategy τ ′ for player 2 which is surely winning in the L-game from any support
in L′′. Let τ be the strategy for player 2 which consists in the following. At
each step, player 2 throws a coin. As long as the result is ”tail”, then player
2 plays randomly any action: he uses σU . If the result is ”head” then player
2 pick randomly a support L ∈ L′′, forgets all its signals up to now, switches
definitively to strategy τ ′ with initial support L, and stops throwing the coin.

Let us prove that τ guarantees property (6) to hold. Let σ be a strategy of
player 1 and δ an initial distribution whose support is in L ∈ L′. By definition
of L′ and τU , there exists c1, . . . , cN and a support L′′ ∈ L′′ such that L′′ =
Bp

1(L, c1, . . . , cn) and

P
σ,τU

δ (C1 = c1, . . . , Cn = cN ) > 0 .

Moreover, since τU plays any sequence of actions with positive probability, then,

∀l ∈ L′′, P
σ,τU

δ (Kn = l, C1 = c1, . . . , CN = cN ) > 0 .

Now, by definition of τ , there is positive probability that τ plays like τU up to
stage n hence:

∀l ∈ L′′, P
σ,τ
δ (Kn = l, C1 = c1, . . . , CN = cN ) > 0 . (10)
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Moreover, there is positive probability that at stage n, τ switches to strategy τ ′

in initial state L′′. Let δ′′ be the uniform distribution on L′′. Since τ ′ is surely
winning in the L-game from L′′, it guarantees that:

∀σ, P
σ,τ ′

δ′′ (∀n ∈ N, Kn 6∈ T | ∀n ∈ N, In ∈ Bp
1(L

′′, C1, . . . , Cn)) = 1 .

By definition of pessimistic beliefs,
Bp

1(L
′′, c′1, . . . , c

′
m) = Bp

1(L, c1, . . . , cN , c′1, . . . , c
′
m), hence according to (10),

∀σ, P
σ,τ
δ (∀n ∈ N, Kn 6∈ T | ∀n ≥ N, In ∈ (Bp

1(L, C1, . . . , Cn))) > 0 . (11)

According to the definition of I(L), for every σ and n ∈ N,

P
σ,τU

δ (Bp
1(L, C1, . . . , Cn, Cn+1) ∈ L | In 6∈ (Bp

1(L, C1, . . . , Cn))) > 0 ,

hence by definition of τ ,

P
σ,τ
δ (∀n ∈ N, In ∈ (Bp

1(L, C1, . . . , Cn)) | ∀n ∈ N,Bp
1(L, C1, . . . , Cn) 6∈ L) > 0 ,

and together with (11) we get (6), which proves (ii)(c) of Proposition 2.
To achieve the proof of Proposition 2, we have to describe the doubly-

exponential algorithm. This algorithm uses the algorithm provided by (iv) in
Proposition 3 as its main subprocedure, to obtain L′′ and σ or τ ′. In case L′′

is empty, it simply outputs σ. In case L′′ is not empty, it computes L′, which
is easy, and outputs strategy τ obtained from strategy τ ′ as described above,
compared to τ ′, strategy τ requires only one extra memory state.

The proof of Theorem 3 illustrates how to compose the various finite memory
strategies of Proposition 2 to obtain a strategy for player 2 which is positively
winning and has finite memory P(P(K) × K).

Proof of Theorem 3. According to Proposition 2, starting with L0 = ∅, there
exists a sequence L′

0,L
′
1, . . . , L′

n of disjoint non-empty sets of supports such
that for every m ≤ n,

• if 0 ≤ m < M then Lm = L′
0 ∪ · · · ∪ L′

m−1, matches case (ii) of Proposi-
tion 2. We denote τm the corresponding finite memory strategy.

• LM matches case (i) of Proposition 2.

Then according to Proposition 2, the set of supports positively winning for
player 2 is exactly LM , and supports that are not in LM are almost-surely
winning for player 1. This proves the determinacy.

The sequence L′
0,L

′
1, . . . ,L

′
n is computable in doubly-exponential time, be-

cause each application of Proposition 2 involves running the doubly exponential-
time algorithm, and the length of the sequence is at most doubly-exponential
in K.

The only thing that remains to prove is the existence and computability of
a positively winning strategy τ for player 2, with finite memory P(P(K)×K).
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Strategy τ consists in playing randomly any action as long as a coin gives result
”head”. When the coin gives result ”tail”, then strategy τ chooses randomly
an integer 0 ≤ m < M and a support L ∈ L′

m and switches to strategy τm.
Since each strategy τm has memory P(L′

m × K)\{∅} and the L′
m are distincts,

strategy τ has memory P(P(K) × K) with ∅ used as the initial memory state.
We prove that τ is positively winning for player 2 from LM . Let σ be a

strategy for player 1, L ∈ LM and δ an initial distribution with support L. Let
m0 be the smallest index m such that

P
σ,τ
δ (∃n ∈ N,Bp

1(L, C1, . . . , Cn) ∈ L′

m) > 0 .

Since L ∈ LM and LM =
⋃

m<M L′
m, the set in the definition of m0 is non-

empty and m0 is well defined. Let n0 ∈ N and c1, c2, . . . , cn0
∈ Cn0 such that

Bp
1(L, c1, . . . , cn0

) ∈ L′
m0

and

P
σ,τ
δ (C1 = c1, . . . , Cn0

= cn0
and ∀n ≤ n0, Kn 6∈ T ) > 0 .

According to the definition of τ , there is positive probability that τ plays ran-
domly until step n0, any sequence of actions is played by τ with positive prob-
ability, hence according to the definition of pessimistic beliefs, for every state
l ∈ Bp

1(L, c1, . . . , cn0
),

P
σ,τ
δ (C1 = c1, . . . , Cn0

= cn0
and ∀n ≤ n0, Kn 6∈ T and Kn = l) > 0 . (12)

According to the definition of τ again, there is positive probability that τ

switches to strategy τm0
at instant n0, hence according to (12) and to (6) of

Proposition 2,

P
σ,τ
δ (∀n ∈ N, Kn 6∈ T | ∀n ≥ n0,B

p
1(L, C1, . . . , Cn) 6∈ Lm0

) > 0 . (13)

By definition of m0 and since Lm0
= L′

0 ∪ · · · ∪ L′
m0−1,

P
σ,τ
δ (∀n ∈ N,Bp

1(L, C1, . . . , Cn) 6∈ Lm0
) = 1 ,

then together with (13),

P
σ,τ
δ (∀n ∈ N, Kn 6∈ T ) > 0 ,

which proves that τ is positively winning.

Conclusion

We considered stochastic reachability games with partial observation on both
sides. We established a determinacy result: such a game is either almost-surely
winning for player 1, surely winning for player 2 or positively winning for both
players. Despite its simplicity, this result is not so easy to prove. Also we gave
algorithms for deciding in doubly-exponential time which of the three cases hold.
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A natural question is whether these results extend are true for Büchi games
as well? The answer is ”partially”.

One one hand, it is possible to prove that a game is either almost-surely
winning for player 1 or positively winning for player 2 and to decide in doubly-
exponential time which of the two cases hold. This can be done by techniques
almost identical to the ones in this paper.

On the other hand, it was shown recently that the question ”does player 1
has a deterministic strategy for winning positively a Büchi game?” is undecid-
able [BBG08], even when player 1 receives no signals and player 2 has only one
action. It is quite easy to see that ”deterministic” can be removed from this
question, without changing its answer. Hence the only hope for solving positive
winning for Büchi games is to consider subclasses of partial observation games
where the undecidability result fails, an interesting question.
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