Photo-RealisticSimulation and Rendering of Halos
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ABSTRACT

We presenta techniquefor efficiently generatingohoto-realistigpicturesof halosandinsertingtheminto
existing photographs.First, we describean algorithmfor producingimagesof halosfrom physicalpa-
rameterseithercomingfrom existing photographsr suppliedby the user The problemwith theresulting
imagesis thatthey aresampledn a non-uniformway. Then,we proposea specificalgorithmfor recon-
structingthe uniform versionof theseimagesfrom their non-uniformsampling. Finally, we explain the
completealgorithmfor effectively includingcomputergeneratedhalosinto realphotographsthusleading
to new pictureswith haloslooking asif they hadbeenpartof the naturalsceneapturedoy the camera.
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1 Intr oduction

In this papermwe aim at generatingohoto-realistidm-
agesof halosthat could be insertedinto real pho-
tographs.Halos could be comparedo rainbaws, al-
thoughin halos the sunbeamsare not deviated by
dropletsbut by ice crystals. In orderto inserthalos
in real photographsye first have to computethe op-
tical phenomenondependingon the position of the
light source- usuallythesun—togethemith theloca-
tionsandshape®f thecrystals.Theimplementedal-
gorithm,issuedfrom physics producegicturessam-
pledin anon-uniformway. More preciselythevalue
of the halois not known for the whole picture. We
proposeanefficientreconstructioralgorithmin order
to recoverthemissingpartof thehalodata.Finally, a
real photographandthe reconstructedhalo are com-
binedtogetheiinto anew picturenow takingthephys-
ical phenomenointo account.

In Section2, we briefly introducethe physicsof halos
andthewaythesehaloscanbemodeledandgenerated
usinga computer As mentionedabove, theresulting
halosarenot completelydefined.We presenin Sec-
tion 3 anefficientwayto reconstructhemissingdata,
basedon the non-uniformsamplingtheory We show
thenin Sectiond how we manageo retrieve essential
information from real existing photographsn order
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to generateealistichalos,which canbe successfully
combinedto the initial photographsafter the recon-
structionstepfor the halos.Finally, we presensome
pictureswherehaloshave beeninsertedaccordingto
our methodat the endof this paper

2 Generating Halos

Solarhalosarevisible duringsunry winterdayswhen
thereis moisturein theair. Generallyonecanseea—
eitherpartialor complete-lightedcircle locatedat 22
degreesaway from the sun.Marny otherkinds of halo
exist, althoughthey arelessunlikely to occurin prac-
tice. Figure 1 shavs an uppertangentarc together
with sundogs.

2.1 Physical Phenomena

To easily explain thesephenomenalet us make a
comparisorwith the well-known rainbows. A rain-
bow is createdby the deviation of the sunrays by
dropletswhen the sun shineswhereasthe rain falls
elsavhere. During winter days, dropletsare trans-
formedinto smallice crystals. The sunraysarealso
deviatedwhenthey travel throughthe crystals. Nice
photograph®f varioustypesof haloscanbefoundin
[6, 9].



Figurel: Photograplof a22-degreehalowith
anuppertangentarcandsundogs.

Ice Crystals. Generallytheseice crystalshave ap-
proximatelythesameshape More preciselythey can
beregardedasregularhexagonsasshovnin Figure3.
Thecrystalscanlook like pencils(a) or plates(b) de-
pendingon thevalueof their ratio of lengthto radius.

Whena sunbeamhits oneof thesecrystals,seriesof
reflectionandrefractionphenomenaenerallyoccur
Figure2 illustratesthis. More preciselywhentheray
first hits the crystal, it may either be reflectedat its
surface(a)—thusstayingoutside- or berefractednto
its volume (b). Whenthe sunray entersthe crystal,
furtherreflectionsmay occuron theinner facesuntil
a final refractionfinally allows the light to exit the
crystal.

Figure2: Severalinteractiondetweersunrays
andice crystals,dependingon whetheror not
the sunray is directly reflectedat the crystal
surface(a) or refractedinto the crystalvolume

(b).

All of theseice crystals— both pencilsand plates—
constituteaninvisible cloudof particlesslowly falling
acrosgheatmosphereWhat mattersthenis the radii
andlengthsof theseparticlesaswell asthe way the
particlesare organizedwithin the cloud. In a non-
turbulentatmospherethe crystalsfall in sucha way
thatthe surfacefriction is maximal,asshowvn in Fig-
ure 3. Whenthe atmospherés turbulent,the crystals
areorientedrandomly

Various Halos. Thekindsof haloswhichcanbeob-
seneddependot only onthekind of crystalswithin
the cloud andthe turbulenceof the atmospherebut

(a) (b)

Figure 3: Shapesof standardice crystals.
Crystalswith length-to-radiugatios above or
below 2 arecalledpencils(a) or plates(b), re-
spectvely. In anon-turhulentatmospherethe
ice crystalsfall in suchasway thatthe surface
friction is maximal.

alsoonthelocationof boththelight source- usually
the sun— andthe obsener. Figure 4 shows all the
differentkinds of halos. Although thesehaloshave
differentnames- dependingnainly on their position
in thesky —they areall producedy thesamephysical
light-crystalinteractiondescribedabove.

zenith

anthely |

Figure4: Themostcommonhalosshavn ona
schematiwiew of the celestialsphere.

2.2 Computer Simulation

Initially designedin orderto verify the consisteng
of physicaltheoriessimulationalgorithmsturn outto
improve the realismof computerimages. Moreover,
they canadwantageouslgnhancesxisting imagesby
taking physicalphenomenanto account.

2.2.1 PreviousWorks

Although the very first simulation algorithmswere

generatingonly blackandwhite picturesof halos,re-

centtechniquescan generategrey-scaleor even col-

oredhalos. As far aswe know, only two mainworks

have beenpresentedn computergraphics: the first

one by Glassner[5, 4] in 1996, the secondone by

Jaclel and Walter [8] in 1998. Let us first present
the basisof all thesehalo simulationalgorithms,pro-

posedby Greenler[6] in 1980.



Greenler Algorithm.  Greenlers basic hypothesis
[6] is thata ray of sunis deviatedby onesingleice
crystalduringits travel throughtheiced cloud. The
differenttypesof naturalcrystalsareapproximatedby
regularhexagonalcrystalsaswe have seemabove.

Computing,asin standardray tracing, the quantity
of light passingthrougheachpixel of animagerep-
resentinghalosis not realistic with a simple com-
puter Indeedfor eachray leaving theeye andpassing
throughthe pixel, the algorithmhasto testall the ori-

entationsin orderto find the oneswhich deviate the
rayinto thedirectionof thelight source Greenlempro-

posedo useaninverseray-tracingalgorithminstead.
By usinginverseray-tracing knowing thedirectionof

thelight ray leaving thecrystalis equivalentto know-

ing whereto look in the sky for light comingto your

eye from the crystalwith that particularorientation.
Thusthe presente@lgorithmfollows thesesteps:

1. Chooseone crystal— knowing the distribution
of the varioustypesin the cloud — with aran-
dom orientationin the rangeof possibleorien-
tations;

2. Castarayfrom thelight source(the sunfor in-
stance)to the crystal and computethe devia-
tion;

3. Placethe crystalin the atmospherén orderto
seethe light leaving the crystal(seeFigureb).
This positioningis simply done by plotting a
light point on a fish-eye view imageof the at-
mosphere.

4. Repeat the previous steps for an user
predefinechumberof crystalsandorientations.

crystal ice

fish—eye view image
L
L

light source
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Figure5: Thebasichalosimulationtechnique.

Theresultingimagesimulatingthe halophenomenon
is in blackandwhite. Moreover, thevalueof the halo
is not known for the whole image. More precisely
theresultingspotdiagranrepresenttheintensitypat-
ternin the sky thatwe shouldseefrom light passing
througha cloud of ice crystals(similarto Figure7(a),
but in blackandwhite).

Colorless Halos. In 1996, Glassner[5] enhanced
the Greenleralgorithm by taking into accountthe
real part of enegy coming from the sunandreach-
ing the eye of the viewer. Theresultingimage— also

a spotimage — representghe halo phenomenorin

grey scale.In fact,theauthorstoresfor eachpixel the
guantityof light hitting thepixel. Thisquantitycomes
from possiblydifferentlight-crystalinteractionsand
by thelossof enegy duringreflection-refractiorphe-
nomena. The rangeof enegy for eachpixel of the
whole imageis spreadin the classicrangeof grey-

scalepictures(e.g. 256 levels). Figure 7(a) shavs
sucha picture,resultingfrom ourimplementation.

Colored Halos. Colored halo phenomenaare
mainly visible nearthe uppertangentarcandnearthe
sundogs(seeFigure4). The simulationalgorithms
for coloredhalosarederivedfrom thegrey-scaletech-
nigues, by castingseveral rays of light with differ-

entwavelengths.Two works presentow to integrate
color in halo simulation. Glassnerin 1996[4], first

proposedo take into accounthe differentpathscov-

eredby thedifferentwavelengths- of color spectrum
— in the crystal. The color spectrumis divided into

7 wavelengths. Jaclel and Walter, in 1998(8], pro-

poseto decomposehe color spectruminto 21 wave-

lengths. For eachpixel, a spectrumis storedandthe
final color is reconstructedafter the simulation has
ended. To corvert a color spectruminto the classic
RGB colorspacethe methodproposedy Hall [7] in

1989usingXYZ colorspaces used.

Iterati ve or Parallel Algorithms. The main prob-
lem with the useof aninverseray-tracingis thehhuge
numberof raysto castfrom the light sourceto sim-
ulate the halo phenomenaas accuratelyas possible.
Jaclel and Walter [8] proposeto usea parallelalgo-
rithmin orderto castabout500,000raysperhalogen-
eration,100 orientationgperray, and21 wavelengths
perorientation. Their resultingimageis a dot matrix
smoothedby the numberof light impacts. Glassner
[5] proposedo casta muchsmallernumberof rays.
As a consequencehe intensity of the light coming
from the halois not known for the whole image. In
orderto reconstructhe missingdata,he proposeso
usedifferenttypesof filters. This methods explained
in thenext section.

2.2.2 Implemented Algorithm

The algorithm for halo generationwe have imple-
mentedis not really new. In fact, we have imple-
mentedthe Greenleralgorithmenhancedby Glassner
for the real intensity of light coming from the light
source. The partsof enegy reflected(K;) andre-
fracted(K;) in function of the incidentangle(6;) and
of therefractionindex of theice (n, = 1.31) arecom-



putedby theclassicFresnelaws:

Koy = Ny cosb; —ny cosb
1 = hycosdi+nycosh
Koo = n, cosb —n; cosH
2= n22c:056i+21coset (1)
Kr = (Krl + Krz)/z
Ki=1-K,

wheren; therefractionindex of the air (n; = 1), and
6; is the angle of refractioncomputedby the well-
known Snell-Descartekw.

We choosego simulatehalosby aniterative algorithm
wherethe userhasthe possibility to definevarious
typesof parameters:the types of the crystals, the

rangeof possiblecrystal orientation,the numberof

raystraced,the numberof levels of grey (for a col-

orlesshalo) andthe numberof wavelengthscompos-
ing the full color spectrum(for coloredhalos). Fig-

ure7(a)andits enlagement-igure8(a)shav images
producedusingouralgorithm.As for the Glassneal-

gorithm,theintensityof the halois notknown for the

wholeimage.

3 Recovering the CompleteHalo

The algorithm for halo simulation describedabore
producesmagessampledn a non-uniformway (see
Figures7(a) and 8(a)), eachdot representinghe in-

tensitypatternof the halo. The problemis now, from

this irregular sampling,to recover the missinginfor-

mationin orderto reconstructhe wholeimages(see
Figures7(b) and8(b)) from their samplegakenin a
irregularway.

3.1 GlassnerMethod for Reconstruction

Glassnerproposesn [4] to fill the missinginforma-
tion with black pixels and to usethen a superposi-
tion of the samemagesmoothedy a seriesof Gaus-
sianblursat differentscales.This techniquds tricky,
ratherempiricalthough.lts resultsaresatisfictorybe-
causeblurring andsub-samplingarein factthe basic
operationdor uniform reconstructionprovided that
theblurring is doneusinga (low-passyeconstruction
filter closeto the one given by the theory of signal
samplingand reconstruction. The problem experi-
encedby Glassnelis that small blurs do not getthe
dotsto join up andform asmoothfield, whereadarge
blurs make the whole picturego fuzzy. Thatis quite
normal, sinceGlassnerbasicallytries to usean uni-
form reconstructiortechniquefor non-uniformsam-

pling.
3.2 Irr egular Sampling Theory
We proposeto referto the irregular samplingtheory

in orderto designan original and more efficient al-
gorithm for halo image reconstruction. Let us first

briefly explainthetheoryfor one-dimensionatignals
(suchassounds)thenwe will easilygeneralizat to
two-dimensionakignals(suchasimages).

Let s be areal-valuedone-dimensionasignal,band-
limited in frequeng. This meanshats hasspectrum
in someinterval [—Qs, +Qg], which is the caseiff all
the coeficientsof its FouriertransformS correspond-
ing to partsof the frequeny domainoutsidethis in-
tenval arezero.More formally:

Qs > 0, support(S) C [—Qs, +Q4 2
+e .
whereS(Q) :/ s(t) e 1% dt (3)

It is possibleto reconstructhe original signals from
samplegdakenin anon-uniform(irregular)way if the
maximaldistancebetweenwo consecutie sampling
times doesnot exceedthe so-calledNyquist period
Ts = T[/Qs

3.3 ReconstructionAlgorithm

Most irregularreconstructioralgorithmsareiterative
in nature[1]. Startingfrom someinitial guess typi-
cally basedon the givensamplingvalues furtherap-
proximationsof s areobtainedstepby step,usingthe
available(assumedknowledgeaboutQs.

This is the caseof the Allebachalgorithm, which is

madeof 3 steps.Stepl consistof theinterpolationof

the samplingvalues.Theinterpolatedsignalcontains
mary high frequenciesoutsideof [—Qs,+Qs]. The
informationconcernindQs canbeusednext. In step2

theinterpolatedsignalis low-passfiltered with a cut-

off frequeng slightly greaterthanQ.. Let s; denote
thefirst signalresultingfrom stepsl and2, thenlook

atthe differencesignals— s;. Accordingto the con-
struction,s; hasits spectrumwithin the samerange
[—Qs, +Qg], andfor obviousreasonsve know its co-

ordinatesat the given samplingpositions. Therefore,
the estimateindicatedabove canbe applied. Step3

is therecursve reconstructiorof theerror—if signifi-

cant— sothatwe canagainrecoveracertainportionof

the remainingsignalby repeatingthe first two steps,
now startingwith the sampledcoordinateof s— s;.

Continuingto usethe differencebetweenthe given
samplingvaluesof s andthoseof the n-th approxi-
mation we generateadditive correctionswhich lead
stepwiseio improvedapproximations.

Strohmerhasstudiedin [10, 3, 2, 11] thereconstruc-
tion of imagesrom irregularsampling.In stepl, dif-
ferentinterpolationcanbeused.We usetheMarvasti
method,thatis the Allebachalgorithmtogetherwith
the trivial interpolation(all the unknown valuesare
setequalto zero). The iterative schemeof the Alle-
bachalgorithmwould have corvergedfasterwith the
Voronoiinterpolation(nearesneighborhoodnterpo-
lation, using the arithmeticmeanfor equally-spaced



neighbors)put the computationof Voronoidiagrams
wastoo slow to suitour needs.

3.3.1 ReconstructionFilter

Theinterpolationtechniquebeingchosenjet usnow
focus on the filtering operationof the Allebach al-
gorithm. It canbe performedby a simple cornvolu-
tion, provided that the impulseresponseof the filter
is known. The problemis thatthe theoretical(ideal)
reconstructiofiilter is aboxin thefrequeny domain,
correspondingdo a sincfunctionin thetime domain,
morepreciselyto sinqt/Ts) where:

sinqt) =

s'”T([tm) (andsinq0)=1)  (4)
Unfortunatelythis function has an infinite support.
For practicaluse, it hasto be truncated. To avoid
aliasing phenomenapne may tapperthe truncated
versionof the sincfunction by multiplying it with a
bell-shapedvindow, suchasthe Hannwindow (well-
known in signalprocessing):

wy (t) = % (1—cos(N2—i[t1 +T[>> (5)

for |t| < N/2,whereN is thesizeof thewindow (here
in pixels). We thenstoretheimpulseresponsef the
reconstructiorfilter in an odd-lengthsquarematrix
definedby:

Mn (%, y) = w (t(x,y)) sindt(x,y)/Ts) (6)
where[x| <N/2, y| <N/2 @)
andt(x,y) = vx* +y? 8)
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Figure6: Theimpulseresponsef the recon-
structionfilter — herein the one-dimensional
casefor N =11 (i.,e. k=5)andTs=1-is
the productof the sincfunction with the bell-
shapedHannwindow.

3.3.2 Adaptive Filter Size

The problemwith the imagesresultingfrom the halo
simulationalgorithmis that the Nyquist criterion is

not respected: The maximal distancebetweentwo

sampless muchgreaterthanthe Nyquistperiod. Ap-

plying a non-uniformreconstructiorschemeon the
wholeimagewould leadto the sameproblemsasthe
onesexperiencedyy GlassnerWe proposeansteado

performa local non-uniformreconstructiorby adap-
tively choosingthe appropriateneighborhood- and
thus Nyquist period and reconstructiorfilter size —
for every pixel. For that purpose for eachpixel we
male the squareareacenteredat this pixel grow until

it containsa sufficient numberof samples.Therela-
tion betweerthe squareneighborhoodizeN andthe
NyquistperiodTs is given by the following equation
(k beinganarbitraryconstant):

N = 2KTs+ 1 (9)

Thenwe considerQs = 21/ Ts andwe usetherecon-
structionfilter of sizeN x N. For the purpose®f effi-
ciengy, thesesizesare pre-computesnceandstored
prior to the reconstructioralgorithm itself, together
with theassociatedilters of varioussizes.

4 Combining Halos and Real Pictures

In this section, we presenthow we include halos

in real photographsonce they have beengenerated
and reconstructed. This implies to retrieve essen-
tial informationfrom a photograpHik e sunelevation,

cameraparametersetc. Then,the way of inserting

computergeneratechalosinto existing photographs
is discussed.

4.1 Recovery of Physical Parameters

In orderto generatea halo, the usermustsupplyvar

ious data. Some data concernthe snapshot(focal

length usedby the camera)whereasothersconcern
the sunitself (suncolorandelevationrelatively to the
horizon).

First, the useris aslked to definethe focal length of
the camerawhich hastakenthe snapshotlf the user
cannotdetermineor evaluatethis length,the program
chooses standardd0-mmlens. To determingheele-
vationof the sunin theatmospherethe userhasthen
to draw on the photographthe horizonline and has
to indicatethe position of the sun. The elevation of
thesunis automaticallydeterminedn functionof the
focal length usedfor the photograph(seeabove). If
thesunor thehorizonis notvisiblein thephotograph,
the userhasto evaluatethe elevation of the sunrela-
tively to the horizon. Finally, the color of the sunis
recoveredfrom the picture.

Whenthe horizonline andthe sunpositionareuser
defined theelevationof the sunis automaticallycom-



(a) Irregular Sampling

(b) Uniform Reconstruction

Figure7: Haloreconstruction.

putedby thegeneralizedPythagorasormula(seeFig-

ure9). First, thelengthbetweenthe horizonandthe
sun(notedb) is computed.Secondwe computethe
lengthbetweerthefocuspointandthesun(c), aswell

as betweenthe focus point andthe horizon (a). To

computethe differentlengthsandto know the height
andwidth of apixel, we assumeéhattheoriginal pho-
tographwastakenwith astandard4 x 36 mm (i.e. a
2/3ratio). If theheight-to-widthratio of themanipu-
latedimageis not equalto 2/3, the algorithmresizes
automatically— by addingby virtual black pixels —

theimagein orderto have the goodratio. As a con-
sequencehepixelsarealwayssquare Theelevation

of thesunfrom the horizonline is equalto:

a= arcsin( (20)

#—W+é>

2ac

(b) Uniform Reconstruction

Figure8: Haloreconstructior{zoom).

After thesestepsof image data analysis,our algo-
rithm cansimulatethe halo by using the techniques
presentedn Sections2 and3. The view frustum of
boththe computergeneratedhaloimageandthe real
photographarethe samethanksto thelengthof focus
andthehorizonline definedby theuser

4.2 Maodification of the Original Picture

After halosimulationusingthedifferentused-defined
parametersthe final stepof our algorithmis to inlay
thehaloin the photograph.Threecasesanustbe con-
sidered,dependingon the distanceof the userto the
cloud of ice crystals. More precisely if the cloud is



horizon line

Figure9: Computatiorof the sunelevation.

far from the user thenthe generatedhalo hasonly to

be appliedabove the horizonline. In a secondcase,
if the useris inside the cloud, he canview the phe-
nomenorin its wholeview field, sothehalohasto be
appliedto thewholeimage. Thelastcaseis aninter

mediateone. The halocanbe seerbelow the horizon
line but not onthewholeimage.In thislastcase the
userhasto definethe zonewherethe halois visible.

This zoneis storedin a blackandwhite layer— white

colormeaningthatthe halois visible.

Finally, we have threelayersfor makingtheinsertion
of thehaloin thephotographThefirst oneis thepho-
tographitself, the seconds the halo simulation,and
the third oneis the maskof visible halo. The final
imageis computedby combinigthe original photo-
graphandthe color of the sunusingthe halo dataas
analphachannel Of coursehesedatahave beenmul-
tiplied by the visibility maskof the halo prior to the
combination.

4.3 Results

The platespresentedn the last pageof this article
presenttwo original photographdogetherwith their
halo-enhancegersions.On the original photograph,
the sun positionandhorizonline areplotted. In the
first one,thevieweris insidethe cloudof ice crystals.
In the secondone, the cloud is far from the viewer,
thusthevisible halois only above the horizon.

For the mountainphotographwe cast100,000rays
to simulatethe halo. Theinsertionin the photograph
takesabout30 secondg18 s for the simulationitself
and16 sfor theimagereconstructionpna PCwith a
Pentiumlll processoat550MHz.

5 Conclusions

In this article, we proposea combinationof two al-
gorithms. Thefirst one,issuedfrom the physics,al-
lows us to simulatevariouskinds of halo phenom-
ena.However, it generateanincomplete-irregularly
sampled- image.The secondalgorithm,issuedfrom
signaltheory, allows usto completelyreconstructhe
haloimagefrom theresultof the previousalgorithm.

Thetwo algorithmsarepartof ageneraimethodused
to includehalosin realphotographsTheelevationof
the sunin thereal photois computedandtheimage
of the generatechalo is superimposedo the photo-
graphby usingthreelayers. The resultsarenot only
physicallyvalid, but alsovisually realistic. Of course,
ourtechniquevorksnotonly for existingphotographs
but also for computergeneratedmagesas well, all
the physicalparameterdeingthen part of the scene
model.
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(a) Original Photograph (a) Original Photograph

(b) Extractionof PhysicalParameters (b) Extractionof PhysicalParameters

(c) Final Picture (c) Final Picture

Platel: Mountainswith anambienticed cloud. Plate2: Sunsebn seawith andwithouthalo.



