A phenomenological model of coastal scenes
based on physical considerations
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In this article, we present a dynamic version of wave tracing previously introduce
in computer graphics by Ts’o and Barsky. An empirical model of water waves based
on Gerstner, Biesel models and the Fournier method is also proposed.
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1 Introduction

The complexity of natural phenomena has led many researchers to try to produce
realistic pictures. One such natural object interesting to model 1s ocean surface
flow. An important use is to predict the wave form inside a port or to determine
the best place for a sea wall. Other researchers try to predict the arrival of
tsunamis on the coast. The ocean surface is complex to model near the shore. A
lot of phenomena take part in this complexity: reflection, refraction, diffraction
of waves, breaking waves, whirlpools.

Wave modeling can be split into two categories: complete physical modelisa-
tion such in [KM90] [FM96] [CL95] that solves Navier-Stokes equations on the
one hand; and an empirical approach [FR86] [Pea86] [TB87] [IZ95] based on the
classical wave model of Gerstner and Biesel et al. [Bie52] [Lac65] [AA85]. The
former leads to very accurate, but expensive algorithms and the latter has the
opposite characteristics.

Our work is dedicated to the geometric modelization of waves. A complete
rendering model is currently in developement, unavoidable stage to animate
scenes realistically. As a result, we will not deal with rendering and animation.

In this paper, first, we propose a geometric model of vertical section of the
sea that can be viewed as an improved version of the Fournier and Reeves model
[FR86]. Tt can be manipulated easily and advances the Fournier-Reeves limits of
modelisation.

Then, we introduce a new algorithm to control the wave refraction based
on Descartes law. In comparison to Ts’o-Barsky algorithm [TB&7], our model is
more precise near the shoreline and can be also used with more general form of
floor (baies and islands for instance).
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In this model, waves are described from two views: a side view, taking a verti-
cal section of sea; and a bird’s eye view, taking an overhead view of sea. The first
one helps us to manage the profile of the waves (general form, breaking, beach
arrival). The second one is used to control diffraction, refraction and reflection
phenomena.

2 Vertical section of the sea

In this section, we first introduce the main classical wave model developed by
Guerstner in 1804. In 1952, Biesel enhance this work to introduce plunging break-
ers. Then, we present the different previous works made in computer graphics.
Finally, our model of waves is introduced.

2.1 Classical wave models

Here, we present the Biesel extension of the Gerstner model. Let us recall the
assumptions of this model:

— the atmospheric pressure is constant;

— the ocean is composed of a perfect and homogenous liquid;
— the wind is not blowing anymore;

— there are only plunging waves;

— there are no currents and no friction with the bottom.

The wavelength is denoted by A and the amplitude A. We denote by v = %
the curvature, T the period of the wave and h the depth. The free surface is the
surface of sea with no undulations. The reference point is situated in the open
sea, the z-axis is directed horizontally to the beach, the y-axis is horizontal and
perpendicular to the z-axis, and the z-axis is directed to the top. (Fig. 1)

Direction of propagation

Fig. 1. General definitions.

A first theory was proposed by Gerstner in 1804. It 1s rigorous for an infinite
depth. Each particle of water revolves around a fixed point M (xy, zg) describing
a circle of radius R. This circle is included in a disc whose radius is % K is the
wave number, w is the angular speed.



The (x, z) coordinates of each particle are :

T = z9 — Roef#0 sin(Kzg — wt) (1)
z = zg + Roef#0 cos(Kxg — wt)

In order to simplify, we set R = Roef?°. Some data can be determined by
physical laws : A = 2—” = 9277; , A =2R, and free surface zy = lﬁ The maximal
curvature 1s obtamed when R = f, SO Ymaz = M = K ===0,31.

Guerstner theory is usable with a great depth, but the mﬂuence of the bottom
on waves is essential near the shore. When waves arrive on the beach, only the
period seems to be invariant [Kin65], the wavelength decreases. All variables
marked with an oo are used at an infinite depth. In the sequel, A 1s the depth at
the current point x.

A
= tanh(K h) (2)

The amplitude decreases progressively to 91% of its open sea value and it
increases to the breaking point.
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Biesel improves the previous model showing that the circles have to be pro-
gressively replaced by ellipses with the major axis oriented along the ground
slope when the depth is taken in account. This change entails the formation of
breaking waves near the beach.

Circles -> Ellipses Ocean
Free surface e |

Beach Beach
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Fig. 2. From Biesel

2.2 Previous work

A first approach uses sinusoidal functions [Pea86]. With this kind of function,
we get only one height per point (x,y) of sea. So this point can be stored in a
height field, a matrix where are stored the different heights of the sea surface. It
is not possible to simulate plunging breakers. The second type of modelization
is directly based on Gerstner waves [FR86][1Z95]. Imamiya-Zang propose to use
a genetic algorithm to obtain the shape of the waves. Their function simulates
a breaking wave, but 1s limited by a lot of hypotheses. For instance, the slope
of the bottom must be constant. The Fournier-Reeves model is the base of our
work and will be described in the next part.



Fournier-Reeves model. [FR86] Their waves follow physical laws the most
closely. The authors adapt Biesel equations to an approximation easy to com-
pute.

The model is controlled by three factors. A scale factor K; determines the
influence of the depth on the slope of the ellipses. K, is an enlargement factor of
the ellipse major axis. K, is a reduction factor of the minor axis. These factors
are mainly ranged from 0 to 1. 3 is the slope of bottom (fig 1).

r = 29 + Rcos(a)Sy sin(P) + Rsin(«)S; cos(P)
z=zg— Rcos(oz)SZ cos(@) + Rsin(a)S, sin(P)
Se = 7orrer, Se = Sp(1— e 1)
Fournier-Reeves model { sin(a) = sin(g)e~ %ok (4)
@ =—wt+Y ;" K(z)Ax
K(z) = K
\/tanh(Keoh)

With this model, the terrain cannot have a negative bottom slope because the
waves would break on the reverse wave train propagation (fig. 3 : sixth crest). It
is sometimes difficult to control the function on its arrival on the beach, because
it predicts that the water goes below the ground, which is impossible. This comes
from the fact that the major axis tends to oo when h goes to 0. So manipulating
each scale factor is unavoidable.
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Fig. 3. A limitation of Fournier-Reeves model.

2.3 Our model

We want to create a geometric model with more intuitive parameters, that an
average user can easily handle. So, we start our model by computing the general
shape of waves using a comprehensive parametric model. This one allows us to
combine waves coming from many points of the ocean. We add three new func-
tions named Stretch, Orientation and Displacement. The different parameters
governing these ones are easy to manipulate by the user. The Stretch function
1s used to simulate the acceleration of particles at the crest of the waves. The
Orientation and Displacement functions are combined to simulate the influence
of gravity. This allows us to simulate plunging breakers.

In the Fournier-Reeves model, which is the base of our model, the major axis
of each ellipse tends to oo when A — 0. So the coefficients Ky, K, and K, are
necessary to control the general form of the wave near the coast. This becomes
a problem when, in the scene, there are many types of varying depths (gentle
and steep slopes).

In the Gerstner model, the circles described by the particles of water are
restricted to the disc (equivalent to R < %) When R > %, loops in the wave
shape may occur, which does not occur in nature (fig 4.left). An other point
is that the major axis of the ellipses becomes greater than the main disc ra-
dius. This increase simulates the beginning of plunging waves at medium depth
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Fig.4. Left : A problem with Fournier model ; Right : a limitation with our first model.

but, near the shore, the shape wave goes below the ground and the model is
inoperative.

Therefore, we propose to limit the major axis of the ellipses to the disc.
Since the main disc tends to 0 when h goes to 0, this modification guaranties a
predictable arrival of waves on the beach.The limit shape we obtain is presented
in fig 4.right.

At this step of our modelisation, two limitations appear: the amplitude of
the wave decreases near the shore, and no starting plunging breakers can occur.
But, we do not need to modify the parameters (Ko, K and K,) to adapt the
wave shape to the ground definition. We want to manipulate the wave shape by
more comprehensive parameters. Ky = 0.1, K, = 0.11 and K, = 0.09 seems to
be the best values for our model. They have been choosen empiricaly after many
simulations.

Stretch. In order to reproduce the Biesel laws, we propose to add an enlarge-
ment factor to our first model. This factor allows us to stretch progressively
waves on the crest in the direction of the major axis while making no modifica-
tion to the trough of the waves. The maximal stretch length S¢,,4, 1s chosen by
the user. We use also a factor scale named K, which determines the influence of
the depth on the stretch function.

A parabolic function of phase & named Stretch(®, A) is used. The trough of
the sea is determined by this equation (by searching the minimum of z in the
parametric equation of ellips).

sin(a)Sy )

1
Stretch(q[), Stmax) = F(Stm(wqj’z — 25t masPmin® + Stmax@rzm'n ) (6)
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Plunging waves adaptation. The stretch function is not sufficient for repre-
senting real plunging breakers. In fact, due to gravity, water falls down. So we
propose to add an orientation function for crests. Our new function modifies the
shape on the crest and progressively adds another stretch that decreases in the
direction from the angle of the major ellipse axis to the vertical.

This orientation function (named Orientation(®)) is combined with a pro-
gressively vertical displacement function (named Displacement(®, A)). We limit
this displacement to A in order to avoid any touching between the crest and the
trough of the sea. Moreover, we use a factor scale named Ky which determines
the influence of depth on the displacement function.

At the top of the crest, the particle speed is important, but just below it, this
velocity is weak, so we have to reconnect to the original wave form more slowly
(part 1 of the function). We decide to cut these functions in three empirical parts

= Ppin — T < ¢ < Dpin — 5 for the descendant part.
— Ppin — 5 < ¢ < Prnin + o for the trough part,
= Ppin + %T < ¢ < Ppin — 7 for the ascendant part.

Zf(@mzn _7T§¢<@min_ %)j
the equation of the line passing through
(@mzn -, _%) & (@mzn - %aﬁ)

Orientation(¢, 8) = { if(Pmin — 5 < ¢ < Py + L) = B

if (Pmin + F < ¢ < Ppoin + 1) =
the equation of the line passing through
(@mzn + %Ta ) & (@mzn + 7, _%) .
Zf(@mzn _7T§¢<@min_%):>
the equation of the line passing through
(@mzn - 7T,A) & (@mzn - %a 0)

Displacement(¢, A) = { if(Pmin — 5 < ¢ < Ppin + ) = 0
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Fig. 6. Plunging breaker.



2.4 Negative slopes.

With Fournier-Reeves model, it is not possible to use negative slopes. Indeed,
with negative slopes, the waves break on the reverse wave train propagation. So,
in order to avoid this problem, we limit the slope of major axis of ellipse to a
positive angle.
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Fig.7. Wave profile with negative slopes.

2.5 The general form of equations

r=xo+ RTéSx sin(P) + R73 S, cos(P) + Streteh(P, Stmax)rée_Ksh
+Displacement(®, A) cos(Orientation(®, 3))e~Kak

z=zg— RTéSZ cos(P) + Rr3 Sy sin(P) + Stretch(P, Stm(w)rge_Ksh
+Displacement(®, A)sin(Orientation(®, 3))e~ Kk

(7)

with
75 = sin(B)e” "1, Té = /1 — 713 (8 is the slope bottom).
Sy = ﬁ (Increase of major axis)

S, =Sx(1— 6_0'09h) (Descrease of minor axis)

¢ = —wt+ Zg” K(z)Az .

Fig.8. An example using our model.

3 Wave trains

3.1 Principles

In order to have a complete description of the waves near the shore, we have to
position the wave crest lines. The shape of a crest line depends on the form of
ocean floor 1t passes over. Refraction of waves is the principal phenomenon of
the depth effect [Kin65][Lac65] . Waves deflect, like light rays throught different
media. They tend to align themselves slowly to the contour line and, by exten-
sion, to the beach. We can apply the refraction given by Descartes law to wave



trains by using wave orthogonals and the velocity €7 and C'y of waves before
and after the contour line.

Conlo{: Line

c2

sin(éy)  sin(éz) (8)
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3.2 Previous work

Fournier-Reeves, Peachey. The wave trains built by these models are only
formulated using the depth. They only take refraction into consideration in the
(x,2) plane. But to model islands and bays, we must include refraction effects in
the whole scene i.e. the (z,z) and (z,y) planes.

Ts’o, Imamiya. Wave-refraction calculation was introduced in computer graph-
ics by Ts’o and Barsky [TB87]. Like the ray-tracing algorithm, wave-tracing
launches orthogonal wave rays from the open sea along the direction of wave
propagation. Descartes’s law (eq. 8) is applied to calculate the deflection of the
rays. These rays are embedded in uniform grid. The authors approximate the
propagation of rays by the well-known Bresenham algorithm. At each point of
the grid encountered, the algorithm computes the height of the wave using a 2D
model as above. Imamiya follows this work [1Z95].

With this algorithm, it is possible to vizualise the refraction factors in bays
and along islands. But two problems remain: the first one comes from the fact
that 2 consecutive rays can diverge a lot, and so many details can be missed: it
is too inaccurate to deal with bays and islands. Second, with the models derived
from the Gerstner-Biesel wave model, it is impossible to generate plunging waves
(in this case, we often need three values per point on the height field) : the
algorithm is inoperative.
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Fig. 9. Ts’o-Barsky wave tracing for an island and a bay



3.3 Owur algorithm

Principles The idea of our algorithm is simple: in order to preserve the preci-
sion, when two consecutives rays diverge too much, we send a new ray between
them.

This could lead to generate an infinite number of rays, each of which can
have an infinite length! So, we first have to control the lifetime of rays and
their appearences. When these problems are solved, it remains to define clearly
the computation of the refraction and how to obtain the tesselation of the sea
surface.

At the beginning of the algorithm, we create a list composed of rays that come
from the open sea. These rays are separated by a same predefined distance. At
each step, they progress incrementally in the scene. We compute their initial
depths.

With each ray is associated a flag that can have four values : DEAD,
ALIVE, FLAT and AGROUND. Their use will be detailled later.

For each ray, during the propagation, the corresponding refraction factor is
computed. In order to do that, we need to compute the contour line at the
current position.

Contour line calculation. The ground is described by an m x n matrix named
SEAFLOOR. To determine the depth at any point of the scene, we use a cubic
interpolation. As the bottom is not described by the different contour lines, we
have to retrieve them. For each point M (z,y) of the scene, we want to extract
three data : the depth, the slope and the contour line. We surround the point M
by an equilateral triangle. We approximate the contour line by the line passing
through the 2 points on the triangle having a depth value of M.

So we can compute the refraction factor at each step of the wave tracing
algorithm using equation 8. The ground is thus decomposed into a scale whole
step is the step ray progression. Comparatively, in Ts’o algorithm [TB87], the
scene is defined by a set of contour lines given by spline curves. This obliges the
author to compute the refraction factor only when an orthogonal wave ray crosses
the contour lines (fig. 10). With Ts’o-Barsky method, the distance between two
sampling points is not constant. This problem implies a loss of precision.

Ray progression. Each ray progresses along the direction of refraction. We
search the contour line passing through the point of calculation. We then com-
pute the new refraction direction and propagate the ray one step. The propaga-
tion length is fixed by the user.

When a ray leaves the scene, its flag value is changed to DEAD and no
further computation is associated with it. When a ray touches the beach its flag
value 1s set to AGROUND. In this case, the ray follows the seashore. When it is
between two other AGROUND rays, its flag become DEAD. This kind of ray is
only useful for eventually generating new rays.

Amplitude computation. When two rays diverge, the main amplitude of the
wave decreases. When two rays converge, amplitude increases. When two rays
are distant by L., on the open sea, for a local distance L, the local amplitude is
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Fig. 10. Computing refraction factors with the Ts’o-Barsky and our model

A= Agy|— (9)

The value of A, is in fact 2 x R, where R, is the value of R we use in our
model described in the section 2.3. In the same way, A is equal to 2 x R.

Over-sampling. A ray is created when the distance between two rays is greater
than a threshold value. The new ray is cast. Its current position is computed
by interpolation between its two neighboring rays (case 1 fig. 11.Left). When
a ray moves away the coast (case 2 fig. 11.Left), our algorithm creates a new
ray between the coast and this ray. Since a ray flagged AGROUND, follows the
shoreline, we can easily compute the distance between a ray and the coast. The
creation of the ray is made by the insertion of an element in the list of rays.

When a ray is flagged DEAD, the corresponding element in the list is re-
moved.

A ray is FLAT when its amplitude is below a given threshold. When two
neighbor rays are FLAT, we do not create new rays when the distance is too
large. In fact, when rays are FLAT, there are no undulations on the free surface.

Beach

11—

Fig. 11. Left : Two examples of oversampling, Right : Tesselation



Tesselation. After each ray propagation and oversampling, we create two or
three facets between each ray position and its last position, depending on the
current configuration (fig 11.Right). Facets are created between rays flagged
ALIVE, FLAT or AGROUND.

Some crossover may occur between rays. In this case, the two corresponding
tesselations are preserved. They will be used for the rendering.

3.4 Results

In figure 9, two different scenes have been introduced. This first one represents
a bay and the second an island. In this figure, we apply the Ts’o-Barsky wave
tracing.

In figure 12, we apply our dynamic wave tracing on the same scenes. Finally,
a bird’s eye view of the sea surface is presented in figure 13.

The bay scene is 100 meters long (# axis) and 100 meters large (y axis). We
trace one ray per meter (= 100 rays) and sample along rays each 0.4 meter.
New rays are created if the distance between two rays is greater than 1.2 meter.
Our algorithm creates; in this scene, 209 new rays and 39097 facets to define the
scene. 1t runs on an Onyx Silicon Graphics with R10000 processor and takes 2
seconds to compute the entire scene (Dynamic wave tracing and tesselation).
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Fig. 12. Dynamic wave tracing for the example of fig. 9

4 Conclusion

In this article, we propose a combination of two algorithms based on physical
considerations to modelize ocean scenes. In our model, on the one hand, the
manipulation of three intuitive and quasi-independant parameters allows the
user a better control on the shape of waves. On the other hand, our Dynamic
Wave Tracing permits a modelization of more complex scenes than the different
previous same type of works.

These tools are integrated in a unique software package (Plates 1-2 see Ap-
pendix) and a specific technic of rendering is in the process of elaboration and
will be integrated soon.
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Fig.13. A bird’s eye view of the same scene

In the state of our works, we use Open Inventor for the rendering of our
scenes (Plates 3-4 see Appendix).
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