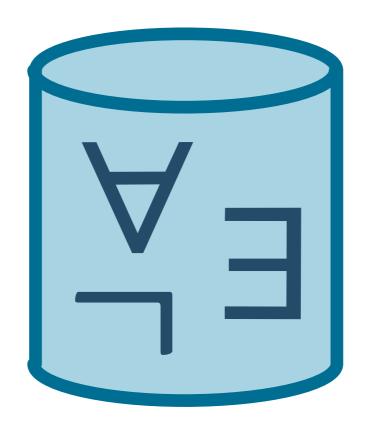
20/7/2015



Fundamentos lógicos de bases de datos (Logical foundations of databases)

Diego Figueira

Gabriele Puppis

CNRS LaBRI

Recap

- Relational model (tables)
- Relational Algebra (union, product, difference, selection, projection)
- SQL (SELECT ... FROM ... WHERE ...)
- First-order logic (syntax, semantics, active domain)
- Expressiveness (FOact = RA = basic SQL)
- Undecidable problems (Halting ≤ Domino ≤ Satisfiability ≤ Equivalence)
- Data complexity / Combined complexity
- Complexity of evaluation (LOGSPACE / PSPACE complexity)

Goal: check which properties / queries are expressible in FO

Goal: check which properties / queries are expressible in FO

Example. $Q(G) = \{(u, v) \mid G \text{ contains a path from } u \text{ to } v\}$

Is Q expressible as a first-order formula?

Definition. Quantifier rank of $\phi = \max \text{ number of nested quantifiers in } \phi$.

Definition. Quantifier rank of $\phi = \max \text{ number of nested quantifiers in } \phi$.

Example.
$$\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$$
 has quantifier rank 3.

Definition. Quantifier rank of $\phi = \max \text{ number of nested quantifiers in } \phi$.

Example.
$$\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$$
 has quantifier rank 3.

Quantifier rank ≠ quantity of quantifiers

Definition. Quantifier rank of $\phi = \max \text{ number of nested quantifiers in } \phi$.

Example.
$$\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$$
 has quantifier rank 3.

Quantifier rank ≠ quantity of quantifiers

Eg, in
$$d_0(x, y) = E(x, y)$$
, and
$$d_k(x,y) = \exists z (d_{k-1}(x, z) \land d_{k-1}(z, y))$$
$$qr(d_k) = k \text{ but } \# \text{ quantifiers of } d_k \text{ is } 2^k$$

Definition. Quantifier rank of $\phi = \max \text{ number of nested quantifiers in } \phi$.

Example.
$$\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$$
 has quantifier rank 3.

Quantifier rank ≠ quantity of quantifiers

Eg, in
$$d_0(x,y)=\,E(x,y),$$
 and
$$d_k(x,y)=\,\exists z\,(\,d_{k-1}(x,z)\wedge d_{k-1}(z,y)\,)$$

 $qr(d_k) = k$ but # quantifiers of d_k is 2^k

What does it define?

Definition. Quantifier rank of $\phi = \max \text{ number of nested quantifiers in } \phi$.

Example.
$$\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$$
 has quantifier rank 3.

Quantifier rank ≠ quantity of quantifiers

Eg, in
$$d_0(x, y) = E(x, y)$$
, and
$$d_k(x,y) = \exists z (d_{k-1}(x, z) \land d_{k-1}(z, y))$$

 $qr(d_k) = k$ but # quantifiers of d_k is 2^k

Quantifier rank is a measure of complexity of a formula

What does it define?

Definition. Quantifier rank of $\phi = \max \text{ number of nested quantifiers in } \phi$.

Example.
$$\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$$
 has quantifier rank 3.

Quantifier rank ≠ quantity of quantifiers

Eg, in
$$d_0(x, y) = E(x, y)$$
, and
$$d_k(x,y) = \exists z \ (\ d_{k-1}(x, z) \land d_{k-1}(z, y) \)$$

$$qr(d_k) = k \text{ but } \# \text{ quantifiers of } d_k \text{ is } 2^k$$

What does it define?

Quantifier rank is a measure of complexity of a formula

Sub-goal: Given a property P and a number *n*, tell whether P is expressible by a sentence of quantifier rank at most *n*.

Definition. Two structures S_1 and S_2 are n-equivalent iff they satisfy the same FO sentences of quantifier rank $\leq n$ (i.e. $S_1 \models \varphi$ iff $S_2 \models \varphi$ for all $\varphi \in FO$ with $\operatorname{qr}(\varphi) \leq n$)

[Tarski '30]

Definition. Two structures S_1 and S_2 are n-equivalent iff they satisfy the same FO sentences of quantifier rank $\leq n$ (i.e. $S_1 \models \varphi$ iff $S_2 \models \varphi$ for all $\varphi \in FO$ with $qr(\varphi) \leq n$)

[Tarski '30]

Consider a property (i.e. a set of structures) *P*.

Suppose that there are $S_1 \in P$, $S_2 \notin P$ s.t.

 S_1 and S_2 are *n*-equivalent.

Then P is not expressible by any sentence of quantifier rank n.

Definition. Two structures S_1 and S_2 are n-equivalent iff they satisfy the same FO sentences of quantifier rank $\leq n$ (i.e. $S_1 \models \varphi$ iff $S_2 \models \varphi$ for all $\varphi \in FO$ with $qr(\varphi) \leq n$)

[Tarski '30]

Consider a property (i.e. a set of structures) *P*.

Suppose that there are $S_1 \in P$, $S_2 \notin P$ s.t.

 S_1 and S_2 are n-equivalent.

Then P is not expressible by any sentence of quantifier rank n.

Note: if the above happens $\forall n$, then **P** is not expressible by *any* FO sentence.

Definition. Two structures S_1 and S_2 are n-equivalent iff they satisfy the same FO sentences of quantifier rank $\leq n$ (i.e. $S_1 \models \varphi$ iff $S_2 \models \varphi$ for all $\varphi \in FO$ with $qr(\varphi) \leq n$)

[Tarski '30]

Consider a property (i.e. a set of structures) *P*.

Suppose that there are $S_1 \in P$, $S_2 \notin P$ s.t.

 S_1 and S_2 are n-equivalent.

Then P is not expressible by any sentence of quantifier rank n.

Note: if the above happens $\forall n$, then **P** is not expressible by *any* FO sentence.

Example. **P** = { finite structures } seems to be not FO-definable. One could then aim at proving that

for all *n* there are $S_1 \in P$ and $S_2 \notin P$ s.t. S_1, S_2 *n*-equivalent...

Expressive power via games

Characterization of the expressive power of FO in terms of Games

Expressive power via games

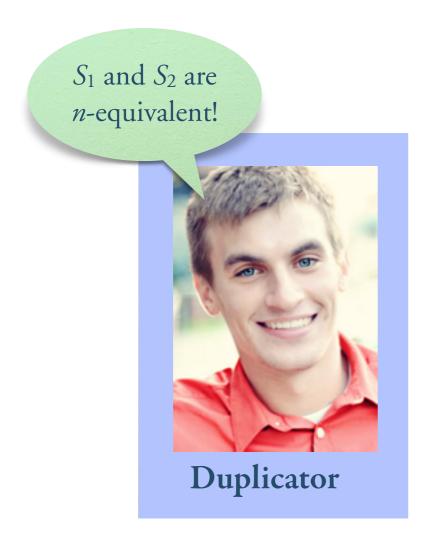
Characterization of the expressive power of FO in terms of Games

<u>Idea</u>: For every two structures (S,S') there is a game where

a player of the game has a winning strategy iff

S,S' are indistinguishable

A game between two players



Board: (S_1, S_2)

One player plays in one structure, the other player answers in the other structure.

If after n rounds Duplicator doesn't lose: S_1 , S_2 are n-equivalent

Definition. Partial isomorphism between S_1 and S_2 = injective partial map

f: nodes of $S_1 \longrightarrow \text{nodes of } S_2$

so that

E(x,y) iff E(f(x),f(y))

Definition. Partial isomorphism between S_1 and S_2 = injective partial map

 $f: \text{ nodes of } S_1 \longrightarrow \text{ nodes of } S_2$

so that

E(x,y) iff E(f(x),f(y))

Spoiler

and

Duplicator play for n rounds on the board S_1 , S_2

Definition. Partial isomorphism between S_1 and S_2 = injective partial map

 $f: \text{ nodes of } S_1 \longrightarrow \text{ nodes of } S_2$

so that

E(x,y) iff E(f(x),f(y))

Spoiler

and

Duplicator play for n rounds on the board S_1 , S_2

At each round *i*:

Spoiler chooses a node x_i from S_1 1. and Duplicator answers with a node y_i from $S_{2,}$

Definition. Partial isomorphism between S_1 and S_2 = injective partial map

 $f: \text{ nodes of } S_1 \longrightarrow \text{ nodes of } S_2$

so that

E(x,y) iff E(f(x),f(y))

Spoiler

and

Duplicator play for n rounds on the board S_1 , S_2

At each round *i*:

Spoiler chooses a node x_i from S_1 1. and Duplicator answers with a node y_i from $S_{2,}$

or

2. Spoiler chooses a node y_i from S_2 and Duplicator answers with a node x_i from S_1 ,

Definition. Partial isomorphism between S_1 and S_2 = injective partial map

 $f: \text{ nodes of } S_1 \longrightarrow \text{ nodes of } S_2$

so that

E(x,y) iff E(f(x),f(y))

Spoiler

and

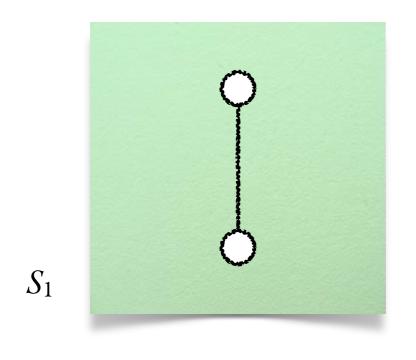
Duplicator play for n rounds on the board S_1 , S_2

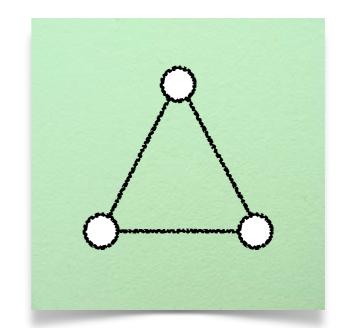
At each round *i*:

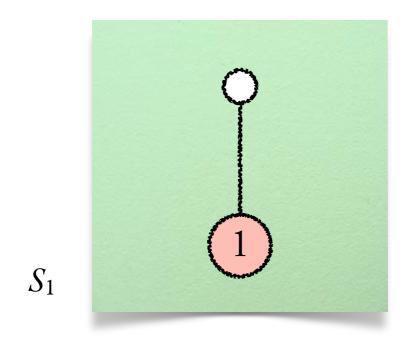
Spoiler chooses a node x_i from S_1 1. and **Duplicator** answers with a node y_i from $S_{2,i}$

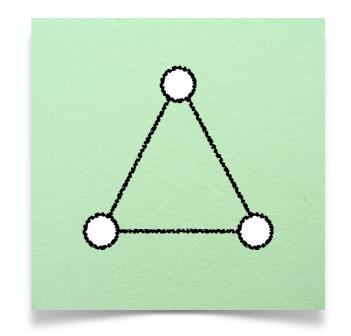
or

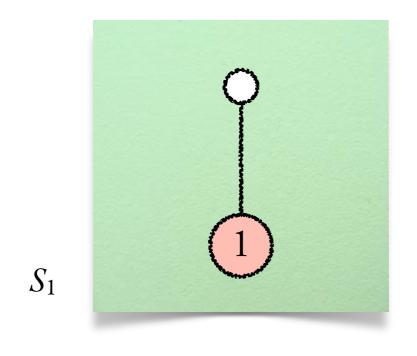
- 2. **Spoiler** chooses a node y_i from S_2 and Duplicator answers with a node x_i from S_1 ,
- **Spoiler** wins if $\{x_i \mapsto y_i \mid 1 \le i \le n\}$ is **not a partial isomorphism** between S_1 and S_2 . or

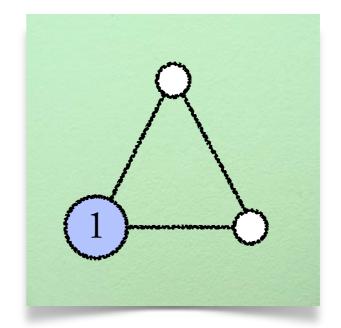


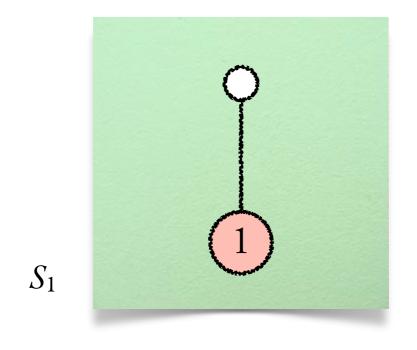


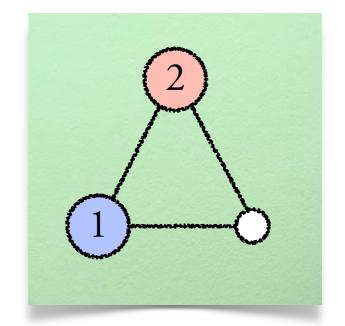


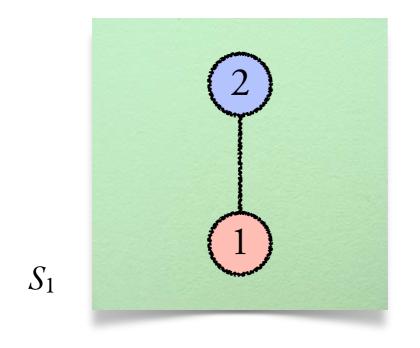


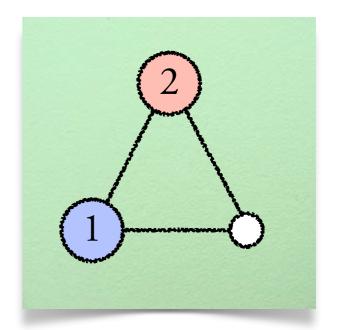


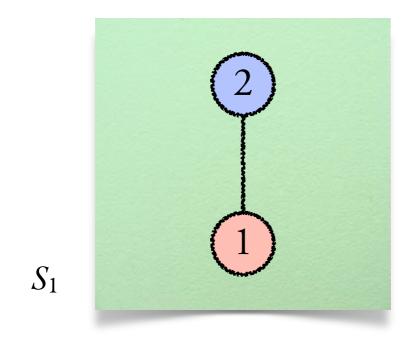


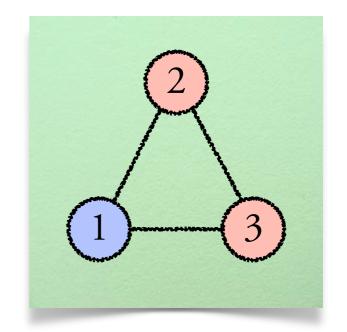


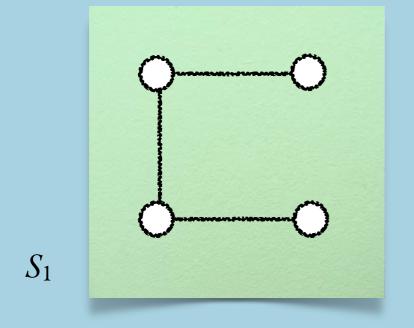


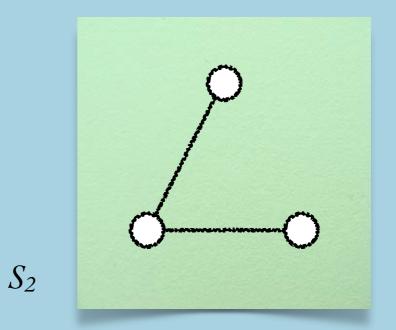


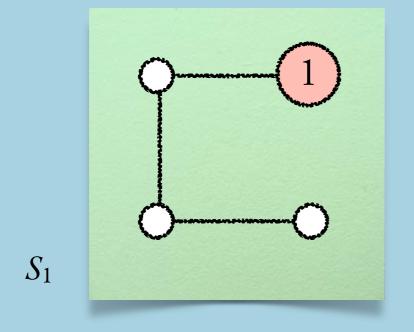


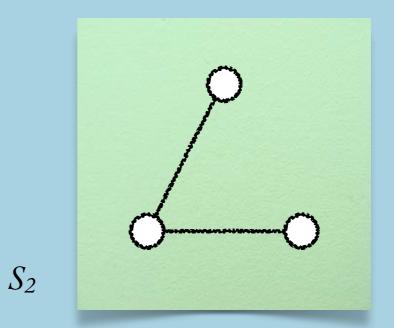


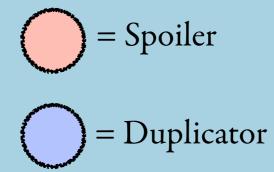




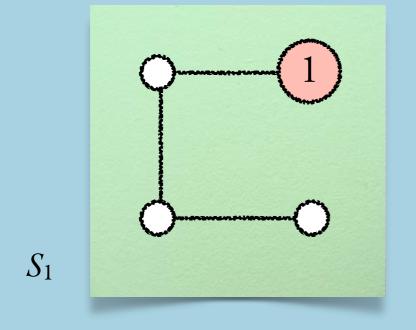


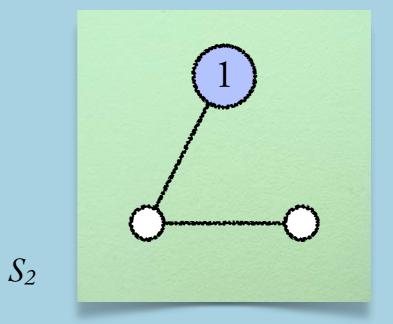




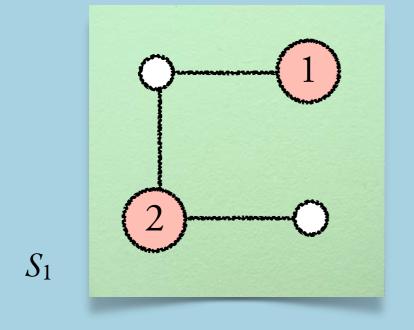


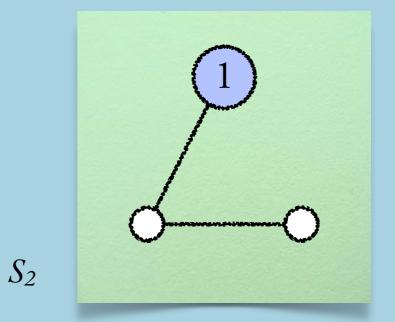
Question: Can Spoiler win in 3 rounds?

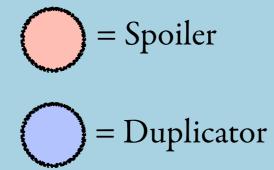


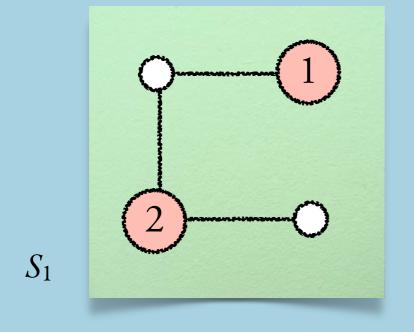


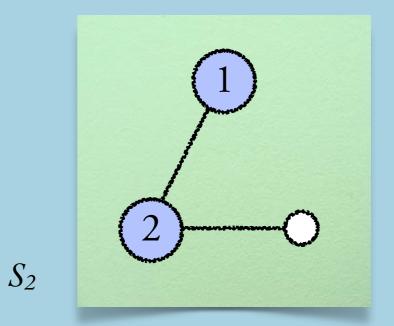
= Spoiler

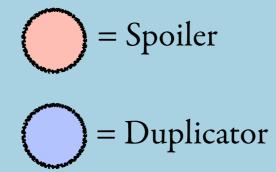


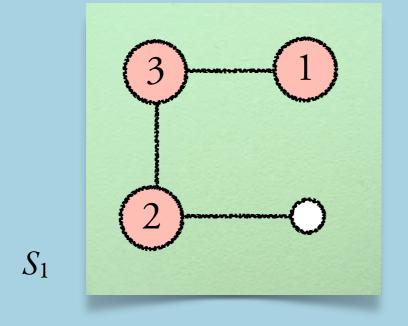


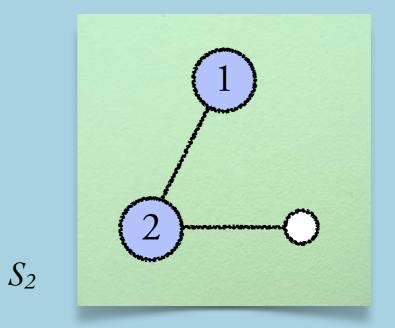


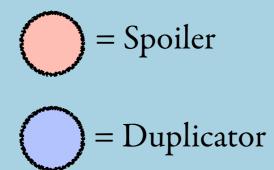




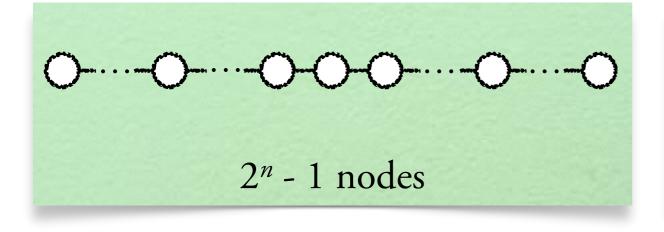


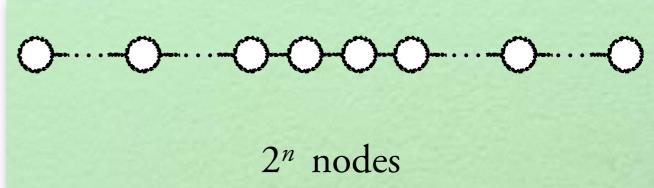


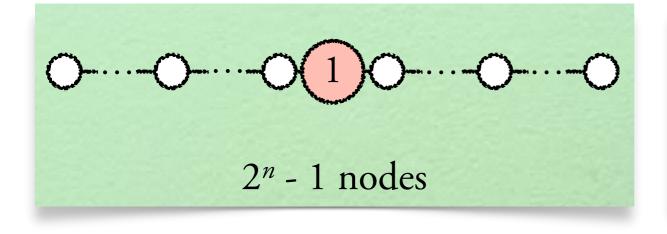


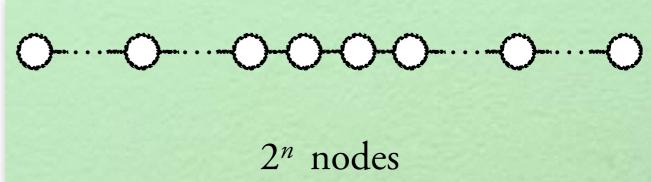


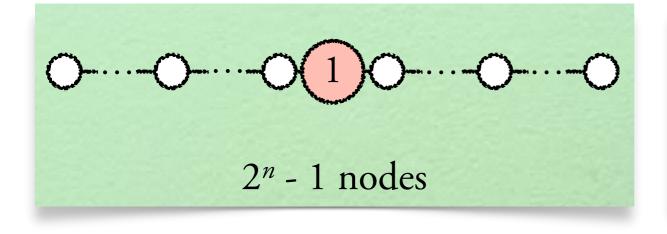
On non-isomorphic finite structures, Spoilers wins eventually... Why?

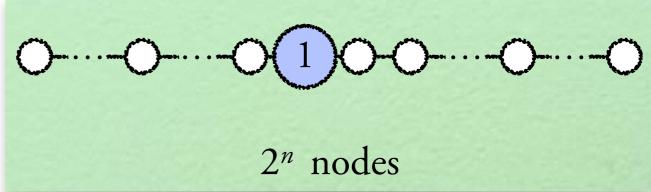


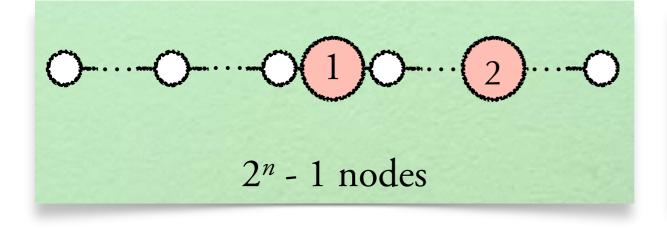


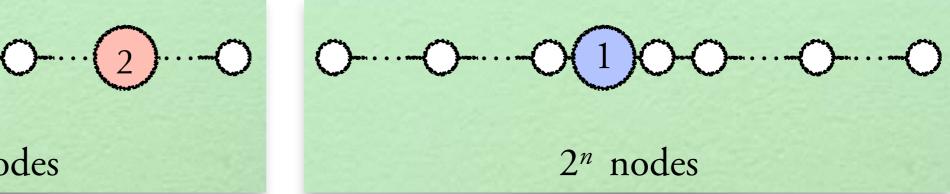


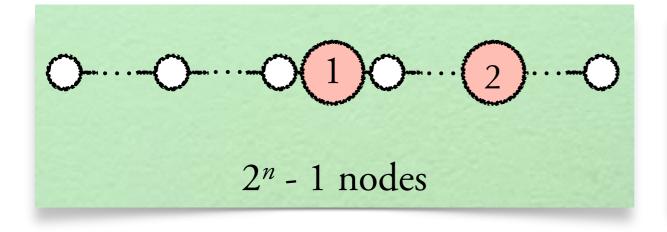


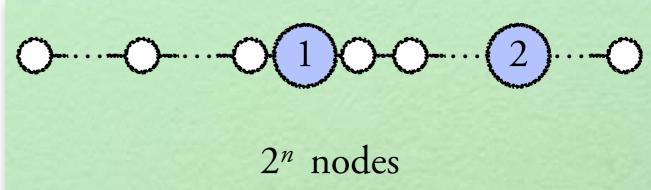




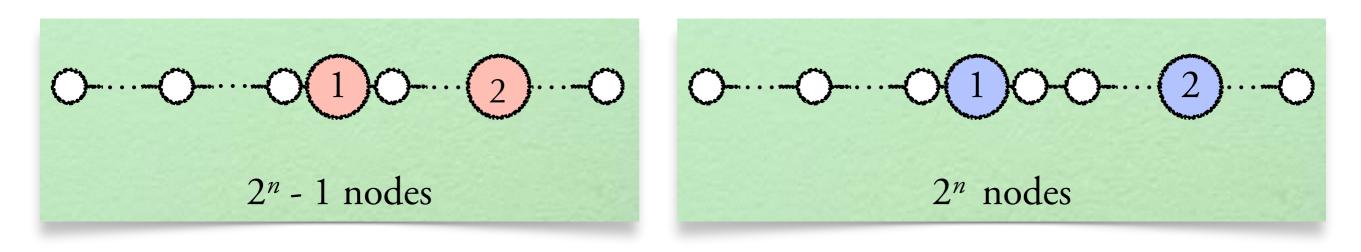








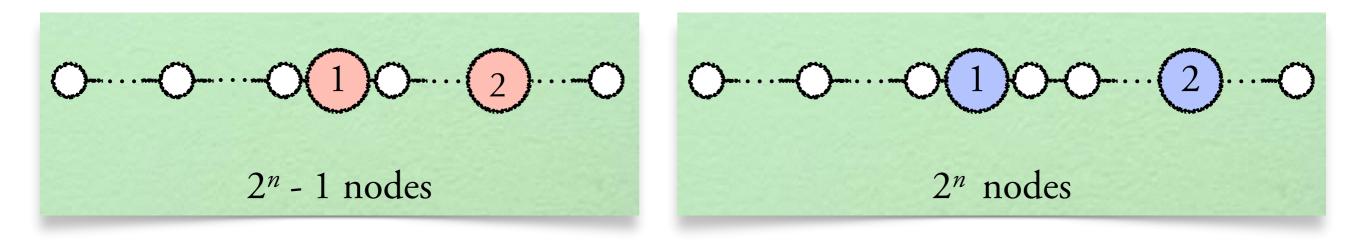
On non-isomorphic *finite* structures, Spoilers wins eventually... Why? ...and he often wins very quickly:

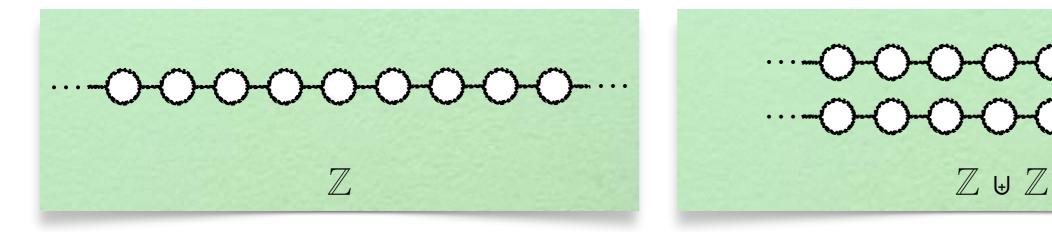


But there are non-isomorphic *infinite* structures where Duplicator can survive for *arbitrarily many rounds* (not necessarily forever!)

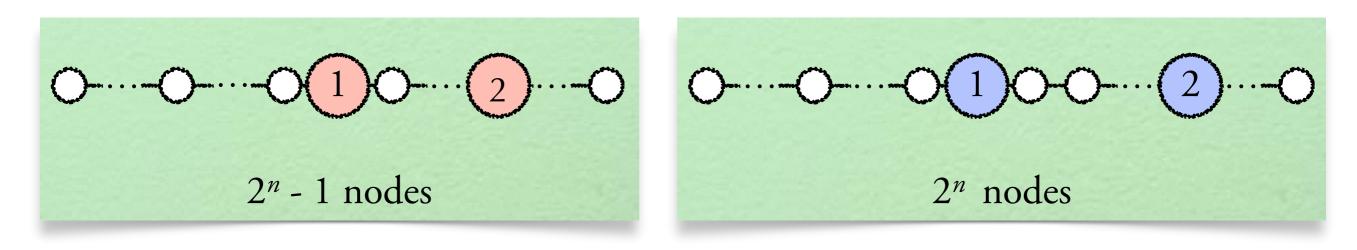
Any idea?

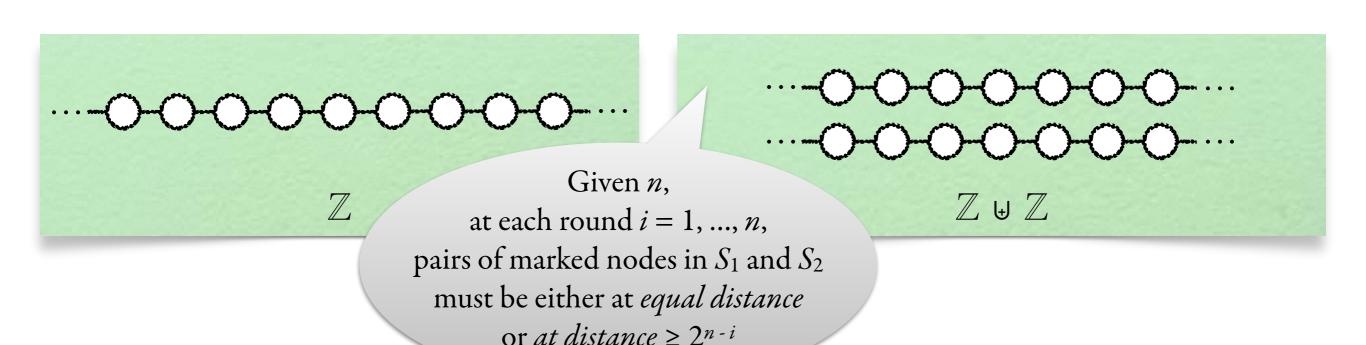
On non-isomorphic *finite* structures, Spoilers wins eventually... Why? ...and he often wins very quickly:



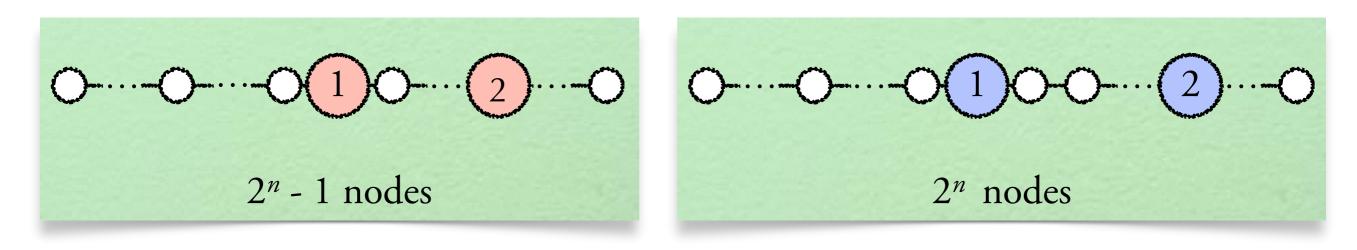


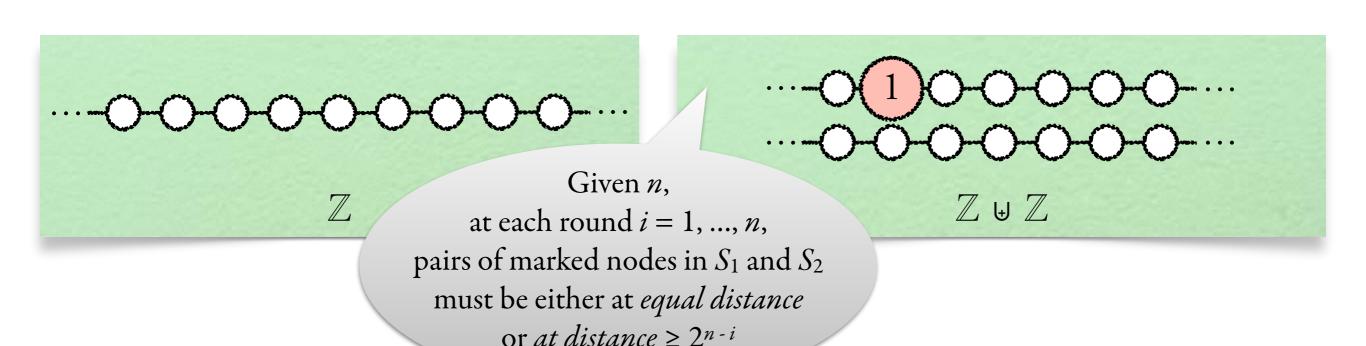
On non-isomorphic *finite* structures, Spoilers wins eventually... Why? ...and he often wins very quickly:





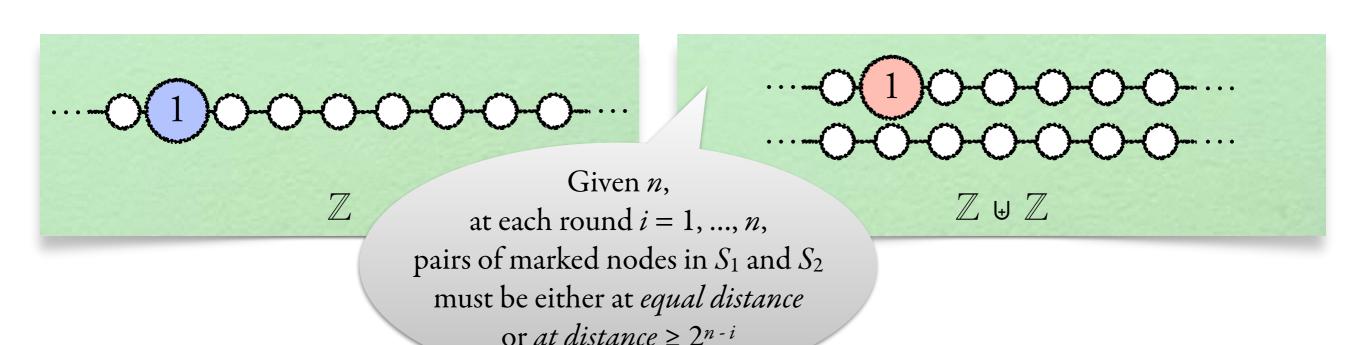
On non-isomorphic *finite* structures, Spoilers wins eventually... Why? ...and he often wins very quickly:



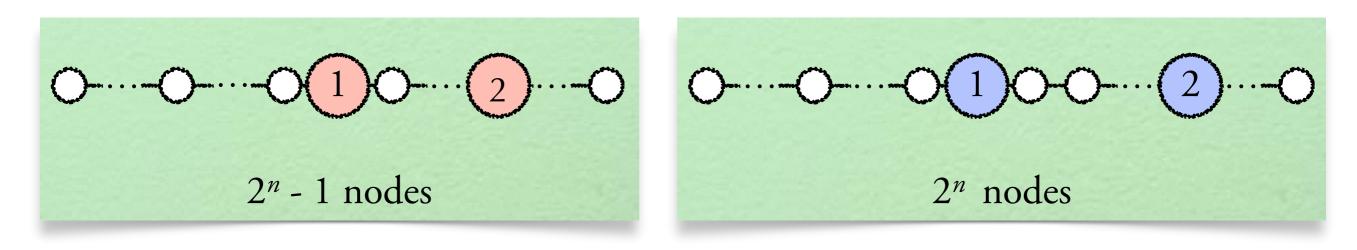


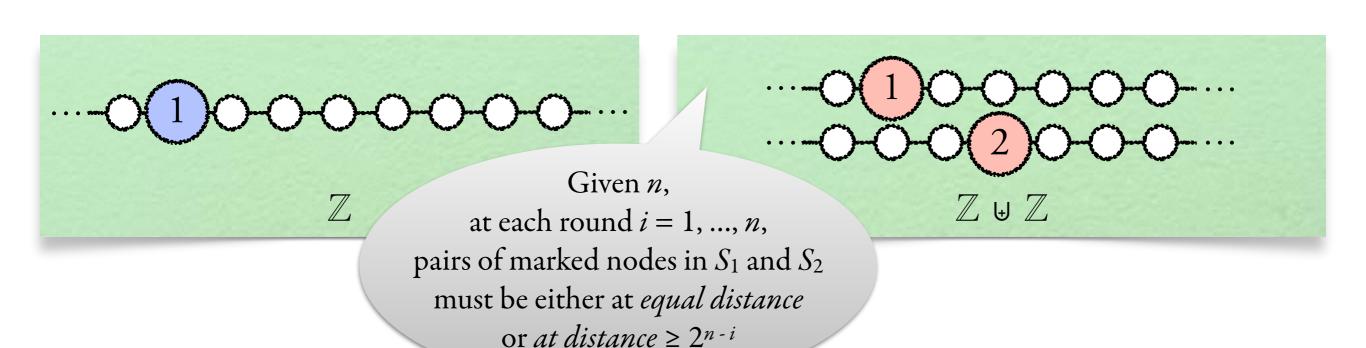
On non-isomorphic *finite* structures, Spoilers wins eventually... Why? ...and he often wins very quickly:





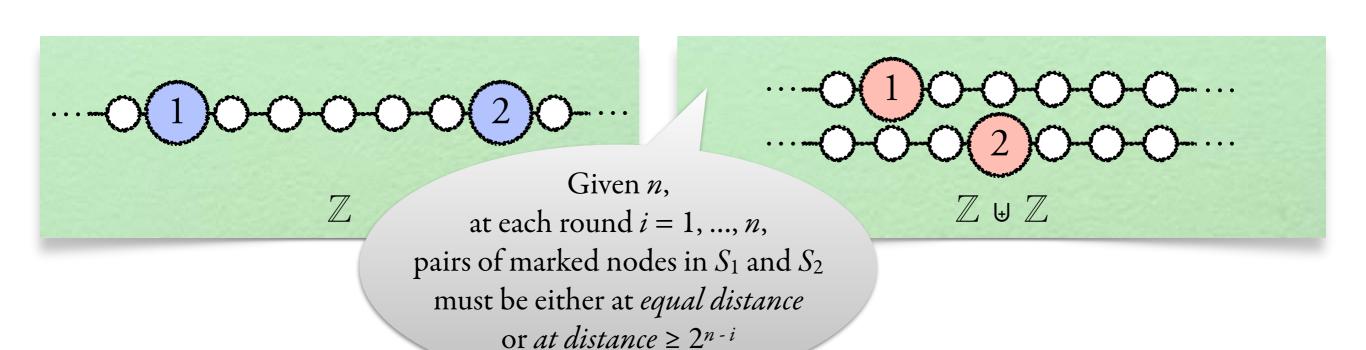
On non-isomorphic *finite* structures, Spoilers wins eventually... Why? ...and he often wins very quickly:





On non-isomorphic *finite* structures, Spoilers wins eventually... Why? ...and he often wins very quickly:





Theorem.

 S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff

Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Theorem.

 S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff

Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Exercise: prove that the following corollary of the theorem.

If **P** is a property and for all *n* there are $S_1 \in \mathbf{P}$, $S_2 \notin \mathbf{P}$ s.t. Duplicator can survive *n* rounds on S_1 and S_2

Then **P** is not definable in FO.

Theorem.

 S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff

Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Exercise: prove that the following corollary of the theorem.

If **P** is a property and for all *n* there are $S_1 \in \mathbf{P}$, $S_2 \notin \mathbf{P}$ s.t. Duplicator can survive *n* rounds on S_1 and S_2

Then **P** is not definable in FO.

Proof: Suppose that **P** is defined by an FO sentence ϕ and * holds.

From \circledast and the above theorem: $\forall n \exists S_1 \in \mathbf{P} \exists S_2 \notin \mathbf{P}$. S_1, S_2 are n-equivalent.

In particular, when $n = quantifier rank of \phi$, $S_1 \models \phi$ iff $S_2 \models \phi$.

A contradiction!

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.

Suppose $S_1 \vDash \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .

We need to prove that $S_2 \models \varphi$.

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

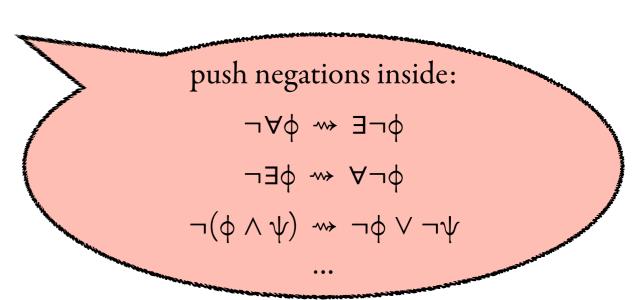
Consider ϕ with quantifier rank n.

Suppose $S_1 \vDash \varphi$ and Duplicator survives n rounds on S_1, S_2 . We need to prove that $S_2 \vDash \varphi$.

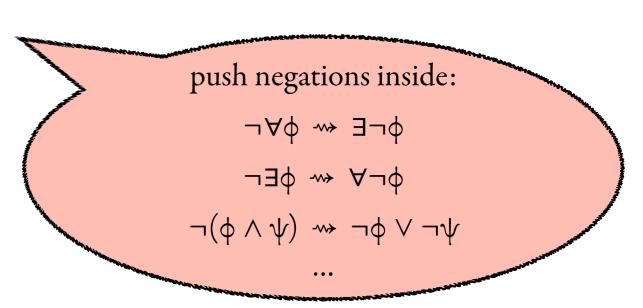
A new game to evaluate formulas....

Assume w.l.o.g. that ϕ is in negation normal form.

Assume w.l.o.g. that ϕ is in **negation normal form.**



Assume w.l.o.g. that ϕ is in **negation normal form.**

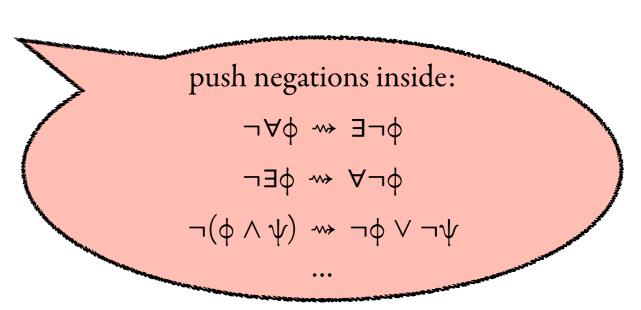


Whether $S \models \phi$ can be decided by a *new game* between two players, True and False:

- $\phi = E(x,y)$ \rightarrow True wins if nodes marked x and y are connected by an edge, otherwise he loses
- $\phi = \exists x \phi'(x) \rightarrow \text{True moves by marking a node } x \text{ in } S$, the game continues with ϕ'
- $\phi = \forall y \phi'(y) \rightarrow$ False moves by marking a node y in S, the game continues with ϕ'
- $\phi = \phi_1 \lor \phi_2$ \rightarrow True moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose
- $\phi = \phi_1 \wedge \phi_2$ \rightarrow False moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose

• ...

Assume w.l.o.g. that ϕ is in **negation normal form.**



Whether $S \models \phi$ can be decided by a *new game* between two players, True and False:

- $\phi = E(x,y)$ \rightarrow True wins if nodes marked x and y are connected by an edge, otherwise he loses
- $\phi = \exists x \phi'(x) \rightarrow \text{True moves by marking a node } x \text{ in } S$, the game continues with ϕ'
- $\phi = \forall y \phi'(y) \rightarrow$ False moves by marking a node y in S, the game continues with ϕ'
- $\phi = \phi_1 \lor \phi_2$ \rightarrow **True** moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose
- $\phi = \phi_1 \wedge \phi_2$ \rightarrow False moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose

• ...

Lemma. $S \models \phi$ iff **True** wins the semantics game.

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.

Suppose $S_1 \vDash \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .

We need to prove that $S_2 \models \varphi$.

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

True wins the game on S_1

Consider ϕ with quantifier rank n.

Suppose $S_1 \vDash \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .

We need to prove that $S_2 \models \varphi$.

True wins the game on S_2

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

True wins the game on S_1

Consider ϕ with quantifier rank n.

Suppose $S_1 \vDash \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .

We need to prove that $S_2 \models \phi$.

True wins the game on S_2

Turn winning strategy for True in S_1 into winning strategy for True in S_2

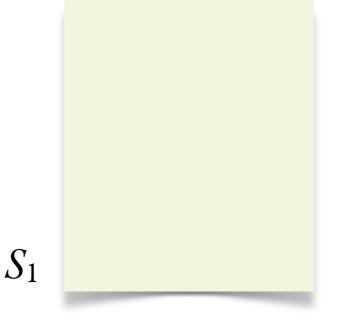
Theorem. S_1 and S_2 are n-equivalent

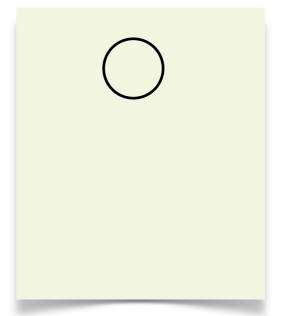
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.





Theorem. S_1 and S_2 are n-equivalent

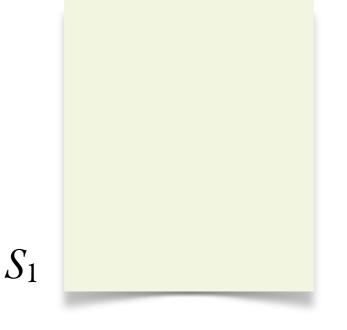
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.

Suppose $S_1 \vDash \varphi$ and Duplicator survives n rounds on S_1, S_2 . We need to prove that $S_2 \vDash \varphi$.



 S_2

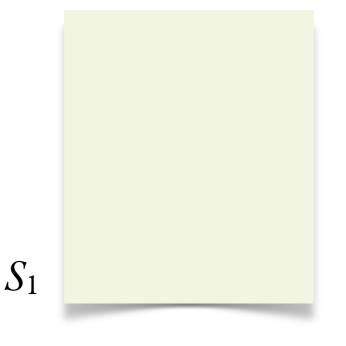
Theorem. S_1 and S_2 are n-equivalent

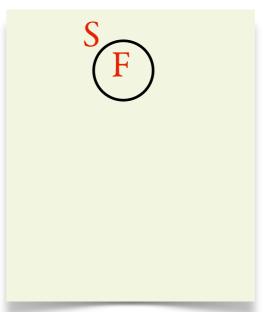
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.





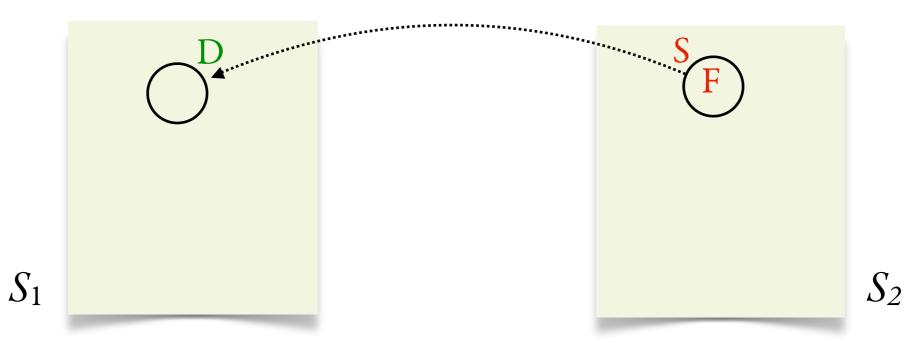
Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.



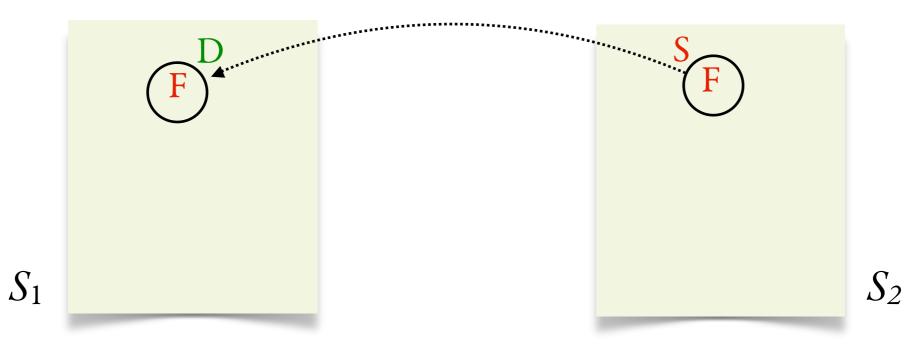
Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.



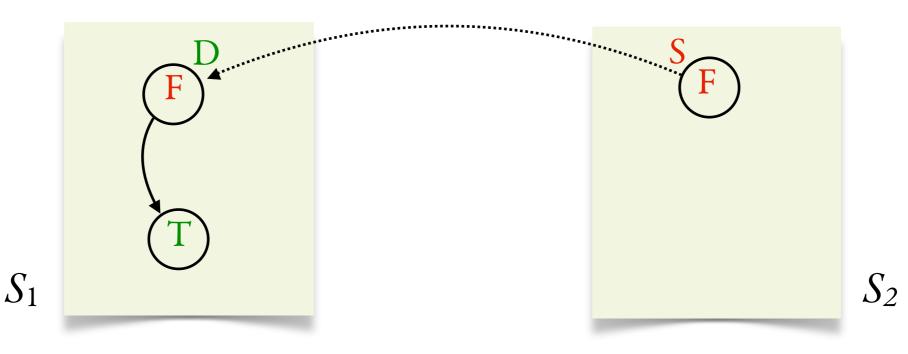
Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.



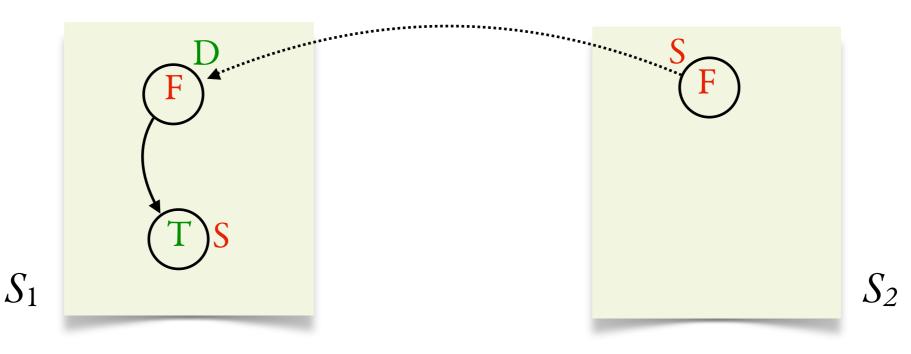
Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.



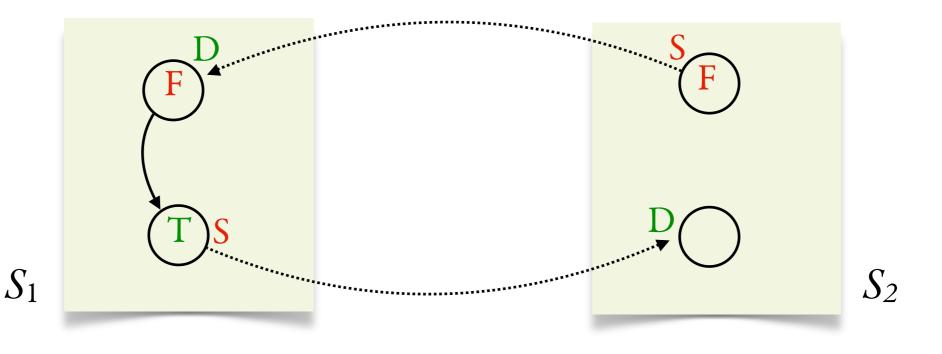
Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.



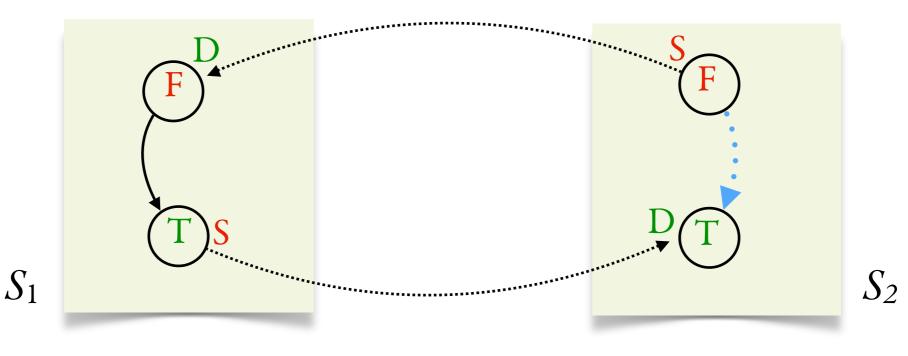
Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.



Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Corollary. A property P is not definable in FO

iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .

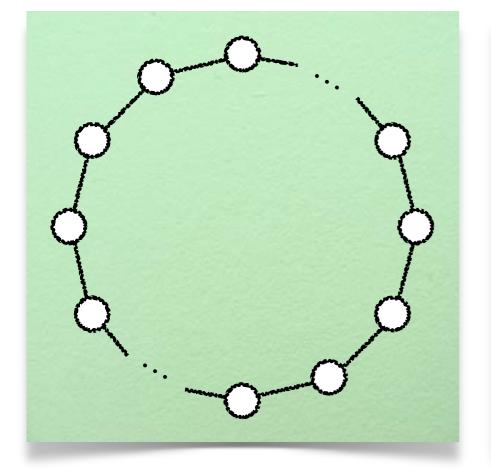
Theorem. S_1 and S_2 are n-equivalent

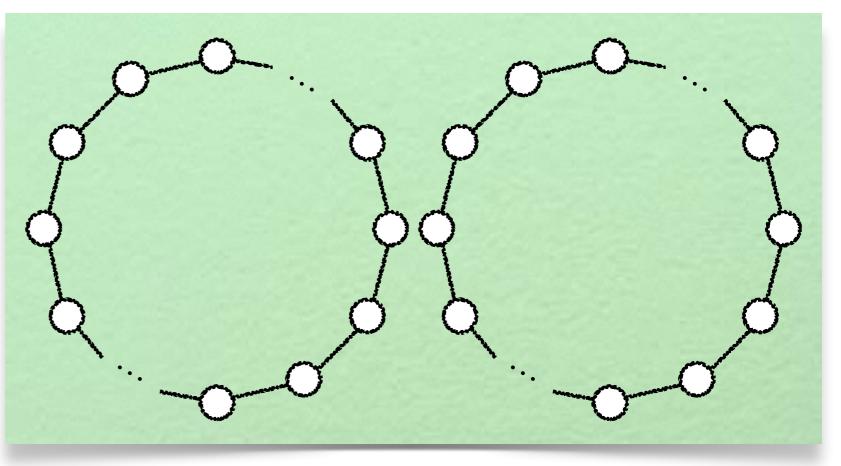
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Corollary. A property P is not definable in FO

iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .





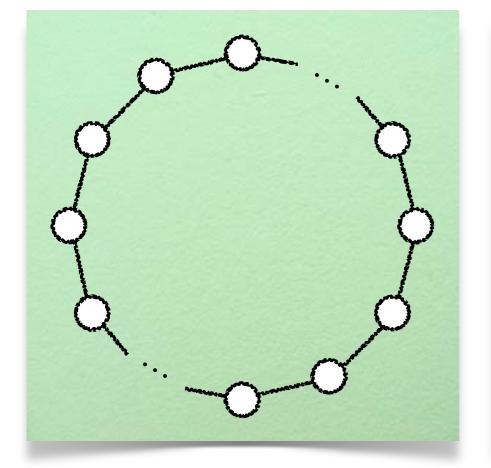
Theorem. S_1 and S_2 are n-equivalent

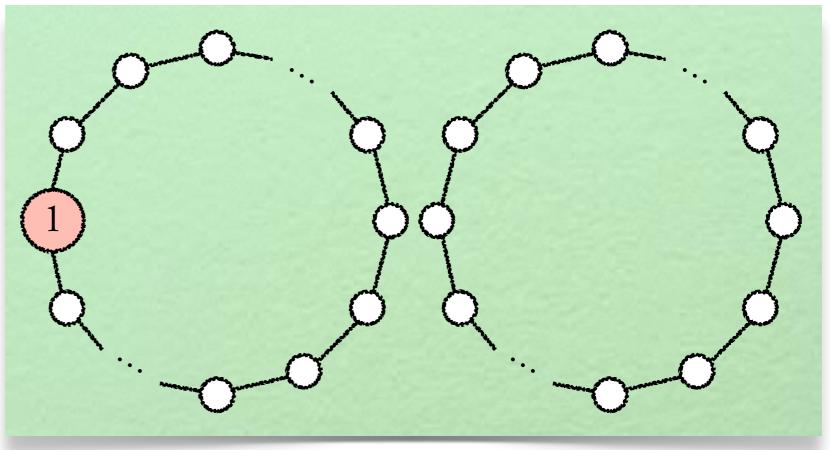
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Corollary. A property P is not definable in FO

iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .





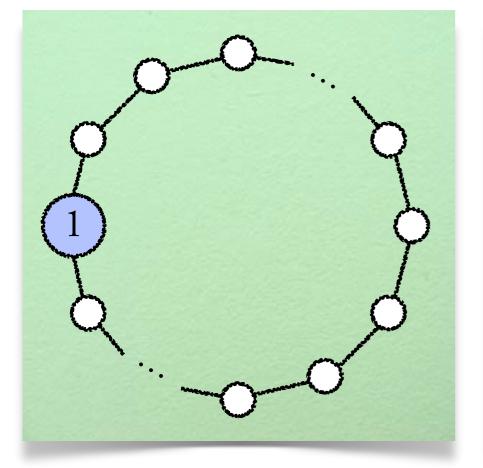
Theorem. S_1 and S_2 are n-equivalent

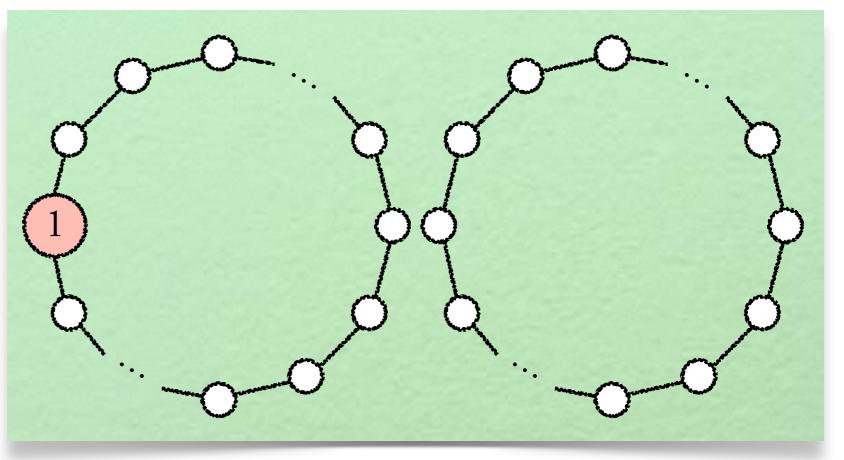
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Corollary. A property P is not definable in FO

iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .





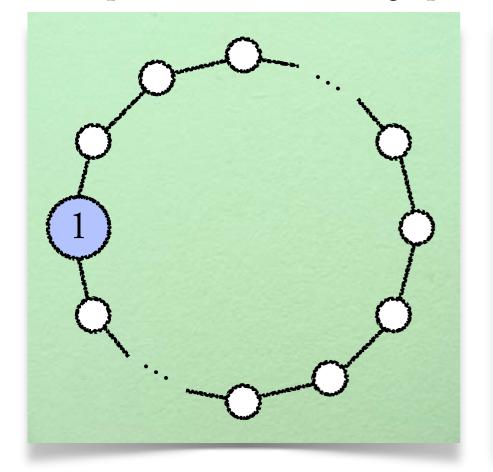
Theorem. S_1 and S_2 are n-equivalent

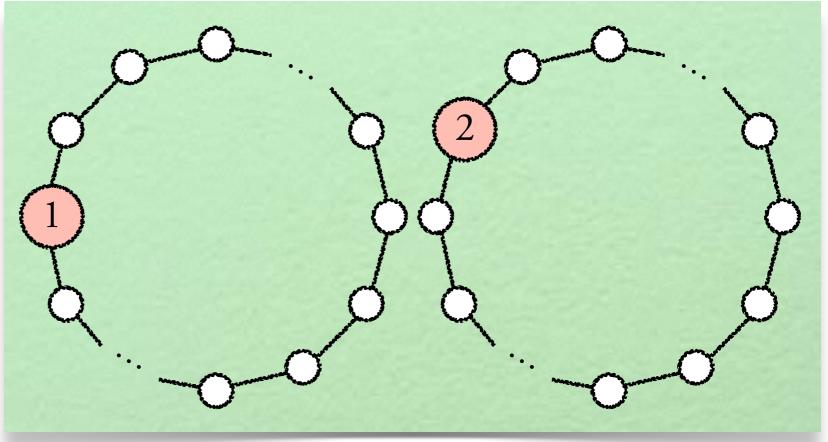
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Corollary. A property P is not definable in FO

iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .





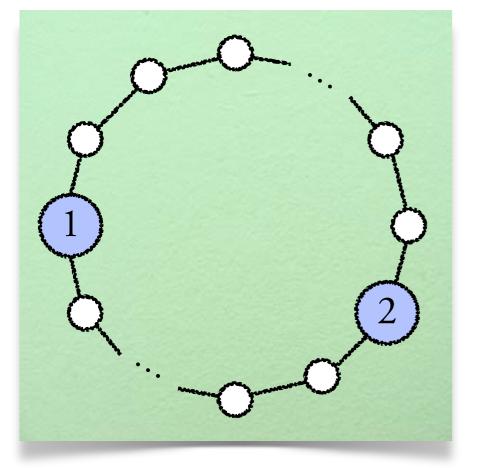
Theorem. S_1 and S_2 are n-equivalent

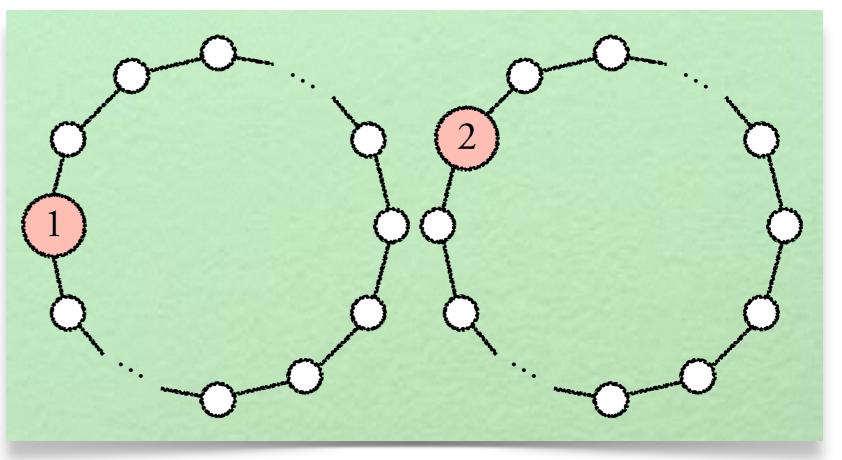
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Corollary. A property P is not definable in FO

iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .





Several properties can be proved to be not FO-definable:

connectivity (previous slide)

Several properties can be proved to be *not FO-definable*:

• connectivity (previous slide)

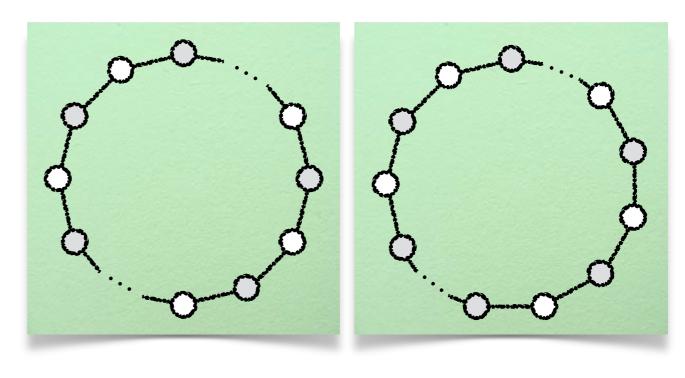
• even / odd size Your turn now! ...given n, take $S_1 = \text{large even structure}$ $S_2 = \text{large odd structure...}$

Several properties can be proved to be *not FO-definable*:

• connectivity (previous slide)

• even / odd size Your turn now! ...given n, take $S_1 = \text{large even structure}$ $S_2 = \text{large odd structure...}$

• 2-colorability Given n, take $S_1 = \text{large even cycle}$ $S_2 = \text{large odd cycle}$



Several properties can be proved to be *not FO-definable*:

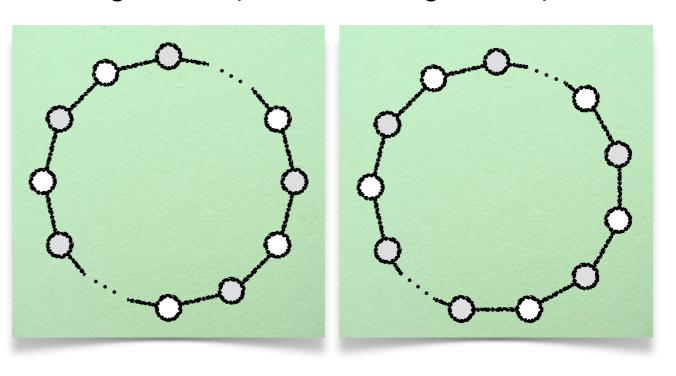
• connectivity (previous slide)

• even / odd size Your turn now! ...given n, take $S_1 = \text{large even structure}$ $S_2 = \text{large odd structure...}$

• 2-colorability Given n, take $S_1 = \text{large even cycle}$ $S_2 = \text{large odd cycle}$

• finiteness

acyclicity



Some Bibliography

• Libkin, "Elements of Finite Model Theory", Springer, 2004.

• Otto, "Finite Model Theory", Springer, 2005

(freely available at www.mathematik.tu-darmstadt.de/~otto/LEHRE/FMT0809.ps)

• Väänänen, "A Short course on Finite Model Theory", 1994.

(available at www.math.helsinki.fi/logic/people/jouko.vaananen/shortcourse.pdf)