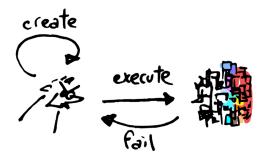
Verification of infinite state systems

Gabriele Puppis

LaBRI / CNRS



Outline of the course

Warm-up

(transition systems, automata, logics)

First-order theories

(undecidability, Presburger logic, automatic structures)

The monadic theory of one successor

(contraction and composition methods, factorization forests)

The monadic theory of two successors

(Rabin's complementation, application examples)

The transformational approach

(interpretations, context-free and prefix-rewriting graphs, unfoldings, Caucal hierarchy, recursive program schemes)

Reachability via saturation

(pushdown systems, VAS / Petri nets, lossy counter machines)

Goal

Automatic verification of **properties** of **systems**.

Goal

Automatic verification of **properties** of **systems**.

• which properties?

safety	"something bad never happens"
liveness	"something good eventually happens" $\int \sum_{i=1}^{ab} \sum_{j=1}^{ab} \sum_{i=1}^{ab} \sum_{j=1}^{ab} \sum_{i=1}^{ab} \sum_{j=1}^{ab} \sum_{j=1}^{ab} \sum_{i=1}^{ab} \sum_{i=1}^{ab} \sum_{j=1}^{ab} \sum_{j=1}^{ab} \sum_{i=1}^{ab} \sum_{j=1}^{ab} \sum_{j=$
fairness	<i>"if something happens infinitely often then something else eventually happens"</i>
formulas	" $\forall t. \exists t'. t \leq t' \land a(t')$ "

3

Goal

Automatic verification of **properties** of **systems**.

• which properties?

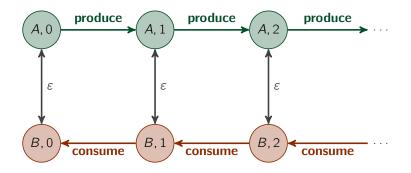
safety	"something bad never happens"
liveness	"something good eventually happens") 🚊
fairness	"if something happens infinitely often then something else eventually happens"
formulas	" $\forall t. \exists t'. t \leq t' \land a(t')$ "

9

• which systems?

reactive	"transitions enabled on the basis of input"
infinite	(stacks (or recursion) variables queues lists

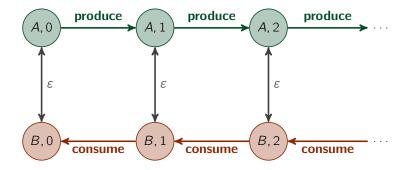
A : repeat forever do atomically produce count := count + 1 B : repeat forever do atomically if count > 0 then consume count := count - 1

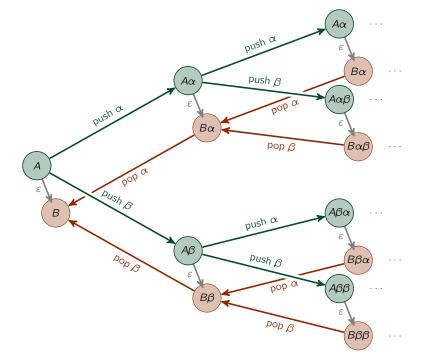


Definition

A transition system is a graph $G = ((V_a)_{a \in \Sigma}, (E_b)_{b \in \Delta})$ where

- \bullet vertices are associated with labels from a finite alphabet Σ
- $\bullet\,$ edges are associated with labels from a finite alphabet $\Delta\,$





Automata = finite transition systems

but mostly used as representations of languages

Automata = finite transition systems

but mostly used as representations of **languages**

Definition

A finite state automaton is a tuple $A = (Q, \Sigma, \Delta, I, F)$, where

- Q is a finite set of control states
- $\bullet~\Sigma$ is a finite alphabet for transition labels
- $\Delta \subseteq Q \times \Sigma \times Q$ is a finite set of transition rules
- $I \subseteq Q$ is a set of initial states
- $F \subseteq Q$ is a set of final states

Automata = finite transition systems

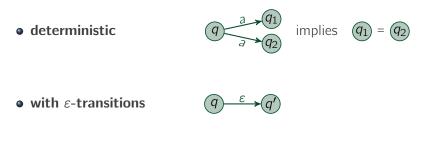
but mostly used as representations of **languages**

Definition

A finite state automaton is a tuple $A = (Q, \Sigma, \Delta, I, F)$, where

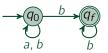
- Q is a finite set of control states
- $\bullet~\Sigma$ is a finite alphabet for transition labels
- $\Delta \subseteq Q \times \Sigma \times Q$ is a finite set of transition rules
- $I \subseteq Q$ is a set of initial states
- $F \subseteq Q$ is a set of final states

Different types of automata:

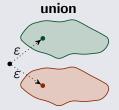


• complete $\forall a. \forall q. \exists q'. (q) \xrightarrow{a} (q')$

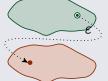
• Büchi/parity conditions



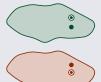
Language theoretic operations on automata



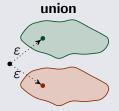
concatenation



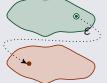
complementation



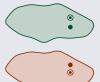
Language theoretic operations on automata



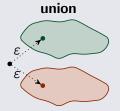
concatenation



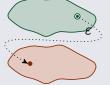
complementation



Language theoretic operations on automata



concatenation

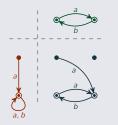


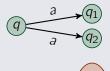
complementation

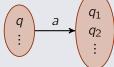
intersection

projection

subset construction







Problems on automata

Non-emptiness

• Universality

$$\mathscr{L}(\mathcal{A}) = \Sigma^{\star} \text{ iff } \mathscr{L}(\mathcal{A}^{\mathsf{C}}) = \emptyset$$

Containment

 $\mathscr{L}(\mathcal{A}) \subseteq \mathscr{L}(\mathcal{B}) \text{ iff } \mathscr{L}(\mathcal{A}) \cap \mathscr{L}(\mathcal{B}^{\mathsf{C}}) = \emptyset$

These are simple graph search problems!

Logics for specification of properties

Propositional logic

Logics for specification of properties

Propositional logic

• First-order logic

 $a(\mathbf{x_0}) \land \forall \mathbf{x}. (a(\mathbf{x}) \rightarrow b(\mathbf{x})) \rightarrow b(\mathbf{x_0})$

Logics for specification of properties

Propositional logic

• First-order logic

 $a(\mathbf{x_0}) \land \forall \mathbf{x}. (a(x) \rightarrow b(x)) \rightarrow b(x_0)$

• Monadic second-order logic

 $\exists Z. \ \forall x. \ \exists y. \ (Z(y) \land y = x + 1)$

Examples of sentences and formulas

$$\psi_{\text{dense}}$$
 = $\forall x, y. \exists z. (x < y \rightarrow x < z \land z < y)$

$$\psi_{\text{connected}} = \forall Z. (\exists x, y. Z(x) \land \neg Z(y)) \rightarrow (\exists x, y. Z(x) \land \neg Z(y) \land E(x, y))$$

$$\begin{array}{lll} \psi_{\mathsf{path}}(x,y) &=& \forall Z.\ Z(x) \land \\ & \forall x',y'. \left(Z(x') \land E(x',y') \to Z(y') \right) \to & Z(y) \end{array}$$

Examples of sentences and formulas

$$\psi_{dense} = \underbrace{\forall x, y. \exists z. (x < y \rightarrow x < z \land z < y)}_{FO[<] \text{ over } \mathbb{Q}}$$

$$\psi_{connected} = \underbrace{\forall Z. (\exists x, y. Z(x) \land \neg Z(y)) \rightarrow}_{(\exists x, y. Z(x) \land \neg Z(y) \land E(x, y))}$$

$$\underbrace{\forall BSO[E] \text{ over } G=(V,E)}_{MSO[E] \text{ over } G=(V,E)}$$

IF The underlying **signature** and **domain** are important!

- MSO[+1] over $\mathbb{N} = MSO[<]$ over \mathbb{N}
- FO[0, 1, +] = Presburger arithmetic
- MSO over $\mathbb{N} = FO[\subseteq]$ over $2^{\mathbb{N}}$
- $FO[\epsilon]$ over models of Zermelo–Fraenkel set theory...

Other examples of MSO properties

$$\begin{split} \psi_{3\text{-colorability}} &= \exists X, Y, Z. \ \forall v. \ \begin{pmatrix} X(v) \lor Y(v) \lor Z(v) \end{pmatrix} \\ \forall u, v. \ E(u, v) \rightarrow \neg \begin{pmatrix} X(u) \land X(v) \end{pmatrix} \land \\ \neg \begin{pmatrix} Y(u) \land Y(v) \end{pmatrix} \land \\ \neg \begin{pmatrix} Z(u) \land Z(v) \end{pmatrix} \end{split}$$

$$\psi_{\mathsf{K5}}(x_1, \dots, x_5) = \bigwedge_{i \neq j} \left(x_i \neq x_j \land \psi_{\mathsf{path}}(x_i, x_j) \right)$$

$$\psi_{\mathsf{K3,3}}(x_1, \dots, x_3, y_1, \dots, y_3) = \bigwedge_{i \neq j} (x_i \neq x_j \land y_i \neq y_j) \land \bigwedge_{i,j} \psi_{\mathsf{path}}(x_i, y_j)$$

$$\psi_{\text{planar}} = \neg \exists x_1, \dots, x_5. \ \psi_{\text{K5}}(x_1, \dots, x_5) \land \\ \neg \exists x_1, \dots, x_3, y_1, \dots, y_3. \ \psi_{\text{K33}}(x_1, \dots, x_3, y_1, \dots, y_3)$$

A real example

```
let Foo(g, h) =

g(h)

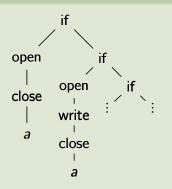
if [user hits key] then

g \cdot close(h)

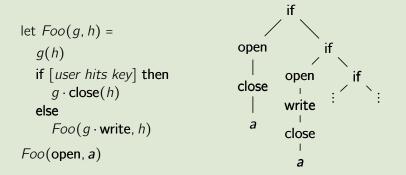
else

Foo(g \cdot write, h)

Foo(open, a)
```



A real example



One may want to verify that all sequences of write operations occur between open and close operations:

 $\forall Z \text{ path. } \forall z \in Z. \text{ write}(z) \rightarrow \exists x, y \in Z. x < z < y \land open(x) \land close(y)$

