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Definition

Fix a class C of structures (e.g. graphs) and a logic L (e.g. FO).

The LLL-theory of CCC is the set of all formulas in L

that can be satisfied by some structure in C .

The theory is decidable if there is an algorithm that receives

formulas as input and tells whether they are in the theory or not.

Examples

first-order theory of the class of all graphs

monadic theory of the class of all linear orders

monadic theory of N

monadic theory of the grid
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Undecidability of first-order theory

One cannot decide whether a given formula of

FO[Σ,E1,E2]FO[Σ,E1,E2]FO[Σ,E1,E2] is satisfied over some labelled gridlabelled gridlabelled grid.

(and equally for MSO[E1,E2]MSO[E1,E2]MSO[E1,E2] over the grid N × NN × NN × N)

Given a Turing machine M, construct ψMψMψM defining its halting runs:

1 encode initial configuration by top row

2 encode next configurations by next rows

3 find a row with halting configuration

MSO can even guess the labelling!
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Consequences (Church ’36, Turing ’37, Trakhtenbrot ’50, ...)

The FO theory of the class of all finite structures is undecidable

(provided that signature contains a binary predicate besides =).

The MSO theory of any class of graphs with

unbounded grids as minorsunbounded grids as minorsunbounded grids as minors is undecidable.

The MSO theory of (N,+)(N,+)(N,+) is undecidable.
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Definition

Presburger arithmetic is the first-order theory of (N,+)(N,+)(N,+)

Examples of Presburger formulas

ψ0 = ∃x . ∀y . (x + y = y)

ϕ≤(x , y) = ∃z . (y = x + z)

ϕ2×(x , y) = (x + x = y)

ψω = ∀x . ∃y . (x ≤ y ∧ ¬x = y)



Decidability of Presburger arithmetic (Presburger ’29)

One can decide if a Presburger sentence ψ holds over (N,+).

Originally proved by quantifier elimination. Here we use automata!

1 Encode numbers x ∈ N by reverse binary expansions [x] ∈ B⋆[x] ∈ B⋆[x] ∈ B⋆

e.g. [4] = 001, [0] = ε, . . .

2 Encode sum relation + ⊆ N × N × N by language L+ ⊆ (B × B × B)⋆L+ ⊆ (B × B × B)⋆L+ ⊆ (B × B × B)⋆

e.g. [ + (3, 1, 4)] = [3] ⊗ [1] ⊗ [4] = (
1
1
0
) (
1
0
0
) (
0
0
1
)

A+ ∶

p q

(
0
0
0
) , (

1
0
1
) , (

0
1
1
) (
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Decidability of Presburger arithmetic (Presburger ’29)

One can decide if a Presburger sentence ψ holds over (N,+).

We inductively translate every Presburger formula ϕ(x1, ..., xm)

into a finite automaton Aϕ over Σm = Bm such that

L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }

so as to reduce satisfiability of ϕ to emptiness of L(Aϕ).

For atomic formulas x = y and +(x , y , z), use automata A= and A+

For disjunction ϕ1(x̄) ∨ ϕ2(x̄), compute union of Aϕ1 and Aϕ2

For negation ¬ϕ(x̄), compute the complement of Aϕ

For existential quantification ∃y . ϕ(x̄ , y),

project Aϕ from Σm+1 to Σm

( 111000×)

( 111
111×)
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Example of translation

Consider the (unsatisfiable) formula

ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)

1 Start from automaton Ay=x+1y=x+1y=x+1

2 Project away the encoding of yyy , thus capturing ∃y . (y = x + 1)∃y . (y = x + 1)∃y . (y = x + 1)

3 Complement the det. automaton, thus capturing ¬∃y . (y = x + 1)¬ ∃y . (y = x + 1)¬ ∃y . (y = x + 1)

4 Project away the encoding of xxx , thus getting ∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)

p q

( 111
000
)

( 000
111
)

( 000
000
), ( 111111 )

What’s wrong??

Languages of encodings should be closed under padding with 0’s

After complement, keep only final states that are stable under 0.
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The previous result can be generalized to many other structures:

Definition

An automatic structure is a structure that is isomorphic to

( L, R1, . . . , Rn )
where

L is a regular language of words over Σ

(each word identifies a precise element of the structure)

each relation Ri has arity ki and is represented

by a regular language Li over (Σ ⊎ {#})
ki

(e.g. (ab, abb) ∈ Ri iff ( aa )(
b
b )(

#
b
) ∈ Li )

Examples of automatic structures

(N,+, ∣p)(N,+, ∣p)(N,+, ∣p), with x ∣p y iff x = pn divides y

Binary tree with successor, ancestor, and equi-level predicates

Unlabelled grid (N × N,→, ↓)(N × N,→, ↓)(N × N,→, ↓)
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Theorem (Büchi ’60, Hodgson ’76, Khoussainov & Nerode ’94)

Every automatic structure has a decidable first-order theory.

On the other hand...

Theorem

Some automatic structures have an undecidable reachability problem.

The transition graphtransition graphtransition graph of a Turing machine is automatic!

configurations are encoded by words a1...ai−1a1...ai−1a1...ai−1 qqq ai ai+1...anai ai+1...anai ai+1...an

transitions are of the following forms

a1...ai−1 qqq aiaiaiai+1...an a1...ai−1qqq aiaiai ai+1...an a1...ai−1aiaiai qqq ai+1...an
↓↓↓ ↓↓↓ ↓↓↓

a1...ai−1q
′q′q′a′ia′ia′iai+1...an a1...ai−1a

′

ia′ia′iq
′q′q′ai+1...an a1...ai−1q

′q′q′a′ia′ia′iai+1...an
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