
First-order theories

Gabriele Puppis

LaBRI / CNRS

Definition

Fix a class C of structures (e.g. graphs) and a logic L (e.g. FO).

The LLL-theory of CCC is the set of all formulas in L

that can be satisfied by some structure in C .

The theory is decidable if there is an algorithm that receives

formulas as input and tells whether they are in the theory or not.

Examples

first-order theory of the class of all graphs

monadic theory of the class of all linear orders

monadic theory of N

monadic theory of the grid

Definition

Fix a class C of structures (e.g. graphs) and a logic L (e.g. FO).

The LLL-theory of CCC is the set of all formulas in L

that can be satisfied by some structure in C .

The theory is decidable if there is an algorithm that receives

formulas as input and tells whether they are in the theory or not.

Examples

first-order theory of the class of all graphs

monadic theory of the class of all linear orders

monadic theory of N

monadic theory of the grid

Undecidability of first-order theory

One cannot decide whether a given formula of

FO[Σ,E1,E2]FO[Σ,E1,E2]FO[Σ,E1,E2] is satisfied over some labelled gridlabelled gridlabelled grid.

(and equally for MSO[E1,E2]MSO[E1,E2]MSO[E1,E2] over the grid N × NN × NN × N)

Given a Turing machine M, construct ψMψMψM defining its halting runs:

1 encode initial configuration by top row

2 encode next configurations by next rows

3 find a row with halting configuration

MSO can even guess the labelling!

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

⋮ ⋮ ⋮ ⋮

⋯

⋯

⋯

⋯

⋱
qhaltqhaltqhalt

Undecidability of first-order theory

One cannot decide whether a given formula of

FO[Σ,E1,E2]FO[Σ,E1,E2]FO[Σ,E1,E2] is satisfied over some labelled gridlabelled gridlabelled grid.

(and equally for MSO[E1,E2]MSO[E1,E2]MSO[E1,E2] over the grid N × NN × NN × N)

Given a Turing machine M, construct ψMψMψM defining its halting runs:

1 encode initial configuration by top row

2 encode next configurations by next rows

3 find a row with halting configuration

MSO can even guess the labelling!

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

⋮ ⋮ ⋮ ⋮

⋯

⋯

⋯

⋯

⋱
qhaltqhaltqhalt

Undecidability of first-order theory

One cannot decide whether a given formula of

FO[Σ,E1,E2]FO[Σ,E1,E2]FO[Σ,E1,E2] is satisfied over some labelled gridlabelled gridlabelled grid.

(and equally for MSO[E1,E2]MSO[E1,E2]MSO[E1,E2] over the grid N × NN × NN × N)

Given a Turing machine M, construct ψMψMψM defining its halting runs:

1 encode initial configuration by top row

2 encode next configurations by next rows

3 find a row with halting configuration

MSO can even guess the labelling!

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

⋮ ⋮ ⋮ ⋮

⋯

⋯

⋯

⋯

⋱

q0q0q0 ⊔⊔⊔ ⊔⊔⊔ ⊔⊔⊔

qhaltqhaltqhalt

Undecidability of first-order theory

One cannot decide whether a given formula of

FO[Σ,E1,E2]FO[Σ,E1,E2]FO[Σ,E1,E2] is satisfied over some labelled gridlabelled gridlabelled grid.

(and equally for MSO[E1,E2]MSO[E1,E2]MSO[E1,E2] over the grid N × NN × NN × N)

Given a Turing machine M, construct ψMψMψM defining its halting runs:

1 encode initial configuration by top row

2 encode next configurations by next rows

3 find a row with halting configuration

MSO can even guess the labelling!

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

⋮ ⋮ ⋮ ⋮

⋯

⋯

⋯

⋯

⋱

q0q0q0 ⊔⊔⊔ ⊔⊔⊔ ⊔⊔⊔

aaa q1q1q1 ⊔⊔⊔ ⊔⊔⊔

aaa bbb q2q2q2 ⊔⊔⊔

aaa q3q3q3 bbb ⊔⊔⊔

qhaltqhaltqhalt

Undecidability of first-order theory

One cannot decide whether a given formula of

FO[Σ,E1,E2]FO[Σ,E1,E2]FO[Σ,E1,E2] is satisfied over some labelled gridlabelled gridlabelled grid.

(and equally for MSO[E1,E2]MSO[E1,E2]MSO[E1,E2] over the grid N × NN × NN × N)

Given a Turing machine M, construct ψMψMψM defining its halting runs:

1 encode initial configuration by top row

2 encode next configurations by next rows

3 find a row with halting configuration

MSO can even guess the labelling!

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

⋮ ⋮ ⋮ ⋮

⋯

⋯

⋯

⋯

⋱

q0q0q0 ⊔⊔⊔ ⊔⊔⊔ ⊔⊔⊔

aaa q1q1q1 ⊔⊔⊔ ⊔⊔⊔

aaa bbb q2q2q2 ⊔⊔⊔

aaa q3q3q3 bbb ⊔⊔⊔

qhaltqhaltqhalt

Undecidability of first-order theory

One cannot decide whether a given formula of

FO[Σ,E1,E2]FO[Σ,E1,E2]FO[Σ,E1,E2] is satisfied over some labelled gridlabelled gridlabelled grid.

(and equally for MSO[E1,E2]MSO[E1,E2]MSO[E1,E2] over the grid N × NN × NN × N)

Given a Turing machine M, construct ψMψMψM defining its halting runs:

1 encode initial configuration by top row

2 encode next configurations by next rows

3 find a row with halting configuration

MSO can even guess the labelling!

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

⋮ ⋮ ⋮ ⋮

⋯

⋯

⋯

⋯

⋱

q0q0q0 ⊔⊔⊔ ⊔⊔⊔ ⊔⊔⊔

aaa q1q1q1 ⊔⊔⊔ ⊔⊔⊔

aaa bbb q2q2q2 ⊔⊔⊔

aaa q3q3q3 bbb ⊔⊔⊔

qhaltqhaltqhalt

Undecidability of first-order theory

One cannot decide whether a given formula of

FO[Σ,E1,E2]FO[Σ,E1,E2]FO[Σ,E1,E2] is satisfied over some labelled gridlabelled gridlabelled grid.

(and equally for MSO[E1,E2]MSO[E1,E2]MSO[E1,E2] over the grid N × NN × NN × N)

Given a Turing machine M, construct ψMψMψM defining its halting runs:

1 encode initial configuration by top row

2 encode next configurations by next rows

3 find a row with halting configuration

MSO can even guess the labelling!

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

⋮ ⋮ ⋮ ⋮

⋯

⋯

⋯

⋯

⋱

q0q0q0 ⊔⊔⊔ ⊔⊔⊔ ⊔⊔⊔

aaa q1q1q1 ⊔⊔⊔ ⊔⊔⊔

aaa bbb q2q2q2 ⊔⊔⊔

aaa q3q3q3 bbb ⊔⊔⊔

qhaltqhaltqhalt

Consequences (Church ’36, Turing ’37, Trakhtenbrot ’50, ...)

The FO theory of the class of all finite structures is undecidable

(provided that signature contains a binary predicate besides =).

The MSO theory of any class of graphs with

unbounded grids as minorsunbounded grids as minorsunbounded grids as minors is undecidable.

The MSO theory of (N,+)(N,+)(N,+) is undecidable.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

n

4n+20

Consequences (Church ’36, Turing ’37, Trakhtenbrot ’50, ...)

The FO theory of the class of all finite structures is undecidable

(provided that signature contains a binary predicate besides =).

The MSO theory of any class of graphs with

unbounded grids as minorsunbounded grids as minorsunbounded grids as minors is undecidable.

The MSO theory of (N,+)(N,+)(N,+) is undecidable.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

n

4n+20

Consequences (Church ’36, Turing ’37, Trakhtenbrot ’50, ...)

The FO theory of the class of all finite structures is undecidable

(provided that signature contains a binary predicate besides =).

The MSO theory of any class of graphs with

unbounded grids as minorsunbounded grids as minorsunbounded grids as minors is undecidable.

The MSO theory of (N,+)(N,+)(N,+) is undecidable.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

n n+1 n+2 n+3 n+4

2n 2n+2 2n+4 2n+6 2n+8

3n 3n+3 3n+6 3n+9 3n+12

4n 4n+4 4n+8 4n+16 4n+20

Definition

Presburger arithmetic is the first-order theory of (N,+)(N,+)(N,+)

Examples of Presburger formulas

ψ0 = ∃x . ∀y . (x + y = y)

ϕ≤(x , y) = ∃z . (y = x + z)

ϕ2×(x , y) = (x + x = y)

ψω = ∀x . ∃y . (x ≤ y ∧ ¬x = y)

Decidability of Presburger arithmetic (Presburger ’29)

One can decide if a Presburger sentence ψ holds over (N,+).

Originally proved by quantifier elimination. Here we use automata!

1 Encode numbers x ∈ N by reverse binary expansions [x] ∈ B⋆[x] ∈ B⋆[x] ∈ B⋆

e.g. [4] = 001, [0] = ε, . . .

2 Encode sum relation + ⊆ N × N × N by language L+ ⊆ (B × B × B)⋆L+ ⊆ (B × B × B)⋆L+ ⊆ (B × B × B)⋆

e.g. [+ (3, 1, 4)] = [3] ⊗ [1] ⊗ [4] = (
1
1
0
) (
1
0
0
) (
0
0
1
)

A+ ∶

p q

(
0
0
0
) , (

1
0
1
) , (

0
1
1
) (

1
0
0
) , (

0
1
0
) , (

1
1
1
)

(
1
1
0
)

(
0
0
1
)

Decidability of Presburger arithmetic (Presburger ’29)

One can decide if a Presburger sentence ψ holds over (N,+).

Originally proved by quantifier elimination. Here we use automata!

1 Encode numbers x ∈ N by reverse binary expansions [x] ∈ B⋆[x] ∈ B⋆[x] ∈ B⋆

e.g. [4] = 001, [0] = ε, . . .

2 Encode sum relation + ⊆ N × N × N by language L+ ⊆ (B × B × B)⋆L+ ⊆ (B × B × B)⋆L+ ⊆ (B × B × B)⋆

e.g. [+ (3, 1, 4)] = [3] ⊗ [1] ⊗ [4] = (
1
1
0
) (
1
0
0
) (
0
0
1
)

A+ ∶

p q

(
0
0
0
) , (

1
0
1
) , (

0
1
1
) (

1
0
0
) , (

0
1
0
) , (

1
1
1
)

(
1
1
0
)

(
0
0
1
)

Decidability of Presburger arithmetic (Presburger ’29)

One can decide if a Presburger sentence ψ holds over (N,+).

Originally proved by quantifier elimination. Here we use automata!

1 Encode numbers x ∈ N by reverse binary expansions [x] ∈ B⋆[x] ∈ B⋆[x] ∈ B⋆

e.g. [4] = 001, [0] = ε, . . .

2 Encode sum relation + ⊆ N × N × N by language L+ ⊆ (B × B × B)⋆L+ ⊆ (B × B × B)⋆L+ ⊆ (B × B × B)⋆

e.g. [+ (3, 1, 4)] = [3] ⊗ [1] ⊗ [4] = (
1
1
0
) (
1
0
0
) (
0
0
1
)

A+ ∶

p q

(
0
0
0
) , (

1
0
1
) , (

0
1
1
) (

1
0
0
) , (

0
1
0
) , (

1
1
1
)

(
1
1
0
)

(
0
0
1
)

Decidability of Presburger arithmetic (Presburger ’29)

One can decide if a Presburger sentence ψ holds over (N,+).

Originally proved by quantifier elimination. Here we use automata!

1 Encode numbers x ∈ N by reverse binary expansions [x] ∈ B⋆[x] ∈ B⋆[x] ∈ B⋆

e.g. [4] = 001, [0] = ε, . . .

2 Encode sum relation + ⊆ N × N × N by language L+ ⊆ (B × B × B)⋆L+ ⊆ (B × B × B)⋆L+ ⊆ (B × B × B)⋆

e.g. [+ (3, 1, 4)] = [3] ⊗ [1] ⊗ [4] = (
1
1
0
) (
1
0
0
) (
0
0
1
)

A+ ∶

p q

(
0
0
0
) , (

1
0
1
) , (

0
1
1
) (

1
0
0
) , (

0
1
0
) , (

1
1
1
)

(
1
1
0
)

(
0
0
1
)

Decidability of Presburger arithmetic (Presburger ’29)

One can decide if a Presburger sentence ψ holds over (N,+).

We inductively translate every Presburger formula ϕ(x1, ..., xm)

into a finite automaton Aϕ over Σm = Bm such that

L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }

so as to reduce satisfiability of ϕ to emptiness of L(Aϕ).

For atomic formulas x = y and +(x , y , z), use automata A= and A+

For disjunction ϕ1(x̄) ∨ ϕ2(x̄), compute union of Aϕ1 and Aϕ2

For negation ¬ϕ(x̄), compute the complement of Aϕ

For existential quantification ∃y . ϕ(x̄ , y),

project Aϕ from Σm+1 to Σm

(111000×)

(111
111×)

Decidability of Presburger arithmetic (Presburger ’29)

One can decide if a Presburger sentence ψ holds over (N,+).

We inductively translate every Presburger formula ϕ(x1, ..., xm)

into a finite automaton Aϕ over Σm = Bm such that

L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }

so as to reduce satisfiability of ϕ to emptiness of L(Aϕ).

For atomic formulas x = y and +(x , y , z), use automata A= and A+

For disjunction ϕ1(x̄) ∨ ϕ2(x̄), compute union of Aϕ1 and Aϕ2

For negation ¬ϕ(x̄), compute the complement of Aϕ

For existential quantification ∃y . ϕ(x̄ , y),

project Aϕ from Σm+1 to Σm

(111000×)

(111
111×)

Decidability of Presburger arithmetic (Presburger ’29)

One can decide if a Presburger sentence ψ holds over (N,+).

We inductively translate every Presburger formula ϕ(x1, ..., xm)

into a finite automaton Aϕ over Σm = Bm such that

L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }

so as to reduce satisfiability of ϕ to emptiness of L(Aϕ).

For atomic formulas x = y and +(x , y , z), use automata A= and A+

For disjunction ϕ1(x̄) ∨ ϕ2(x̄), compute union of Aϕ1 and Aϕ2

For negation ¬ϕ(x̄), compute the complement of Aϕ

For existential quantification ∃y . ϕ(x̄ , y),

project Aϕ from Σm+1 to Σm

(111000×)

(111
111×)

Decidability of Presburger arithmetic (Presburger ’29)

One can decide if a Presburger sentence ψ holds over (N,+).

We inductively translate every Presburger formula ϕ(x1, ..., xm)

into a finite automaton Aϕ over Σm = Bm such that

L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }

so as to reduce satisfiability of ϕ to emptiness of L(Aϕ).

For atomic formulas x = y and +(x , y , z), use automata A= and A+

For disjunction ϕ1(x̄) ∨ ϕ2(x̄), compute union of Aϕ1 and Aϕ2

For negation ¬ϕ(x̄), compute the complement of Aϕ

For existential quantification ∃y . ϕ(x̄ , y),

project Aϕ from Σm+1 to Σm

(111000×)

(111
111×)

Decidability of Presburger arithmetic (Presburger ’29)

One can decide if a Presburger sentence ψ holds over (N,+).

We inductively translate every Presburger formula ϕ(x1, ..., xm)

into a finite automaton Aϕ over Σm = Bm such that

L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }L (Aϕ) = { [x1] ⊗ ⋅ ⋅ ⋅ ⊗ [xm] ∈ Σ⋆

m ∣ (N,+) ⊧ ϕ(x1, ..., xm) }

so as to reduce satisfiability of ϕ to emptiness of L(Aϕ).

For atomic formulas x = y and +(x , y , z), use automata A= and A+

For disjunction ϕ1(x̄) ∨ ϕ2(x̄), compute union of Aϕ1 and Aϕ2

For negation ¬ϕ(x̄), compute the complement of Aϕ

For existential quantification ∃y . ϕ(x̄ , y),

project Aϕ from Σm+1 to Σm

(111000×)

(111
111×)

Example of translation

Consider the (unsatisfiable) formula

ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)

1 Start from automaton Ay=x+1y=x+1y=x+1

2 Project away the encoding of yyy , thus capturing ∃y . (y = x + 1)∃y . (y = x + 1)∃y . (y = x + 1)

3 Complement the det. automaton, thus capturing ¬∃y . (y = x + 1)¬ ∃y . (y = x + 1)¬ ∃y . (y = x + 1)

4 Project away the encoding of xxx , thus getting ∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)

p q

(111
000
)

(000
111
)

(000
000
), (111111)

What’s wrong??

Languages of encodings should be closed under padding with 0’s

After complement, keep only final states that are stable under 0.

Example of translation

Consider the (unsatisfiable) formula

ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)

1 Start from automaton Ay=x+1y=x+1y=x+1

2 Project away the encoding of yyy , thus capturing ∃y . (y = x + 1)∃y . (y = x + 1)∃y . (y = x + 1)

3 Complement the det. automaton, thus capturing ¬∃y . (y = x + 1)¬ ∃y . (y = x + 1)¬ ∃y . (y = x + 1)

4 Project away the encoding of xxx , thus getting ∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)

p q

(111
000
)

(000
111
)

(000
000
), (111111)

What’s wrong??

Languages of encodings should be closed under padding with 0’s

After complement, keep only final states that are stable under 0.

Example of translation

Consider the (unsatisfiable) formula

ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)

1 Start from automaton Ay=x+1y=x+1y=x+1

2 Project away the encoding of yyy , thus capturing ∃y . (y = x + 1)∃y . (y = x + 1)∃y . (y = x + 1)

3 Complement the det. automaton, thus capturing ¬∃y . (y = x + 1)¬ ∃y . (y = x + 1)¬ ∃y . (y = x + 1)

4 Project away the encoding of xxx , thus getting ∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)

p q

(111
000×)

(000
111×)

(000
000×), (111111×)

What’s wrong??

Languages of encodings should be closed under padding with 0’s

After complement, keep only final states that are stable under 0.

Example of translation

Consider the (unsatisfiable) formula

ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)

1 Start from automaton Ay=x+1y=x+1y=x+1

2 Project away the encoding of yyy , thus capturing ∃y . (y = x + 1)∃y . (y = x + 1)∃y . (y = x + 1)

3 Complement the det. automaton, thus capturing ¬∃y . (y = x + 1)¬ ∃y . (y = x + 1)¬ ∃y . (y = x + 1)

4 Project away the encoding of xxx , thus getting ∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)

p q

(111
000×)

(000
111×)

(000
000×), (111111×)

What’s wrong??

Languages of encodings should be closed under padding with 0’s

After complement, keep only final states that are stable under 0.

Example of translation

Consider the (unsatisfiable) formula

ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)

1 Start from automaton Ay=x+1y=x+1y=x+1

2 Project away the encoding of yyy , thus capturing ∃y . (y = x + 1)∃y . (y = x + 1)∃y . (y = x + 1)

3 Complement the det. automaton, thus capturing ¬∃y . (y = x + 1)¬ ∃y . (y = x + 1)¬ ∃y . (y = x + 1)

4 Project away the encoding of xxx , thus getting ∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)

p q

(111×
000×)

(000×
111×)

(000×
000×), (111×111×)

What’s wrong??

Languages of encodings should be closed under padding with 0’s

After complement, keep only final states that are stable under 0.

Example of translation

Consider the (unsatisfiable) formula

ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)

1 Start from automaton Ay=x+1y=x+1y=x+1

2 Project away the encoding of yyy , thus capturing ∃y . (y = x + 1)∃y . (y = x + 1)∃y . (y = x + 1)

3 Complement the det. automaton, thus capturing ¬∃y . (y = x + 1)¬ ∃y . (y = x + 1)¬ ∃y . (y = x + 1)

4 Project away the encoding of xxx , thus getting ∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)

p q

(111×
000×)

(000×
111×)

(000×
000×), (111×111×)

What’s wrong??

Languages of encodings should be closed under padding with 0’s

After complement, keep only final states that are stable under 0.

Example of translation

Consider the (unsatisfiable) formula

ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)ψ = ∃x . ¬∃y . (y = x + 1)

1 Start from automaton Ay=x+1y=x+1y=x+1

2 Project away the encoding of yyy , thus capturing ∃y . (y = x + 1)∃y . (y = x + 1)∃y . (y = x + 1)

3 Complement the det. automaton, thus capturing ¬∃y . (y = x + 1)¬ ∃y . (y = x + 1)¬ ∃y . (y = x + 1)

4 Project away the encoding of xxx , thus getting ∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)∃x . ¬∃y . (y = x + 1)

p q

(111×
000×)

(000×
111×)

(000×
000×), (111×111×)

What’s wrong??

Languages of encodings should be closed under padding with 0’s

After complement, keep only final states that are stable under 0.

The previous result can be generalized to many other structures:

Definition

An automatic structure is a structure that is isomorphic to

(L, R1, . . . , Rn)
where

L is a regular language of words over Σ

(each word identifies a precise element of the structure)

each relation Ri has arity ki and is represented

by a regular language Li over (Σ ⊎ {#})
ki

(e.g. (ab, abb) ∈ Ri iff (aa)(
b
b)(

#
b
) ∈ Li)

Examples of automatic structures

(N,+, ∣p)(N,+, ∣p)(N,+, ∣p), with x ∣p y iff x = pn divides y

Binary tree with successor, ancestor, and equi-level predicates

Unlabelled grid (N × N,→, ↓)(N × N,→, ↓)(N × N,→, ↓)

The previous result can be generalized to many other structures:

Definition

An automatic structure is a structure that is isomorphic to

(L, R1, . . . , Rn)
where

L is a regular language of words over Σ

(each word identifies a precise element of the structure)

each relation Ri has arity ki and is represented

by a regular language Li over (Σ ⊎ {#})
ki

(e.g. (ab, abb) ∈ Ri iff (aa)(
b
b)(

#
b
) ∈ Li)

Examples of automatic structures

(N,+, ∣p)(N,+, ∣p)(N,+, ∣p), with x ∣p y iff x = pn divides y

Binary tree with successor, ancestor, and equi-level predicates

Unlabelled grid (N × N,→, ↓)(N × N,→, ↓)(N × N,→, ↓)

Theorem (Büchi ’60, Hodgson ’76, Khoussainov & Nerode ’94)

Every automatic structure has a decidable first-order theory.

On the other hand...

Theorem

Some automatic structures have an undecidable reachability problem.

The transition graphtransition graphtransition graph of a Turing machine is automatic!

configurations are encoded by words a1...ai−1a1...ai−1a1...ai−1 qqq ai ai+1...anai ai+1...anai ai+1...an

transitions are of the following forms

a1...ai−1 qqq aiaiaiai+1...an a1...ai−1qqq aiaiai ai+1...an a1...ai−1aiaiai qqq ai+1...an
↓↓↓ ↓↓↓ ↓↓↓

a1...ai−1q
′q′q′a′ia′ia′iai+1...an a1...ai−1a

′

ia′ia′iq
′q′q′ai+1...an a1...ai−1q

′q′q′a′ia′ia′iai+1...an

Theorem (Büchi ’60, Hodgson ’76, Khoussainov & Nerode ’94)

Every automatic structure has a decidable first-order theory.

On the other hand...

Theorem

Some automatic structures have an undecidable reachability problem.

The transition graphtransition graphtransition graph of a Turing machine is automatic!

configurations are encoded by words a1...ai−1a1...ai−1a1...ai−1 qqq ai ai+1...anai ai+1...anai ai+1...an

transitions are of the following forms

a1...ai−1 qqq aiaiaiai+1...an a1...ai−1qqq aiaiai ai+1...an a1...ai−1aiaiai qqq ai+1...an
↓↓↓ ↓↓↓ ↓↓↓

a1...ai−1q
′q′q′a′ia′ia′iai+1...an a1...ai−1a

′

ia′ia′iq
′q′q′ai+1...an a1...ai−1q

′q′q′a′ia′ia′iai+1...an

Next

