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While FO talks of elements of N, MSO talks of subsets of Nsubsets of Nsubsets of N.

These subsets can be encoded by infinite words:

EvenEvenEven = { 0 , 2 , 4 , 6 , 8 , . . . } ⊆ N

[EvenEvenEven] ⊗ [SquaresSquaresSquares] = ⋯

SquareSquareSquare = { 0 , 1 , 4 , 9 , . . . } ⊆ N

Accordingly, a language L ⊆ Bω encodes a set of subsets of Nset of subsets of Nset of subsets of N.
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Definition

A Büchi automaton is a tuple A = (Q,Σ,∆, I ,F), where

Q is a finite set of control states

Σ is a finite alphabet for transition labels

∆ ⊆ Q × Σ × Q is a finite set of transition rules

I ⊆ Q is a set of initial states

F ⊆ Q is a set of final states

A accepts a word w ∈ Σω if it admits a run ρ on w such that

inf(ρ) ∩ F ≠ ∅inf(ρ) ∩ F ≠ ∅inf(ρ) ∩ F ≠ ∅

where inf(ρ) = { q ∈ Q ∣ ∀i . ∃j ≥ i . ρ(j) = q }

Example

q0 qf

0
1

1

0 L (A) = (0⋆ 1)ω



Decidability of S1S (Büchi ’60)

One can decide if a given sentence ψ of MSO[+1]MSO[+1]MSO[+1] holds over N.

1 Replace first-order variables x with set variables X satisfying

ϕsingleton(X) = (X ≠ ∅) ∧ ∀Y . (Y ⊆ X) → (Y = ∅ ∨ Y = X)

2 By induction on all subformulas ϕ(X1, ...,Xm) of ψ,

construct Büchi automata Aϕ over Σm = Bm such that

L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }

ϕ(X ,Y ) = (Y = X + 1)
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)

ϕ(X̄) = ϕ1(X̄) ∨ ϕ2(X̄) union

ϕ(X̄) = ¬ϕ1(X̄)

ϕ(X̄) = ∃Y . ϕ1(X̄ ,Y ) projection
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construct Büchi automata Aϕ over Σm = Bm such that

L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }

ϕ(X ,Y ) = (Y = X + 1)
(
111
000
) (

000
111
)

(
000
000
) (

000
000
)

ϕ(X ,Y ) = (X ⊆ Y ) (
000
000
), ( 000

111
), ( 111

111
)

ϕ(X̄) = ϕ1(X̄) ∨ ϕ2(X̄) union

ϕ(X̄) = ¬ϕ1(X̄)

ϕ(X̄) = ∃Y . ϕ1(X̄ ,Y ) projection

(
111
000×
)

( 111
111×)



Decidability of S1S (Büchi ’60)
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A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .
Complementation: L (A)C = ∪

L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω
f −1(M) ⋅ f −1(N)ω
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A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .

Complementation: L (A)C = ∪
L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω
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A converse translation: from automata to logic

One can translate every Büchi automaton A into a formula

ψA = ∃X̄ . ϕ(X̄)ψA = ∃X̄ . ϕ(X̄)ψA = ∃X̄ . ϕ(X̄), where ϕ is a first-order formula, such that

L (A) = {w ∈ Σω ∣ w ⊧ ψA}

Encode an accepting run of A into monadic variables X̄ :

w ∈ L (A) iff ∃ ρ accepting run of A on w

iff ∃(Xt)t ∈∆. exactly one transition on each position

∧ transitions respect symbols of w

∧ consecutive transitions agree on states

∧ first transition departs from initial state

∧ some final state is visited infinitely often

Corollary (collapse of quantifier hierarchy)

MSO[<] = Büchi automata = ∃MSO[+1]
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Application example 1 (interpretation of the integers)

0 1 2 3 4 . . .

One can logically define Z inside Nlogically define Z inside Nlogically define Z inside N:

ϕ≤Z(x , y) = (Even(x) ∧ Even(y) ∧ x ≤N y)

∨ (Odd(x) ∧ Odd(y) ∧ y ≤N x)

∨ (Odd(x) ∧ Even(y))

Corollary

The MSO[≤]MSO[≤]MSO[≤] theory of Z is decidable.
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Application example 2 (interpretation of a counter system)

A, 0 A, 1 A, 2 . . .

B, 0 B, 1 B, 2 . . .

ε ε ε

produce produce produce

consume consume consume

Any property of the above system expressed by an MSO formula

ψ = . . . ∀X∀X∀X . . . ( y
consume
←ÐÐÐÐÐ zy
consume
←ÐÐÐÐÐ zy
consume
←ÐÐÐÐÐ z ) . . . ( y ↕ε zy ↕ε zy ↕ε z ) . . .

can be translated into an equi-satisfiable formula over (N,+1)

ψ̂ = . . . ∀X1,X2∀X1,X2∀X1,X2 . . . ( y2 + 1 = z2y2 + 1 = z2y2 + 1 = z2 ) . . . ( y1 = z2 ∨ y2 = z1y1 = z2 ∨ y2 = z1y1 = z2 ∨ y2 = z1 ) . . .

and then checked for validity.



Application example 3 (expanded theories)

Recall inductive invariant: L (Aϕ) = {[X̄ ] ∈ Σωm ∣ N ⊧ ϕ(X̄)}

and recall f -equivalence on factors of infinite words:

w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f =f =f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

We have

(N,+1,Squares) ⊧ ϕ(N,+1,Squares) ⊧ ϕ(N,+1,Squares) ⊧ ϕ

iff www === 111

®
w0

111 0 00 00 0

0 00 00 0
¯
w1

111 0 0 0 00 0 0 00 0 0 0

0 0 0 00 0 0 00 0 0 0
´¹¹¹¹¸¹¹¹¹¶
w2

111 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

w3

111 . . .. . .. . .

¯
where wn = (00)nwn = (00)nwn = (00)n

∈ L (Aϕ)∈ L (Aϕ)∈ L (Aϕ)

iff w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)

since f (wn) = f (wn+`)f (wn) = f (wn+`)f (wn) = f (wn+`) for some ` > 0 and all n > n0
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Contraction method (Elgot & Rabin ’66)

Let P be a subset of N that is (effectively) profinitely periodic

i.e. [P] = w0 w1 w2 . . . and for every semigroup morphism f

the series f (w0) f (w1) f (w2) . . . is (effectively) periodic.

Then one can decide whether (N,+1,P) ⊧ ψ.

Examples of effectively profinitely periodic subsets

Squares = {n2 ∣ n ∈ N}

Powers = {2n ∣ n ∈ N}

Factorials = {n! ∣ n ∈ N}

Fibonacci = {0, 1, 2, 3, 5, 8, 11, . . . }

basically all recursive series defined with + and ⋅
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Composition method (Shelah ’75)

m = number of free variables k = number of nested quantifiers

Definition

Let gkmgkmgkm map words w over Σm = {0, 1}mΣm = {0, 1}mΣm = {0, 1}m to logical types:

gkm(w) = {ϕ(X1, ...,Xm)ϕ(X1, ...,Xm)ϕ(X1, ...,Xm) with k nested quantifiers such that w ⊧ ϕw ⊧ ϕw ⊧ ϕ }

Example: g02((
0
1 ) ( 01 ) ( 11 ) ( 11 )) = { X1 ⊆ X2, . . . }

Up to logical equivalence (e.g. ¬∧ = ∨¬, ¬∀ = ∃¬, ∃∨ = ∨∃)

g0m(w) = { Xi ⊆ Xj ∣ ∀n. w(n)[i] = 1 → w(n)[j] = 1 }

∪ { ¬Xi ⊆ Xj ∣ ∃n. w(n)[i] = 1 ∧ w(n)[j] = 0 }

gk+1m (w) = { ∃Y . ϕ(X1, ...,Xm,Y ) ∣
Y ⊆ dom(w)

ϕ ∈ gkm+1(w ⊗Y )
}

∪ { ¬∃Y . ϕ(X1, ...,Xm,Y ) ∣
Y ⊆ dom(w)

ϕ /∈ gkm+1(w ⊗Y )
}
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Composition method (Shelah ’75)

Like f , the type function gkm is compositional, namely

gkm(w1 ⋅ w2) = gkm(w1) ⊙ gkm(w2)

Given a formula ϕ ∈ gkm(w1 ⋅ w2)ϕ ∈ gkm(w1 ⋅ w2)ϕ ∈ gkm(w1 ⋅ w2), i.e. such that w1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕ,

separate syntactically the quantifications over w1 and over w2:

Example

∃x . ∃y . x < y ↦ (∃x1. ∃y1. x1 < y1) ∨ (∃x2.∃y2. x2 < y2)

∨ (∃x1. ∃y2. true) ∨ (∃x2. ∃y1. false)

∃X . ∃Y . X ⊆ Y ↦ (∃X1. ∃Y1. X1 ⊆ Y1) ∧ (∃X2. ∃Y2. X2 ⊆ Y2)

Transform ϕ into ∨
i=1...n

(ϕi ,1 ∧ ϕi ,2) in such a way that

w1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕ iff w1 ⊧ ϕi ,1w1 ⊧ ϕi ,1w1 ⊧ ϕi ,1 and w2 ⊧ ϕi ,2w2 ⊧ ϕi ,2w2 ⊧ ϕi ,2 for some i = 1...n

Accordingly, constuct gkm(w1 ⋅ w2) on the basis of gkm(w1) and gkm(w2).
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In a similar way, one can “compute” types of ω-productstypes of ω-productstypes of ω-products:

gkm(w1 ⋅ w2 ⋅ w3 ⋅ . . .) = gkm(w1) ⊙ gkm(w2) ⊙ gkm(w3) ⊙ . . .

Corollary

One can decide whether a formula ψ of MSO[Σ, <] holds over N.

1 Start by computing types of singleton words a, for all a ∈ Σ

2 Saturate by ⊙: this gives all types of finite words!

3 Choose any two types τ1, τ2 and compute τ1 ⊙ τ
ω◯

2τ1 ⊙ τ
ω◯

2τ1 ⊙ τ
ω◯

2

4 Check if ψ ∈ τ1 ⊙ τ
ω◯

2

Ramsey’s Theorem implies completeness of the above procedure!
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From Ramsey’s Theorem to Factorization Forests (Simon ’90)

Fix a semigroup morphism f ∶ Σ⋆ → (S ,⊙) (e.g. logical types)

and recall that every infinite

///////infinite

word has a Ramseyan factorization, i.e.

. . .

w1 w2 w3 w4 w5

with idempotent factors: f (w2) = f (w3) = f (w2) ⊙ f (w3) = . . .

the first and last factors are “short” w.r.t. w

(i.e. they do not contain proper factors with similar f -images)

We can recursively factorize factors until we get single characters

only a few nested factorizationsa few nested factorizationsa few nested factorizations (linear in ∣S ∣, independent of ∣w ∣)

each factor is divided into a few non-idempotent sub-factorsa few non-idempotent sub-factorsa few non-idempotent sub-factors
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An example of factorization forest

Consider the automaton recognizing (a b+)+(a b+)+(a b+)+ and the induced function f :

a
b

b

a

f (a) = [

−∞ 0 −∞

−∞ −∞ −∞

−∞ 1 −∞

] f (b) = [

−∞ −∞ −∞

−∞ −∞ 1

−∞ −∞ 1

]

f (a b) = [

−∞ −∞ 1

−∞ −∞ −∞

−∞ −∞ 1

] f (a b a) = [

−∞ 1 −∞

−∞ 1 −∞

−∞ −∞ −∞

]

w =w =w = aaa bbb bbb . . .. . .. . . bbb aaa bbb bbb . . .. . .. . . bbb . . .. . .. . . aaa bbb bbb . . .. . .. . . bbb

f (ab)
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An application: infix matching

For a fixed morphism f (or automaton, or formula),

one can receive a word w , construct its factorization forest, and

then use it as an index structure to evaluate in constant time

the f -image of any given infix of w .

Other applications:

constant-delay enumeration of answers to a query

number of nested Kleene ⋆ needed in a regular expression

determinization of Büchi automata (→ parity automata)

convert semigroups to formulas
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