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Definition

A tree automaton is a tuple A= (Q, X, A, /,Q), where
@ Q is a finite set of control states
@ X is a finite alphabet for transition labels
@ A ¢ QxXxQ?is a finite set of transition rules
@ /| © Q is a set of initial states

@ Q0 c QY defines the acceptance condition by specifying
the allowed sequences of states along all paths in the tree

(more details in the next slide...)

E.g. in a Biichi tree automaton one has

Q = {peQ“’ | inf(p)mF;t@}
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Decidability of S2S (Rabin'69)
One can decide if a sentence of MSO[E;, E;] holds over the binary tree.J

By induction on all subformulas ¢ (X1, ..., Xm),
construct tree automata A, such that

L(Ay) = {tesh® | te o)

logical disjunction v ~  union
existential quantification 3 ~  projection

logical negation = ~  complementation
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Inside t> one can logically define the ternary tree t3
© sclect a subset of the vertices that will form the nodes of t3
©Vdom(x) = (root,x) € (Ey U ExoE; U Eyo E)*
@ define the three successor relations of t3 by the formulas

p1(x.y) = (x,¥y)eE1  @y3(x,y) = (x,y)€(E20Eyp)




Decidability of S3S
One can decide MSO[ Ey, Ep, E3] over the ternary tree.




Application example 2 (interpretation of the rationals)
Consider again the binary tree t»

Inside t> one can logically define the the rationals Q
@ the dense order on Q can be seen as the infix order of t
p(x,y) = 3z. ((z.x)eEio(EiuB)* v z=x)
A ((zy)eBao(ELUB)* v z=y)




Monadic theories of linear orders (Shelah '75)

One can decide MSO[<] over Q and
over the class of all countable linear orders.

One cannot decide MSO[<] over R.




Application example 3 (interpretation of a pushdown system)

push 8

Any property of the above system expressed by an MSO formula

push B ( pop B
EE— Z ——

Y= .. VX .. (y

z). .. (ylez) .. y ).

can be translated into an equi-satisfiable formula over the binary tree

’lﬁ = ... VXl,X2 ((y]_,Z]_) € E2) (y1 =22) ((y2,22) € E2)







