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Decidability of S2S (Rabin’69)

One can decide if a sentence of MSO[E1,E2]MSO[E1,E2]MSO[E1,E2] holds over the binary tree.

Same approach as with (N,+1): transform formulas to automata
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Definition

A tree automaton is a tuple A = (Q,Σ,∆, I ,Ω), where

Q is a finite set of control states

Σ is a finite alphabet for transition labels

∆ ⊆ Q × Σ ×Q2Q2Q2 is a finite set of transition rules

I ⊆ Q is a set of initial states

Ω ⊆ Qω defines the acceptance condition by specifying

the allowed sequences of states along all pathsall pathsall paths in the tree

(more details in the next slide...)

E.g. in a Büchi tree automaton one has

Ω = { ρ ∈ Qω ∣ inf(ρ) ∩ F ≠ ∅}



Need of non-determinism and stronger acceptance conditions

∃X . X is a path ∧ ∃∞y ∈ X . a(y)∃X . X is a path ∧ ∃∞y ∈ X . a(y)∃X . X is a path ∧ ∃∞y ∈ X . a(y)

complement? yep!
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Büchi condition:

non final
states

final
states

Parity condition:

odd even odd even



Decidability of S2S (Rabin’69)

One can decide if a sentence of MSO[E1,E2]MSO[E1,E2]MSO[E1,E2] holds over the binary tree.

By induction on all subformulas ϕ(X1, ...,Xm),

construct tree automata Aϕ such that

L (Aϕ) = {t ∈ Σ
{1,2}⋆

m ∣ t ⊧ ϕ}L (Aϕ) = {t ∈ Σ
{1,2}⋆

m ∣ t ⊧ ϕ}L (Aϕ) = {t ∈ Σ
{1,2}⋆

m ∣ t ⊧ ϕ}

logical disjunction ∨∨∨ ↦ union

existential quantification ∃∃∃ ↦ projection

logical negation ¬¬¬ ↦ complementation



Complementation via parity games: Automaton vs Pathfinder

q0 ↦ q1, q2
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Complementation via parity games: Automaton vs Pathfinder

q0 ↦ q1, q2

q1 ↦ q3, q4

q4 ↦ ...

...

left

right

...



Positional determinacy of parity games

Either Automaton wins with a positional strategy, or Pathfinder does.

When a tree is rejected, Pathfinder’s winning strategy

can be converted to a strategy for Automaton over a

game with new transition rules

t /∈ L (A)t /∈ L (A)t /∈ L (A)

iff Pathfinder has a winning positional strategy

σ ∶ {1, 2}⋆ × ∆ → {1, 2}σ ∶ {1, 2}⋆ × ∆ → {1, 2}σ ∶ {1, 2}⋆ × ∆ → {1, 2} (or, equally, σ ∶ {1, 2}⋆ → {1, 2}∆σ ∶ {1, 2}⋆ → {1, 2}∆σ ∶ {1, 2}⋆ → {1, 2}∆)

iff

iff t ∈ L (AC)t ∈ L (AC)t ∈ L (AC)
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∀ infinite path π ∈ {1, 2}ω

∀ seq. of transitions τ ∈ ∆ω

if π is consistent with (t ⊗ σ)∣π and τ ,
then τ violates parity condition of A
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Application example 1 (interpretation of the ternary tree)

Consider the binary tree t2

Inside t2 one can logically define the ternary tree t3

1 select a subset of the vertices that will form the nodes of t3

ϕdom(x) = (root, x) ∈ (E1 ∪ E2 ○ E1 ∪ E2 ○ E2)
⋆ϕdom(x) = (root, x) ∈ (E1 ∪ E2 ○ E1 ∪ E2 ○ E2)
⋆ϕdom(x) = (root, x) ∈ (E1 ∪ E2 ○ E1 ∪ E2 ○ E2)
⋆

2 define the three successor relations of t3 by the formulas

ϕ1(x , y) = (x , y) ∈ E1ϕ1(x , y) = (x , y) ∈ E1ϕ1(x , y) = (x , y) ∈ E1 ϕ2/3(x , y) = (x , y) ∈ (E2 ○ E1/2)ϕ2/3(x , y) = (x , y) ∈ (E2 ○ E1/2)ϕ2/3(x , y) = (x , y) ∈ (E2 ○ E1/2)

Decidability of S3S

One can decide MSO[E1,E2,E3]MSO[E1,E2,E3]MSO[E1,E2,E3] over the ternary tree.
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Application example 2 (interpretation of the rationals)

Consider again the binary tree t2

Inside t2 one can logically define the the rationals QQQ
the dense order on Q can be seen as the infix order of t2

ϕ≤(x , y)ϕ≤(x , y)ϕ≤(x , y) = ∃z .∃z .∃z . ((z , x) ∈ E1 ○ (E1 ∪ E2)
⋆ ∨ z = x)((z , x) ∈ E1 ○ (E1 ∪ E2)
⋆ ∨ z = x)((z , x) ∈ E1 ○ (E1 ∪ E2)
⋆ ∨ z = x)

∧∧∧ ((z , y) ∈ E2 ○ (E1 ∪ E2)
⋆ ∨ z = y)((z , y) ∈ E2 ○ (E1 ∪ E2)
⋆ ∨ z = y)((z , y) ∈ E2 ○ (E1 ∪ E2)
⋆ ∨ z = y)

Monadic theories of linear orders (Shelah ’75)

One can decide MSO[≤]MSO[≤]MSO[≤] over QQQ and

over the class of all countable linear orders.

One cannot decide MSO[≤]MSO[≤]MSO[≤] over RRR.
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Application example 3 (interpretation of a pushdown system)
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push β
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push β

Any property of the above system expressed by an MSO formula

ψ = ... ∀X∀X∀X ... ( y
push β
ÐÐÐÐ→ zy
push β
ÐÐÐÐ→ zy
push β
ÐÐÐÐ→ z ) ... ( y ↓ε zy ↓ε zy ↓ε z ) ... ( z

pop β
←ÐÐÐ yz
pop β
←ÐÐÐ yz
pop β
←ÐÐÐ y ) ...

can be translated into an equi-satisfiable formula over the binary tree

ψ̂ = ... ∀X1,X2∀X1,X2∀X1,X2 ... ( (y1, z1) ∈ E2(y1, z1) ∈ E2(y1, z1) ∈ E2 ) ... ( y1 = z2y1 = z2y1 = z2 ) ... ( (y2, z2) ∈ E2(y2, z2) ∈ E2(y2, z2) ∈ E2 ) ...
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