
The transformational approach

Gabriele Puppis

LaBRI / CNRS

MSO-interpretation as a graph transformation

1 Start from a graph G (e.g. the binary tree)

that has a decidable MSO-theory

2 Transform G into a new graph G ′

by logically defining nodes and edges of G ′ inside G

3 Given any MSO property ψ over G ′,
decide it by rephrasing it into a property over G

Definition

An MSO-interpretation is a tuple I of formulas

ϕ

iii

dom(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

domain formula

ϕ

i , ji , ji , j

e1(x , y) . . . ϕ

i , ji , ji , j

ek (x , y)
´¹¹¸¹¹¶

edge formulas

ϕ

iii

a1(x) . . . ϕ

iii

am(x)
´¹¹¸¹¹¶

color formulas

defining a transformation from graph G to graph I(G) such that

(i ,

v

)

is a vertex of I(G) iff (G , v) ⊧ ϕ

iii

dom(x)

(u, v) is an e-edge of I(G)

((i , u), (j , v)) is an e-edge of I(G)

iff (G , u, v) ⊧ ϕ

i , ji , ji , j

e (x , y)

(i ,

v

)

has color a in I(G) iff (G , v) ⊧ ϕ

iii

a(x)

Transfer theorem

Every sentence ψ can be transformed into I−1(ψ) such that

I(G) ⊧ ψI(G) ⊧ ψI(G) ⊧ ψ iff G ⊧ I−1(ψ)G ⊧ I−1(ψ)G ⊧ I−1(ψ)

Hence, if G has decidable MSO theory, then so has I(G).

Definition

An MSO-interpretation is a tuple I of formulas

ϕ

iii

dom(x)ϕ

iii

dom(x)ϕ

iii

dom(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

domain formula

ϕ

i , ji , ji , j

e1(x , y) . . . ϕ

i , ji , ji , j

ek (x , y)
´¹¹¸¹¹¶

edge formulas

ϕ

iii

a1(x) . . . ϕ

iii

am(x)
´¹¹¸¹¹¶

color formulas

defining a transformation from graph G to graph I(G) such that

(i ,

v

)

is a vertex of I(G) iff (G , v) ⊧ ϕ

iii

dom(x)

(i ,

v

)

is a vertex of I(G) iff (G , v) ⊧ ϕ

iii

dom(x)

(i ,

v

)

is a vertex of I(G) iff (G , v) ⊧ ϕ

iii

dom(x)

(u, v) is an e-edge of I(G)

((i , u), (j , v)) is an e-edge of I(G)

iff (G , u, v) ⊧ ϕ

i , ji , ji , j

e (x , y)

(i ,

v

)

has color a in I(G) iff (G , v) ⊧ ϕ

iii

a(x)

Transfer theorem

Every sentence ψ can be transformed into I−1(ψ) such that

I(G) ⊧ ψI(G) ⊧ ψI(G) ⊧ ψ iff G ⊧ I−1(ψ)G ⊧ I−1(ψ)G ⊧ I−1(ψ)

Hence, if G has decidable MSO theory, then so has I(G).

Definition

An MSO-interpretation is a tuple I of formulas

ϕ

iii

dom(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

domain formula

ϕ

i , ji , ji , j

e1(x , y) . . . ϕ

i , ji , ji , j

ek (x , y)ϕ

i , ji , ji , j

e1(x , y) . . . ϕ

i , ji , ji , j

ek (x , y)ϕ

i , ji , ji , j

e1(x , y) . . . ϕ

i , ji , ji , j

ek (x , y)
´¹¹¸¹¹¶

edge formulas

ϕ

iii

a1(x) . . . ϕ

iii

am(x)
´¹¹¸¹¹¶

color formulas

defining a transformation from graph G to graph I(G) such that

(i ,

v

)

is a vertex of I(G) iff (G , v) ⊧ ϕ

iii

dom(x)

(u, v) is an e-edge of I(G)

((i , u), (j , v)) is an e-edge of I(G)

iff (G , u, v) ⊧ ϕ

i , ji , ji , j

e (x , y)(u, v) is an e-edge of I(G)

((i , u), (j , v)) is an e-edge of I(G)

iff (G , u, v) ⊧ ϕ

i , ji , ji , j

e (x , y)(u, v) is an e-edge of I(G)

((i , u), (j , v)) is an e-edge of I(G)

iff (G , u, v) ⊧ ϕ

i , ji , ji , j

e (x , y)

(i ,

v

)

has color a in I(G) iff (G , v) ⊧ ϕ

iii

a(x)

Transfer theorem

Every sentence ψ can be transformed into I−1(ψ) such that

I(G) ⊧ ψI(G) ⊧ ψI(G) ⊧ ψ iff G ⊧ I−1(ψ)G ⊧ I−1(ψ)G ⊧ I−1(ψ)

Hence, if G has decidable MSO theory, then so has I(G).

Definition

An MSO-interpretation is a tuple I of formulas

ϕ

iii

dom(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

domain formula

ϕ

i , ji , ji , j

e1(x , y) . . . ϕ

i , ji , ji , j

ek (x , y)
´¹¹¸¹¹¶

edge formulas

ϕ

iii

a1(x) . . . ϕ

iii

am(x)ϕ

iii

a1(x) . . . ϕ

iii

am(x)ϕ

iii

a1(x) . . . ϕ

iii

am(x)
´¹¹¸¹¹¶

color formulas

defining a transformation from graph G to graph I(G) such that

(i ,

v

)

is a vertex of I(G) iff (G , v) ⊧ ϕ

iii

dom(x)

(u, v) is an e-edge of I(G)

((i , u), (j , v)) is an e-edge of I(G)

iff (G , u, v) ⊧ ϕ

i , ji , ji , j

e (x , y)

(i ,

v

)

has color a in I(G) iff (G , v) ⊧ ϕ

iii

a(x)

(i ,

v

)

has color a in I(G) iff (G , v) ⊧ ϕ

iii

a(x)

(i ,

v

)

has color a in I(G) iff (G , v) ⊧ ϕ

iii

a(x)

Transfer theorem

Every sentence ψ can be transformed into I−1(ψ) such that

I(G) ⊧ ψI(G) ⊧ ψI(G) ⊧ ψ iff G ⊧ I−1(ψ)G ⊧ I−1(ψ)G ⊧ I−1(ψ)

Hence, if G has decidable MSO theory, then so has I(G).

Definition

An MSO-interpretation is a tuple I of formulas

ϕ

iii

dom(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

domain formula

ϕ

i , ji , ji , j

e1(x , y) . . . ϕ

i , ji , ji , j

ek (x , y)
´¹¹¸¹¹¶

edge formulas

ϕ

iii

a1(x) . . . ϕ

iii

am(x)
´¹¹¸¹¹¶

color formulas

defining a transformation from graph G to graph I(G) such that

(i ,

v

)

is a vertex of I(G) iff (G , v) ⊧ ϕ

iii

dom(x)

(u, v) is an e-edge of I(G)

((i , u), (j , v)) is an e-edge of I(G)

iff (G , u, v) ⊧ ϕ

i , ji , ji , j

e (x , y)

(i ,

v

)

has color a in I(G) iff (G , v) ⊧ ϕ

iii

a(x)

Transfer theorem

Every sentence ψ can be transformed into I−1(ψ) such that

I(G) ⊧ ψI(G) ⊧ ψI(G) ⊧ ψ iff G ⊧ I−1(ψ)G ⊧ I−1(ψ)G ⊧ I−1(ψ)

Hence, if G has decidable MSO theory, then so has I(G).

Definition

An MSO-/////////////////interpretation transduction is a tuple I of formulas

ϕiiidom(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

domain formula

ϕi , ji , ji , je1(x , y) . . . ϕi , ji , ji , jek (x , y)
´¹¹¸¹¹¶

edge formulas

ϕiiia1(x) . . . ϕiiiam(x)
´¹¹¸¹¹¶

color formulas

defining a transformation from graph G to graph I(G) such that

(i , v) is a vertex of I(G) iff (G , v) ⊧ ϕiiidom(x)

(u, v) is an e-edge of I(G)

((i , u), (j , v)) is an e-edge of I(G) iff (G , u, v) ⊧ ϕi , ji , ji , je (x , y)

(i , v) has color a in I(G) iff (G , v) ⊧ ϕiiia(x)

Transfer theorem

Every sentence ψ can be transformed into I−1(ψ) such that

I(G) ⊧ ψI(G) ⊧ ψI(G) ⊧ ψ iff G ⊧ I−1(ψ)G ⊧ I−1(ψ)G ⊧ I−1(ψ)

Hence, if G has decidable MSO theory, then so has I(G).

Most edge formulas can be abbreviated by regular expressions:

“aaa” abbreviates (x , y) ∈ Ea(x , y) ∈ Ea(x , y) ∈ Ea

“ā̄āa” abbreviates (y , x) ∈ Ea(y , x) ∈ Ea(y , x) ∈ Ea

“a + ba + ba + b” abbreviates (x , y) ∈ Ea ∨ (x , y) ∈ Eb(x , y) ∈ Ea ∨ (x , y) ∈ Eb(x , y) ∈ Ea ∨ (x , y) ∈ Eb

“a ⋅ ba ⋅ ba ⋅ b” abbreviates ∃z . (x , z) ∈ Ea ∧ (z , y) ∈ Eb∃z . (x , z) ∈ Ea ∧ (z , y) ∈ Eb∃z . (x , z) ∈ Ea ∧ (z , y) ∈ Eb

“a⋆a⋆a⋆” abbreviates (x , y) ∈ E⋆
a(x , y) ∈ E⋆
a(x , y) ∈ E⋆
a

“ccc” abbreviates c(x)c(x)c(x) (assume vertex colors ≠ edge labels)

Example

The regular expression “a⋆ ⋅ (c + d) ⋅ b̄a⋆ ⋅ (c + d) ⋅ b̄a⋆ ⋅ (c + d) ⋅ b̄” describes a formula

ϕ(x , y) that witnesses a path from x to y such that

1 traverses a sequence of a-labelled edges

2 reaches a vertex with color c or d

3 finally traverses in backward direction a b-labelled edge

Most edge formulas can be abbreviated by regular expressions:

“aaa” abbreviates (x , y) ∈ Ea(x , y) ∈ Ea(x , y) ∈ Ea

“ā̄āa” abbreviates (y , x) ∈ Ea(y , x) ∈ Ea(y , x) ∈ Ea

“a + ba + ba + b” abbreviates (x , y) ∈ Ea ∨ (x , y) ∈ Eb(x , y) ∈ Ea ∨ (x , y) ∈ Eb(x , y) ∈ Ea ∨ (x , y) ∈ Eb

“a ⋅ ba ⋅ ba ⋅ b” abbreviates ∃z . (x , z) ∈ Ea ∧ (z , y) ∈ Eb∃z . (x , z) ∈ Ea ∧ (z , y) ∈ Eb∃z . (x , z) ∈ Ea ∧ (z , y) ∈ Eb

“a⋆a⋆a⋆” abbreviates (x , y) ∈ E⋆
a(x , y) ∈ E⋆
a(x , y) ∈ E⋆
a

“ccc” abbreviates c(x)c(x)c(x) (assume vertex colors ≠ edge labels)

Example

The regular expression “a⋆ ⋅ (c + d) ⋅ b̄a⋆ ⋅ (c + d) ⋅ b̄a⋆ ⋅ (c + d) ⋅ b̄” describes a formula

ϕ(x , y) that witnesses a path from x to y such that

1 traverses a sequence of a-labelled edges

2 reaches a vertex with color c or d

3 finally traverses in backward direction a b-labelled edge

Most edge formulas can be abbreviated by regular expressions:

“aaa” abbreviates (x , y) ∈ Ea(x , y) ∈ Ea(x , y) ∈ Ea

“ā̄āa” abbreviates (y , x) ∈ Ea(y , x) ∈ Ea(y , x) ∈ Ea

“a + ba + ba + b” abbreviates (x , y) ∈ Ea ∨ (x , y) ∈ Eb(x , y) ∈ Ea ∨ (x , y) ∈ Eb(x , y) ∈ Ea ∨ (x , y) ∈ Eb

“a ⋅ ba ⋅ ba ⋅ b” abbreviates ∃z . (x , z) ∈ Ea ∧ (z , y) ∈ Eb∃z . (x , z) ∈ Ea ∧ (z , y) ∈ Eb∃z . (x , z) ∈ Ea ∧ (z , y) ∈ Eb

“a⋆a⋆a⋆” abbreviates (x , y) ∈ E⋆
a(x , y) ∈ E⋆
a(x , y) ∈ E⋆
a

“ccc” abbreviates c(x)c(x)c(x) (assume vertex colors ≠ edge labels)

Example

The regular expression “a⋆ ⋅ (c + d) ⋅ b̄a⋆ ⋅ (c + d) ⋅ b̄a⋆ ⋅ (c + d) ⋅ b̄” describes a formula

ϕ(x , y) that witnesses a path from x to y such that

1 traverses a sequence of a-labelled edges

2 reaches a vertex with color c or d

3 finally traverses in backward direction a b-labelled edge

Special forms of interpretations on trees

A rational restriction is an MSO-interpretation of tree defined by

ϕdom(x) = “ ∃ path π from root to x such that π ∈ L ”“ ∃ path π from root to x such that π ∈ L ”“ ∃ path π from root to x such that π ∈ L ”

Similarly, an inverse rational mapping is defined as

ϕe(x , y) = “ ∃ path π from x to y such that π ∈ Le ”“ ∃ path π from x to y such that π ∈ Le ”“ ∃ path π from x to y such that π ∈ Le ”

xxx yyy
e

π ∈ Le

Definition

A pushdown system is a tuple P = (Q,Σ, Γ,∆), where

Q is a finite set of control states

Σ is a finite alphabet for transition labels

Γ is a finite alphabet for stack symbols

∆ ⊆ Q × Γ × Σ × Q × Γ⋆ is a finite set of transition rules

Configurations = pairs (q
®

state

, w
®

stack

) ∈ Q × Γ⋆

Transitions = (q, γw)
a
ÐÐÐ→ (q′, vw)

iff (q, γ, a, q′, v

®

∈ Γ≤2

) ∈ ∆

W.l.o.g. assume that stack length changes at most by 1

Definition

A pushdown system is a tuple P = (Q,Σ, Γ,∆), where

Q is a finite set of control states

Σ is a finite alphabet for transition labels

Γ is a finite alphabet for stack symbols

∆ ⊆ Q × Γ × Σ × Q × Γ⋆ is a finite set of transition rules

Configurations = pairs (q
®

state

, w
®

stack

) ∈ Q × Γ⋆

Transitions = (q, γw)
a
ÐÐÐ→ (q′, vw)

iff (q, γ, a, q′, v

®

∈ Γ≤2

) ∈ ∆

W.l.o.g. assume that stack length changes at most by 1

Definition

A pushdown system is a tuple P = (Q,Σ, Γ,∆), where

Q is a finite set of control states

Σ is a finite alphabet for transition labels

Γ is a finite alphabet for stack symbols

∆ ⊆ Q × Γ × Σ × Q × Γ⋆ is a finite set of transition rules

Configurations = pairs (q
®

state

, w
®

stack

) ∈ Q × Γ⋆

Transitions = (q, γw)
a
ÐÐÐ→ (q′, vw)

iff (q, γ, a, q′, v
®

∈ Γ≤2
) ∈ ∆

W.l.o.g. assume that stack length changes at most by 1

Interest in properties of transition graphs of pushdown systems

Context-free graph

A connected component of a graph is a maximal subgraph

in which every two vertices can be connected by a path that

traverses edges in either direction.

A context-free graph is a connected component

of the transition graph of a pushdown system.

Example

q1 q2
γ, c

γ, a ∶ push γ

γ, b ∶ pop γ γ, d ∶ pop γ

q1ε q1γ q1γγ . . .

q2ε q2γ q1γγ . . .

b

a

b

a

b
c c

ddd

Theorem (Caucal ’96)

Context-free graphs are definable in the binary tree

using rational restrictions and inverse finite mappings.

Proof sketch in the next slide...

Corollary (Muller & Schupp ’85)

MSO is decidable over context-free graphs.

Context-free graphs are definable by restrictions and inverse mappings.

Consider a pushdown system P = (Q,Σ, Γ,∆) and

the Q ⊎ ΓQ ⊎ ΓQ ⊎ Γ-labelled tree (interpretable in the binary tree)

configurations of P: ϕdom(x) = ∃πroot,x ∈ Γ⋆ ⋅ QΓ⋆ ⋅ QΓ⋆ ⋅ Q

transitions of P: ϕa(x , y) = ∃πx ,y ∈∪(q,γ,a,q′,v)∈∆(q̄ ⋅ γ̄ ⋅ v rev ⋅ q′q̄ ⋅ γ̄ ⋅ v rev ⋅ q′q̄ ⋅ γ̄ ⋅ v rev ⋅ q′)

connected component...

⋮ ⋮

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

γ

q

Context-free graphs are definable by restrictions and inverse mappings.

Consider a pushdown system P = (Q,Σ, Γ,∆) and

the Q ⊎ ΓQ ⊎ ΓQ ⊎ Γ-labelled tree (interpretable in the binary tree)

configurations of P: ϕdom(x) = ∃πroot,x ∈ Γ⋆ ⋅ QΓ⋆ ⋅ QΓ⋆ ⋅ Q

transitions of P: ϕa(x , y) = ∃πx ,y ∈∪(q,γ,a,q′,v)∈∆(q̄ ⋅ γ̄ ⋅ v rev ⋅ q′q̄ ⋅ γ̄ ⋅ v rev ⋅ q′q̄ ⋅ γ̄ ⋅ v rev ⋅ q′)

connected component...

⋮ ⋮

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

γ

q

Context-free graphs are definable by restrictions and inverse mappings.

Consider a pushdown system P = (Q,Σ, Γ,∆) and

the Q ⊎ ΓQ ⊎ ΓQ ⊎ Γ-labelled tree (interpretable in the binary tree)

configurations of P: ϕdom(x) = ∃πroot,x ∈ Γ⋆ ⋅ QΓ⋆ ⋅ QΓ⋆ ⋅ Q

transitions of P: ϕa(x , y) = ∃πx ,y ∈∪(q,γ,a,q′,v)∈∆(q̄ ⋅ γ̄ ⋅ v rev ⋅ q′q̄ ⋅ γ̄ ⋅ v rev ⋅ q′q̄ ⋅ γ̄ ⋅ v rev ⋅ q′)

connected component...

⋮ ⋮

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

γ

q

Context-free graphs are definable by restrictions and inverse mappings.

Consider a pushdown system P = (Q,Σ, Γ,∆) and

the Q ⊎ ΓQ ⊎ ΓQ ⊎ Γ-labelled tree (interpretable in the binary tree)

configurations of P: ϕdom(x) = ∃πroot,x ∈ Γ⋆ ⋅ QΓ⋆ ⋅ QΓ⋆ ⋅ Q

transitions of P: ϕa(x , y) = ∃πx ,y ∈∪(q,γ,a,q′,v)∈∆(q̄ ⋅ γ̄ ⋅ v rev ⋅ q′q̄ ⋅ γ̄ ⋅ v rev ⋅ q′q̄ ⋅ γ̄ ⋅ v rev ⋅ q′)

connected component...

⋮ ⋮

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

γ

q

The previous result can be lifted to prefix-rewriting systems, which

generalize pushdown systems by giving graphs with infinite degree:

no distinction between control states and stack letters

(a single alphabet is used)

less restricted forms of rewriting rules

(more than one letter can be rewritten in a single transition)

Definition

A prefix-rewriting system is a tuple P = (Σ, Γ,∆), where

Σ is a finite alphabet for transition labels

Γ is a finite alphabet for “stack” symbols

∆ is a finite set of transition rules of the form (U, a,V)(U, a,V)(U, a,V),

with a ∈ Σ and U,V regular languages over ΓU,V regular languages over ΓU,V regular languages over Γ.

Configurations = words in Γ⋆ (or in some regular language)

Transitions = u w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v w

iff u ∈ Uu ∈ Uu ∈ U and v ∈ Vv ∈ Vv ∈ V for some (U, a,V) ∈ ∆(U, a,V) ∈ ∆(U, a,V) ∈ ∆

The previous result can be lifted to prefix-rewriting systems, which

generalize pushdown systems by giving graphs with infinite degree:

no distinction between control states and stack letters

(a single alphabet is used)

less restricted forms of rewriting rules

(more than one letter can be rewritten in a single transition)

Definition

A prefix-rewriting system is a tuple P = (Σ, Γ,∆), where

Σ is a finite alphabet for transition labels

Γ is a finite alphabet for “stack” symbols

∆ is a finite set of transition rules of the form (U, a,V)(U, a,V)(U, a,V),

with a ∈ Σ and U,V regular languages over ΓU,V regular languages over ΓU,V regular languages over Γ.

Configurations = words in Γ⋆ (or in some regular language)

Transitions = u w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v w

iff u ∈ Uu ∈ Uu ∈ U and v ∈ Vv ∈ Vv ∈ V for some (U, a,V) ∈ ∆(U, a,V) ∈ ∆(U, a,V) ∈ ∆

The previous result can be lifted to prefix-rewriting systems, which

generalize pushdown systems by giving graphs with infinite degree:

no distinction between control states and stack letters

(a single alphabet is used)

less restricted forms of rewriting rules

(more than one letter can be rewritten in a single transition)

Definition

A prefix-rewriting system is a tuple P = (Σ, Γ,∆), where

Σ is a finite alphabet for transition labels

Γ is a finite alphabet for “stack” symbols

∆ is a finite set of transition rules of the form (U, a,V)(U, a,V)(U, a,V),

with a ∈ Σ and U,V regular languages over ΓU,V regular languages over ΓU,V regular languages over Γ.

Configurations = words in Γ⋆ (or in some regular language)

Transitions = u w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v w

iff u ∈ Uu ∈ Uu ∈ U and v ∈ Vv ∈ Vv ∈ V for some (U, a,V) ∈ ∆(U, a,V) ∈ ∆(U, a,V) ∈ ∆

Definition

A prefix-recognizable graph is

the transition graph of a prefix-rewriting system.

Example

Consider the prefix rewriting system P = (Σ, Γ,∆), where

Σ = {succsuccsucc, smallersmallersmaller}

Γ = {γ}

∆ consists of the two rules

({ε}, succsuccsucc, {γ}) and ({γ}+, smallersmallersmaller, {ε})

ε γ γ2 γ3 γ4 . . .

Theorem (Caucal ’96)

Prefix-recognizable graphs are definable in the binary tree

using rational restrictions and inverse rational mappings.

Exactly the same proof as before...

u w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v w

iff

u ∈ Uu ∈ Uu ∈ U and v ∈ Vv ∈ Vv ∈ V

for some (U, a,V) ∈ ∆

Theorem (Caucal ’96)

Prefix-recognizable graphs are definable in the binary tree

using rational restrictions and inverse rational mappings.

Exactly the same proof as before...

u w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v w

iff

u ∈ Uu ∈ Uu ∈ U and v ∈ Vv ∈ Vv ∈ V

for some (U, a,V) ∈ ∆

xxx

ū̄ūu

w̄̄w̄w

Theorem (Caucal ’96)

Prefix-recognizable graphs are definable in the binary tree

using rational restrictions and inverse rational mappings.

Exactly the same proof as before...

u w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v w

iff

u ∈ Uu ∈ Uu ∈ U and v ∈ Vv ∈ Vv ∈ V

for some (U, a,V) ∈ ∆

xxx

ū̄ūu

w̄̄w̄w

yyy

v rev
v revv rev

w
rev

w
rev

w
rev

Theorem (Caucal ’96)

Prefix-recognizable graphs are definable in the binary tree

using rational restrictions and inverse rational mappings.

Exactly the same proof as before...

u w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v w

iff

u ∈ Uu ∈ Uu ∈ U and v ∈ Vv ∈ Vv ∈ V

for some (U, a,V) ∈ ∆

xxx

ū̄ūu

w̄̄w̄w

yyy

v rev
v revv rev

w
rev

w
rev

w
rev

a

ϕa = ∪(U,a,V)∈∆ U ⋅ V revϕa = ∪(U,a,V)∈∆ U ⋅ V revϕa = ∪(U,a,V)∈∆ U ⋅ V rev

We just saw that

context-free graphs can be defined in the binary tree

using rational restrictions and inverse finite mappings

prefix-recognizable graphs can be defined in the binary tree

using rational restrictions and inverse rational mappings

The converse is also true:

Theorem (Caucal ’96)

The graphs that can be defined in the binary tree using

rational restrictions and inverse finite / rational mappings

are context-free / prefix-recognizable.

We just saw that

context-free graphs can be defined in the binary tree

using rational restrictions and inverse finite mappings

prefix-recognizable graphs can be defined in the binary tree

using rational restrictions and inverse rational mappings

The converse is also true:

Theorem (Caucal ’96)

The graphs that can be defined in the binary tree using

rational restrictions and inverse finite / rational mappings

are context-free / prefix-recognizable.

Context-free graphs have alternative representations

based on hyperedge-replacement

Example of hyperedge replacement

G ∶

hhh

H ∶

111

222

333

G [h/H] ∶

Context-free graphs have alternative representations

based on hyperedge-replacement

Example of hyperedge replacement

G ∶

hhh

H ∶

111

222

333

G [h/H] ∶

Context-free graphs have alternative representations

based on hyperedge-replacement

Example of hyperedge replacement

G ∶

hhh

H ∶

111

222

333

G [h/H] ∶

Some definitions

A hyperedge is a sequence of vertices h = (v1, . . . , vk)

A hypergraph is a structure of vertices and hyperedges

(different hyperedges are given different labels).

A hyperedge replacement is the replacement of a hyperedge

h = (v1, ..., vk) in a hypergraph G with another hypergraph H

(glueing points are represented by marking vertices of H)

A hyperedge replacement grammar is

a finite set of rewriting rules of the form

h1 ↦ H1 . . . hn ↦ Hn

together with an initial hyperedge h1.

Finally, one defines the limit of a series of replacements

h1 ↦ H1 ↦ H1[hi2/H2] ↦ . . .

Since hyperedge replacements are confluent,

the limit is the same for all (fair) series of replacements!

Some definitions

A hyperedge is a sequence of vertices h = (v1, . . . , vk)

A hypergraph is a structure of vertices and hyperedges

(different hyperedges are given different labels).

A hyperedge replacement is the replacement of a hyperedge

h = (v1, ..., vk) in a hypergraph G with another hypergraph H

(glueing points are represented by marking vertices of H)

A hyperedge replacement grammar is

a finite set of rewriting rules of the form

h1 ↦ H1 . . . hn ↦ Hn

together with an initial hyperedge h1.

Finally, one defines the limit of a series of replacements

h1 ↦ H1 ↦ H1[hi2/H2] ↦ . . .

Since hyperedge replacements are confluent,

the limit is the same for all (fair) series of replacements!

Some definitions

A hyperedge is a sequence of vertices h = (v1, . . . , vk)

A hypergraph is a structure of vertices and hyperedges

(different hyperedges are given different labels).

A hyperedge replacement is the replacement of a hyperedge

h = (v1, ..., vk) in a hypergraph G with another hypergraph H

(glueing points are represented by marking vertices of H)

A hyperedge replacement grammar is

a finite set of rewriting rules of the form

h1 ↦ H1 . . . hn ↦ Hn

together with an initial hyperedge h1.

Finally, one defines the limit of a series of replacements

h1 ↦ H1 ↦ H1[hi2/H2] ↦ . . .

Since hyperedge replacements are confluent,

the limit is the same for all (fair) series of replacements!

Some definitions

A hyperedge is a sequence of vertices h = (v1, . . . , vk)

A hypergraph is a structure of vertices and hyperedges

(different hyperedges are given different labels).

A hyperedge replacement is the replacement of a hyperedge

h = (v1, ..., vk) in a hypergraph G with another hypergraph H

(glueing points are represented by marking vertices of H)

A hyperedge replacement grammar is

a finite set of rewriting rules of the form

h1 ↦ H1 . . . hn ↦ Hn

together with an initial hyperedge h1.

Finally, one defines the limit of a series of replacements

h1 ↦ H1 ↦ H1[hi2/H2] ↦ . . .

Since hyperedge replacements are confluent,

the limit is the same for all (fair) series of replacements!

Some definitions

A hyperedge is a sequence of vertices h = (v1, . . . , vk)

A hypergraph is a structure of vertices and hyperedges

(different hyperedges are given different labels).

A hyperedge replacement is the replacement of a hyperedge

h = (v1, ..., vk) in a hypergraph G with another hypergraph H

(glueing points are represented by marking vertices of H)

A hyperedge replacement grammar is

a finite set of rewriting rules of the form

h1 ↦ H1 . . . hn ↦ Hn

together with an initial hyperedge h1.

Finally, one defines the limit of a series of replacements

h1 ↦ H1 ↦ H1[hi2/H2] ↦ . . .

Since hyperedge replacements are confluent,

the limit is the same for all (fair) series of replacements!

Limit graph of a hyperedge replacement grammar

h1h1h1
↦

H1 ∶
111 222

h
1

h
1

h
1

Limit graphs can be disconnecteddisconnecteddisconnected and have unbounded degreeunbounded degreeunbounded degree

Limit graph of a hyperedge replacement grammar

h1h1h1
↦

H1 ∶
111 222

h
1

h
1

h
1

h1h1h1

Limit graphs can be disconnecteddisconnecteddisconnected and have unbounded degreeunbounded degreeunbounded degree

Limit graph of a hyperedge replacement grammar

h1h1h1
↦

H1 ∶
111 222

h
1

h
1

h
1

h1h1h1

Limit graphs can be disconnecteddisconnecteddisconnected and have unbounded degreeunbounded degreeunbounded degree

Limit graph of a hyperedge replacement grammar

h1h1h1
↦

H1 ∶
111 222

h
1

h
1

h
1

h1h1h1

Limit graphs can be disconnecteddisconnecteddisconnected and have unbounded degreeunbounded degreeunbounded degree

Limit graph of a hyperedge replacement grammar

h1h1h1
↦

H1 ∶
111 222

h
1

h
1

h
1

. . .

Limit graphs can be disconnecteddisconnecteddisconnected and have unbounded degreeunbounded degreeunbounded degree

If we restrict ourselves to special forms of grammars, where

there are no markings on hyperedges

there are no repetitions of vertices in hyperedges

vertices of hyperedges have incident terminal edges

. . .

Then:

Theorem (Muller & Schupp ’85)

The context-free graphs are the limit graphs of

special forms of hyperedge-replacement graph grammars.

Proof idea in one direction: consider end-components

Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }

. . .

. . .

. . .

. . .

b

d

a

b

d

c

a

b

d

c

a

b

d

c

Only finitely many non-isomorphic end-components,

each one inducing a hyperedge replacement rule:

h1 ↦

b
h2

d

h2 ↦ c

a

b h2

d

Proof idea in one direction: consider end-components

Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }

. . .

. . .

. . .

. . .

b

d

a

b

d

c

a

b

d

c

a

b

d

c

Only finitely many non-isomorphic end-components,

each one inducing a hyperedge replacement rule:

h1 ↦

b
h2

d

h2 ↦ c

a

b h2

d

Proof idea in one direction: consider end-components

Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }

. . .

. . .

. . .

. . .

b

d

a

b

d

c

a

b

d

c

a

b

d

c

Only finitely many non-isomorphic end-components,

each one inducing a hyperedge replacement rule:

h1 ↦

b
h2

d

h2 ↦ c

a

b h2

d

Proof idea in one direction: consider end-components

Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }

. . .

. . .

. . .

. . .

b

d

a

b

d

c

a

b

d

c

a

b

d

c

Only finitely many non-isomorphic end-components,

each one inducing a hyperedge replacement rule:

h1 ↦

b
h2

d

h2 ↦ c

a

b h2

d

Proof idea in one direction: consider end-components

Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }

. . .

. . .

b

d

a

b

d

c

a

b

d

c

a

b

d

c

Only finitely many non-isomorphic end-components,

each one inducing a hyperedge replacement rule:

h1 ↦

b
h2

d

h2 ↦ c

a

b h2

d

Proof idea in one direction: consider end-components

Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }

. . .

. . .

b

d

a

b

d

c

a

b

d

c

a

b

d

c

Only finitely many non-isomorphic end-components,

each one inducing a hyperedge replacement rule:

h1 ↦

b
h2

d

h2 ↦ c

a

b h2

d

Analogous results hold for prefix-recognizable graphs:

Theorem (Courcelle ’92)

The prefix-recognizable graphs are the limit graphs

of vertex-replacement graph grammars.

Operations underlying vertex-replacement grammars:

Disjoint union: G ⊎ G ′

Vertex relabelling: G [a/b]

Edge creation: G [a → b]

Transfer theorems can be proved for other transformations besides

MSO-interpretations and MSO-transductions, e.g. for unfoldings...

Definition

The unfolding of a rooted graph G is the tree unf(G)unf(G)unf(G), where

vertices are the finite pathsfinite pathsfinite paths in G originating from the root

edges are given by path-extensionpath-extensionpath-extension relation

i.e. (π, π′) is an a-labelled edge in unf(G) iff

π′ is the extension of π with an a-labelled edge in G

Transfer theorem (Muchnik ’84, Courcelle ’96, Walukiewicz ’02, ...)

Every sentence ψ can be transformed into unf −1(ψ) such that

unf(G) ⊧ ψunf(G) ⊧ ψunf(G) ⊧ ψ iff G ⊧ unf −1(ψ)G ⊧ unf −1(ψ)G ⊧ unf −1(ψ)

Next slide shows why this subsumes Büchi and Rabin’s theorems...

Transfer theorems can be proved for other transformations besides

MSO-interpretations and MSO-transductions, e.g. for unfoldings...

Definition

The unfolding of a rooted graph G is the tree unf(G)unf(G)unf(G), where

vertices are the finite pathsfinite pathsfinite paths in G originating from the root

edges are given by path-extensionpath-extensionpath-extension relation

i.e. (π, π′) is an a-labelled edge in unf(G) iff

π′ is the extension of π with an a-labelled edge in G

Transfer theorem (Muchnik ’84, Courcelle ’96, Walukiewicz ’02, ...)

Every sentence ψ can be transformed into unf −1(ψ) such that

unf(G) ⊧ ψunf(G) ⊧ ψunf(G) ⊧ ψ iff G ⊧ unf −1(ψ)G ⊧ unf −1(ψ)G ⊧ unf −1(ψ)

Next slide shows why this subsumes Büchi and Rabin’s theorems...

Transfer theorems can be proved for other transformations besides

MSO-interpretations and MSO-transductions, e.g. for unfoldings...

Definition

The unfolding of a rooted graph G is the tree unf(G)unf(G)unf(G), where

vertices are the finite pathsfinite pathsfinite paths in G originating from the root

edges are given by path-extensionpath-extensionpath-extension relation

i.e. (π, π′) is an a-labelled edge in unf(G) iff

π′ is the extension of π with an a-labelled edge in G

Transfer theorem (Muchnik ’84, Courcelle ’96, Walukiewicz ’02, ...)

Every sentence ψ can be transformed into unf −1(ψ) such that

unf(G) ⊧ ψunf(G) ⊧ ψunf(G) ⊧ ψ iff G ⊧ unf −1(ψ)G ⊧ unf −1(ψ)G ⊧ unf −1(ψ)

Next slide shows why this subsumes Büchi and Rabin’s theorems...

Examples of unfoldings

. . .

Examples of unfoldings

. . .

Examples of unfoldings

. . .

Examples of unfoldings

. . .

Application example

Consider a context-free graph, which has decidable MSO theory.

1 First apply unfoldingunfoldingunfolding: this gives a tree with decidable MSO theory

2 Then apply MSO-interpretationMSO-interpretationMSO-interpretation: this gives (N,+1,Powers)

0 1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Application example

Consider a context-free graph, which has decidable MSO theory.

1 First apply unfoldingunfoldingunfolding: this gives a tree with decidable MSO theory

2 Then apply MSO-interpretationMSO-interpretationMSO-interpretation: this gives (N,+1,Powers)

0 1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Application example

Consider a context-free graph, which has decidable MSO theory.

1 First apply unfoldingunfoldingunfolding: this gives a tree with decidable MSO theory

2 Then apply MSO-interpretationMSO-interpretationMSO-interpretation: this gives (N,+1,Powers)

0 1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Higher-order definable words (e.g. see Fratani & Senizergues ’06)

(N,+1, {2n2n2n ∣ n ∈ N})

(N,+1, {22
n

22
n

22
n
∣ n ∈ N})

(N,+1, {2 ⋱
2

2 ⋱
2

2 ⋱
2
}n times

∣ n ∈ N}) (but MSO is still decidable)

(N,+1, {⌊n
√

n⌋⌊n
√

n⌋⌊n
√

n⌋ ∣ n ∈ N})

(N,+1, {⌊n log n⌋⌊n log n⌋⌊n log n⌋ ∣ n ∈ N})

(N,+1, {n2n2n2 ∣ n ∈ N}, {n6n6n6 ∣ n ∈ N}, {n30n30n30 ∣ n ∈ N}, . . .)

(N,+1, {n2n2n2 ∣ n ∈ N}, {n3n3n3 ∣ n ∈ N}) (is MSO decidable?)

Higher-order definable words (e.g. see Fratani & Senizergues ’06)

(N,+1, {2n2n2n ∣ n ∈ N})

(N,+1, {22
n

22
n

22
n
∣ n ∈ N})

(N,+1, {2 ⋱
2

2 ⋱
2

2 ⋱
2
}n times

∣ n ∈ N}) (but MSO is still decidable)

(N,+1, {⌊n
√

n⌋⌊n
√

n⌋⌊n
√

n⌋ ∣ n ∈ N})

(N,+1, {⌊n log n⌋⌊n log n⌋⌊n log n⌋ ∣ n ∈ N})

(N,+1, {n2n2n2 ∣ n ∈ N}, {n6n6n6 ∣ n ∈ N}, {n30n30n30 ∣ n ∈ N}, . . .)

(N,+1, {n2n2n2 ∣ n ∈ N}, {n3n3n3 ∣ n ∈ N}) (is MSO decidable?)

Since interpretation and unfolding preserve decidability of MSO theories

we can iterate these two operations and produce new graphs...

Definition

The Caucal hierarchy is a series of inductively defined graphs and trees:

Graphs0Graphs0Graphs0 = { finite graphs }

TreesnTreesnTreesn = { unf(G) ∣ G ∈ Graphsn }

Graphsn+1Graphsn+1Graphsn+1 = { I(T) ∣ I interpretation, T ∈ Treesn }

Examples

Trees0 = { regular trees }, Graphs1 = { prefix-recognizable graphs }, . . .

Theorem (Caucal ’02)

Graphs and trees of Caucal hierarchy have decidable MSO theories.

Since interpretation and unfolding preserve decidability of MSO theories

we can iterate these two operations and produce new graphs...

Definition

The Caucal hierarchy is a series of inductively defined graphs and trees:

Graphs0Graphs0Graphs0 = { finite graphs }

TreesnTreesnTreesn = { unf(G) ∣ G ∈ Graphsn }

Graphsn+1Graphsn+1Graphsn+1 = { I(T) ∣ I interpretation, T ∈ Treesn }

Examples

Trees0 = { regular trees }, Graphs1 = { prefix-recognizable graphs }, . . .

Theorem (Caucal ’02)

Graphs and trees of Caucal hierarchy have decidable MSO theories.

Since interpretation and unfolding preserve decidability of MSO theories

we can iterate these two operations and produce new graphs...

Definition

The Caucal hierarchy is a series of inductively defined graphs and trees:

Graphs0Graphs0Graphs0 = { finite graphs }

TreesnTreesnTreesn = { unf(G) ∣ G ∈ Graphsn }

Graphsn+1Graphsn+1Graphsn+1 = { I(T) ∣ I interpretation, T ∈ Treesn }

Examples

Trees0 = { regular trees }, Graphs1 = { prefix-recognizable graphs }, . . .

Theorem (Caucal ’02)

Graphs and trees of Caucal hierarchy have decidable MSO theories.

Theorem (Carayol & Wöhrle ’03)

The graphs in level n of Caucal hierarchylevel n of Caucal hierarchylevel n of Caucal hierarchy are ε-closures

of transition graphs of order-n-n-n pushdown systems.

a ∶ push γ

b ∶ pop γ

γγγ

c
∶
pu

sh
2

d
∶
pop
2

γγγ γγγ

a ∶ push γ

b ∶ pop γ

γγγ

ε ∶ push γ′

ε ∶ pop γ′
γγγ γγγ
γ′γ′γ′

Theorem (Carayol & Wöhrle ’03)

The graphs in level n of Caucal hierarchylevel n of Caucal hierarchylevel n of Caucal hierarchy are ε-closures

of transition graphs of order-n-n-n pushdown systems.

a ∶ push γ

b ∶ pop γ

γγγ

c
∶
pu

sh
2

d
∶
pop
2

γγγ γγγ

a ∶ push γ

b ∶ pop γ

γγγ

ε ∶ push γ′

ε ∶ pop γ′
γγγ γγγ
γ′γ′γ′

Theorem (Carayol & Wöhrle ’03)

The graphs in level n of Caucal hierarchylevel n of Caucal hierarchylevel n of Caucal hierarchy are ε-closures

of transition graphs of order-n-n-n pushdown systems.

a ∶ push γ

b ∶ pop γ

γγγ

c
∶
pu

sh
2

d
∶
pop
2

γγγ γγγ

a ∶ push γ

b ∶ pop γ

γγγ

ε ∶ push γ′

ε ∶ pop γ′
γγγ γγγ
γ′γ′γ′

Theorem (Carayol & Wöhrle ’03)

The graphs in level n of Caucal hierarchylevel n of Caucal hierarchylevel n of Caucal hierarchy are ε-closures

of transition graphs of order-n-n-n pushdown systems.

a ∶ push γ

b ∶ pop γ

γγγ

c
∶
pu

sh
2

d
∶
pop
2

γγγ γγγ

a ∶ push γ

b ∶ pop γ

γγγ

ε ∶ push γ′

ε ∶ pop γ′
γγγ γγγ
γ′γ′γ′

Another example of application of unfolding

Consider the operation of substitution of variables by terms:

θxθxθx(g, h) ↦ g[x/h]

f

θx c

g h

a x b

↦

f

g c

a h

b

= unfunfunf

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

f

θx c

g h

a x b

Theorem (Courcelle & Knapik ’02)

The operation of substitution of (a fixed number of) variables by terms

preserves decidability of MSO theories.

Another example of application of unfolding

Consider the operation of substitution of variables by terms:

θxθxθx(g, h) ↦ g[x/h]

f

θx c

g h

a x b

↦

f

g c

a h

b

= unfunfunf

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

f

θx c

g h

a x b

Theorem (Courcelle & Knapik ’02)

The operation of substitution of (a fixed number of) variables by terms

preserves decidability of MSO theories.

Another example of application of unfolding

Consider the operation of substitution of variables by terms:

θxθxθx(g, h) ↦ g[x/h]

f

θx c

g h

a x b

↦

f

g c

a h

b

= unfunfunf

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

f

θx c

g h

a x b

Theorem (Courcelle & Knapik ’02)

The operation of substitution of (a fixed number of) variables by terms

preserves decidability of MSO theories.

Another example of application of unfolding

Consider the operation of substitution of variables by terms:

θxθxθx(g, h) ↦ g[x/h]

f

θx c

g h

a x b

↦

f

g c

a h

b

= unfunfunf

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

f

θx c

g h

a x b

Theorem (Courcelle & Knapik ’02)

The operation of substitution of (a fixed number of) variables by terms

preserves decidability of MSO theories.

Another example of application of unfolding

Consider the operation of substitution of variables by terms:

θxθxθx(g, h) ↦ g[x/h]

f

θx c

g h

a x b

↦

f

g c

a h

b

= unfunfunf

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

f

θx c

g h

a x b

Theorem (Courcelle & Knapik ’02)

The operation of substitution of (a fixed number of) variables by terms

preserves decidability of MSO theories.

It is convenient to see substitution as a form of

β-reduction in λ-calculusβ-reduction in λ-calculusβ-reduction in λ-calculus, but without variable renaming:

(λx . g(a, x)) @ h(b) ↦ g(a, x) [x/h(b)]

Theorem (Knapik & Niwiński & Urzyczyn ’02)

In the safe fragment of typed λ-calculus, β-reduction can be

performed without variable renaming, that is, by substitution.

Corollary

In the safe typed λ-calculus, simultaneous β-reduction of redexes

can be implemented by MSO-interpretationMSO-interpretationMSO-interpretation followed by unfoldingunfoldingunfolding.

The above result applies also to infinitary terms!

It is convenient to see substitution as a form of

β-reduction in λ-calculusβ-reduction in λ-calculusβ-reduction in λ-calculus, but without variable renaming:

(λx . g(a, x)) @ h(b) ↦ g(a, x) [x/h(b)]

Theorem (Knapik & Niwiński & Urzyczyn ’02)

In the safe fragment of typed λ-calculus, β-reduction can be

performed without variable renaming, that is, by substitution.

Corollary

In the safe typed λ-calculus, simultaneous β-reduction of redexes

can be implemented by MSO-interpretationMSO-interpretationMSO-interpretation followed by unfoldingunfoldingunfolding.

The above result applies also to infinitary terms!

It is convenient to see substitution as a form of

β-reduction in λ-calculusβ-reduction in λ-calculusβ-reduction in λ-calculus, but without variable renaming:

(λx . g(a, x)) @ h(b) ↦ g(a, x) [x/h(b)]

Theorem (Knapik & Niwiński & Urzyczyn ’02)

In the safe fragment of typed λ-calculus, β-reduction can be

performed without variable renaming, that is, by substitution.

Corollary

In the safe typed λ-calculus, simultaneous β-reduction of redexes

can be implemented by MSO-interpretationMSO-interpretationMSO-interpretation followed by unfoldingunfoldingunfolding.

The above result applies also to infinitary terms!

A real application example for unfolding and λ-calculus!

Consider a safe recursive program scheme with functional variables

and the limit tree generated from an initial axiom FFF(9)

FFF

nnn
↦

if

nnn FFF

d

nnn

Abstraction of a program, e.g.

function FooFooFoo(nnn)

ififif [n is prime] thenthenthen

return nnn

elseelseelse

return FooFooFoo(dividedividedivide (nnn))

FFF

9

if

9 FFF

d

9

if

9 if

d FFF

9 d

d

9

if

9 if

d if

9 d

d

9

F̃̃F̃F ↦ λnλnλn

if

nnn @

F̃̃F̃F d

nnn

@

F̃̃F̃F 9

@

λnλnλn 9

if

nnn @

F̃̃F̃F d

nnn

@

λnλnλn 9

if

nnn @

λnλnλn d

nnn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

“tail”

recursion

⇓

regular

tree!

β
-r

ed
u

ct
io

n
!!

A real application example for unfolding and λ-calculus!

Consider a safe recursive program scheme with functional variables

and the limit tree generated from an initial axiom FFF(9)

FFF

nnn
↦

if

nnn FFF

d

nnn

Abstraction of a program, e.g.

function FooFooFoo(nnn)

ififif [n is prime] thenthenthen

return nnn

elseelseelse

return FooFooFoo(dividedividedivide (nnn))

FFF

9

if

9 FFF

d

9

if

9 if

d FFF

9 d

d

9

if

9 if

d if

9 d

d

9

F̃̃F̃F ↦ λnλnλn

if

nnn @

F̃̃F̃F d

nnn

@

F̃̃F̃F 9

@

λnλnλn 9

if

nnn @

F̃̃F̃F d

nnn

@

λnλnλn 9

if

nnn @

λnλnλn d

nnn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

“tail”

recursion

⇓

regular

tree!

β
-r

ed
u

ct
io

n
!!

A real application example for unfolding and λ-calculus!

Consider a safe recursive program scheme with functional variables

and the limit tree generated from an initial axiom FFF(9)

FFF

nnn
↦

if

nnn FFF

d

nnn

Abstraction of a program, e.g.

function FooFooFoo(nnn)

ififif [n is prime] thenthenthen

return nnn

elseelseelse

return FooFooFoo(dividedividedivide (nnn))

FFF

9

if

9 FFF

d

9

if

9 if

d FFF

9 d

d

9

if

9 if

d if

9 d

d

9

F̃̃F̃F ↦ λnλnλn

if

nnn @

F̃̃F̃F d

nnn

@

F̃̃F̃F 9

@

λnλnλn 9

if

nnn @

F̃̃F̃F d

nnn

@

λnλnλn 9

if

nnn @

λnλnλn d

nnn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

“tail”

recursion

⇓

regular

tree!

β
-r

ed
u

ct
io

n
!!

A real application example for unfolding and λ-calculus!

Consider a safe recursive program scheme with functional variables

and the limit tree generated from an initial axiom FFF(9)

FFF

nnn
↦

if

nnn FFF

d

nnn

Abstraction of a program, e.g.

function FooFooFoo(nnn)

ififif [n is prime] thenthenthen

return nnn

elseelseelse

return FooFooFoo(dividedividedivide (nnn))

FFF

9

if

9 FFF

d

9

if

9 if

d FFF

9 d

d

9

if

9 if

d if

9 d

d

9

F̃̃F̃F ↦ λnλnλn

if

nnn @

F̃̃F̃F d

nnn

@

F̃̃F̃F 9

@

λnλnλn 9

if

nnn @

F̃̃F̃F d

nnn

@

λnλnλn 9

if

nnn @

λnλnλn d

nnn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

“tail”

recursion

⇓

regular

tree!

β
-r

ed
u

ct
io

n
!!

A real application example for unfolding and λ-calculus!

Consider a safe recursive program scheme with functional variables

and the limit tree generated from an initial axiom FFF(9)

FFF

nnn
↦

if

nnn FFF

d

nnn

Abstraction of a program, e.g.

function FooFooFoo(nnn)

ififif [n is prime] thenthenthen

return nnn

elseelseelse

return FooFooFoo(dividedividedivide (nnn))

FFF

9

if

9 FFF

d

9

if

9 if

d FFF

9 d

d

9

if

9 if

d if

9 d

d

9

F̃̃F̃F ↦ λnλnλn

if

nnn @

F̃̃F̃F d

nnn

@

F̃̃F̃F 9

@

λnλnλn 9

if

nnn @

F̃̃F̃F d

nnn

@

λnλnλn 9

if

nnn @

λnλnλn d

nnn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

“tail”

recursion

⇓

regular

tree!

β
-r

ed
u

ct
io

n
!!

A real application example for unfolding and λ-calculus!

Consider a safe recursive program scheme with functional variables

and the limit tree generated from an initial axiom FFF(9)

FFF

nnn
↦

if

nnn FFF

d

nnn

Abstraction of a program, e.g.

function FooFooFoo(nnn)

ififif [n is prime] thenthenthen

return nnn

elseelseelse

return FooFooFoo(dividedividedivide (nnn))

FFF

9

if

9 FFF

d

9

if

9 if

d FFF

9 d

d

9

if

9 if

d if

9 d

d

9

F̃̃F̃F ↦ λnλnλn

if

nnn @

F̃̃F̃F d

nnn

@

F̃̃F̃F 9

@

λnλnλn 9

if

nnn @

F̃̃F̃F d

nnn

@

λnλnλn 9

if

nnn @

λnλnλn d

nnn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

“tail”

recursion

⇓

regular

tree!

β
-r

ed
u

ct
io

n
!!

A real application example for unfolding and λ-calculus!

Consider a safe recursive program scheme with functional variables

and the limit tree generated from an initial axiom FFF(9)

FFF

nnn
↦

if

nnn FFF

d

nnn

Abstraction of a program, e.g.

function FooFooFoo(nnn)

ififif [n is prime] thenthenthen

return nnn

elseelseelse

return FooFooFoo(dividedividedivide (nnn))

FFF

9

if

9 FFF

d

9

if

9 if

d FFF

9 d

d

9

if

9 if

d if

9 d

d

9

F̃̃F̃F ↦ λnλnλn

if

nnn @

F̃̃F̃F d

nnn

@

F̃̃F̃F 9

@

λnλnλn 9

if

nnn @

F̃̃F̃F d

nnn

@

λnλnλn 9

if

nnn @

λnλnλn d

nnn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

“tail”

recursion

⇓

regular

tree!

β
-r

ed
u

ct
io

n
!!

A real application example for unfolding and λ-calculus!

Consider a safe recursive program scheme with functional variables

and the limit tree generated from an initial axiom FFF(9)

FFF

nnn
↦

if

nnn FFF

d

nnn

Abstraction of a program, e.g.

function FooFooFoo(nnn)

ififif [n is prime] thenthenthen

return nnn

elseelseelse

return FooFooFoo(dividedividedivide (nnn))

FFF

9

if

9 FFF

d

9

if

9 if

d FFF

9 d

d

9

if

9 if

d if

9 d

d

9

F̃̃F̃F ↦ λnλnλn

if

nnn @

F̃̃F̃F d

nnn

@

F̃̃F̃F 9

@

λnλnλn 9

if

nnn @

F̃̃F̃F d

nnn

@

λnλnλn 9

if

nnn @

λnλnλn d

nnn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

“tail”

recursion

⇓

regular

tree!

β
-r

ed
u

ct
io

n
!!

A real application example for unfolding and λ-calculus!

Consider a safe recursive program scheme with functional variables

and the limit tree generated from an initial axiom FFF(9)

FFF

nnn
↦

if

nnn FFF

d

nnn

Abstraction of a program, e.g.

function FooFooFoo(nnn)

ififif [n is prime] thenthenthen

return nnn

elseelseelse

return FooFooFoo(dividedividedivide (nnn))

FFF

9

if

9 FFF

d

9

if

9 if

d FFF

9 d

d

9

if

9 if

d if

9 d

d

9

F̃̃F̃F ↦ λnλnλn

if

nnn @

F̃̃F̃F d

nnn

@

F̃̃F̃F 9

@

λnλnλn 9

if

nnn @

F̃̃F̃F d

nnn

@

λnλnλn 9

if

nnn @

λnλnλn d

nnn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

“tail”

recursion

⇓

regular

tree!

β
-r

ed
u

ct
io

n
!!

A real application example for unfolding and λ-calculus!

Consider a safe recursive program scheme with functional variables

and the limit tree generated from an initial axiom FFF(9)

FFF

nnn
↦

if

nnn FFF

d

nnn

Abstraction of a program, e.g.

function FooFooFoo(nnn)

ififif [n is prime] thenthenthen

return nnn

elseelseelse

return FooFooFoo(dividedividedivide (nnn))

FFF

9

if

9 FFF

d

9

if

9 if

d FFF

9 d

d

9

if

9 if

d if

9 d

d

9

F̃̃F̃F ↦ λnλnλn

if

nnn @

F̃̃F̃F d

nnn

@

F̃̃F̃F 9

@

λnλnλn 9

if

nnn @

F̃̃F̃F d

nnn

@

λnλnλn 9

if

nnn @

λnλnλn d

nnn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

“tail”

recursion

⇓

regular

tree!

β
-r

ed
u

ct
io

n
!!

A real application example for unfolding and λ-calculus!

Consider a safe recursive program scheme with functional variables

and the limit tree generated from an initial axiom FFF(9)

FFF

nnn
↦

if

nnn FFF

d

nnn

Abstraction of a program, e.g.

function FooFooFoo(nnn)

ififif [n is prime] thenthenthen

return nnn

elseelseelse

return FooFooFoo(dividedividedivide (nnn))

FFF

9

if

9 FFF

d

9

if

9 if

d FFF

9 d

d

9

if

9 if

d if

9 d

d

9

F̃̃F̃F ↦ λnλnλn

if

nnn @

F̃̃F̃F d

nnn

@

F̃̃F̃F 9

@

λnλnλn 9

if

nnn @

F̃̃F̃F d

nnn

@

λnλnλn 9

if

nnn @

λnλnλn d

nnn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

“tail”

recursion

⇓

regular

tree!

β
-r

ed
u

ct
io

n
!!

Previous ideas apply to any scheme with higher-order variables:

Theorem (Knapik & Niwiński & Urzyczyn ’02)

Limit trees of safe order-n recursive program schemessafe order-n recursive program schemessafe order-n recursive program schemes are in the

level n of Caucal hierarchylevel n of Caucal hierarchylevel n of Caucal hierarchy, hence they have decidable MSO theories.

Theorem (Parys ’12)

Starting from level 2, safety is a genuine restriction for λ-calculus.

Theorem (Ong ’06)

Limit trees of unsafe order-n recursive program schemesunsafe order-n recursive program schemesunsafe order-n recursive program schemes

have also decidable MSO theories.

Previous ideas apply to any scheme with higher-order variables:

Theorem (Knapik & Niwiński & Urzyczyn ’02)

Limit trees of safe order-n recursive program schemessafe order-n recursive program schemessafe order-n recursive program schemes are in the

level n of Caucal hierarchylevel n of Caucal hierarchylevel n of Caucal hierarchy, hence they have decidable MSO theories.

Theorem (Parys ’12)

Starting from level 2, safety is a genuine restriction for λ-calculus.

Theorem (Ong ’06)

Limit trees of unsafe order-n recursive program schemesunsafe order-n recursive program schemesunsafe order-n recursive program schemes

have also decidable MSO theories.

Previous ideas apply to any scheme with higher-order variables:

Theorem (Knapik & Niwiński & Urzyczyn ’02)

Limit trees of safe order-n recursive program schemessafe order-n recursive program schemessafe order-n recursive program schemes are in the

level n of Caucal hierarchylevel n of Caucal hierarchylevel n of Caucal hierarchy, hence they have decidable MSO theories.

Theorem (Parys ’12)

Starting from level 2, safety is a genuine restriction for λ-calculus.

Theorem (Ong ’06)

Limit trees of unsafe order-n recursive program schemesunsafe order-n recursive program schemesunsafe order-n recursive program schemes

have also decidable MSO theories.

Next

