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MSO-interpretation as a graph transformation

1 Start from a graph G (e.g. the binary tree)

that has a decidable MSO-theory

2 Transform G into a new graph G ′

by logically defining nodes and edges of G ′ inside G

3 Given any MSO property ψ over G ′,
decide it by rephrasing it into a property over G



Definition

An MSO-interpretation is a tuple I of formulas
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color formulas

defining a transformation from graph G to graph I(G) such that

(i ,

v

)

is a vertex of I(G) iff (G , v) ⊧ ϕ

iii

dom(x)

(u, v) is an e-edge of I(G)

((i , u), (j , v)) is an e-edge of I(G)

iff (G , u, v) ⊧ ϕ

i , ji , ji , j

e (x , y)

(i ,

v

)

has color a in I(G) iff (G , v) ⊧ ϕ

iii

a(x)

Transfer theorem

Every sentence ψ can be transformed into I−1(ψ) such that

I(G) ⊧ ψI(G) ⊧ ψI(G) ⊧ ψ iff G ⊧ I−1(ψ)G ⊧ I−1(ψ)G ⊧ I−1(ψ)

Hence, if G has decidable MSO theory, then so has I(G).
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Most edge formulas can be abbreviated by regular expressions:

“aaa” abbreviates (x , y) ∈ Ea(x , y) ∈ Ea(x , y) ∈ Ea

“ā̄āa” abbreviates (y , x) ∈ Ea(y , x) ∈ Ea(y , x) ∈ Ea

“a + ba + ba + b” abbreviates (x , y) ∈ Ea ∨ (x , y) ∈ Eb(x , y) ∈ Ea ∨ (x , y) ∈ Eb(x , y) ∈ Ea ∨ (x , y) ∈ Eb

“a ⋅ ba ⋅ ba ⋅ b” abbreviates ∃z . (x , z) ∈ Ea ∧ (z , y) ∈ Eb∃z . (x , z) ∈ Ea ∧ (z , y) ∈ Eb∃z . (x , z) ∈ Ea ∧ (z , y) ∈ Eb

“a⋆a⋆a⋆” abbreviates (x , y) ∈ E⋆
a(x , y) ∈ E⋆
a(x , y) ∈ E⋆
a

“ccc” abbreviates c(x)c(x)c(x) (assume vertex colors ≠ edge labels)

Example

The regular expression “a⋆ ⋅ (c + d) ⋅ b̄a⋆ ⋅ (c + d) ⋅ b̄a⋆ ⋅ (c + d) ⋅ b̄” describes a formula

ϕ(x , y) that witnesses a path from x to y such that

1 traverses a sequence of a-labelled edges

2 reaches a vertex with color c or d

3 finally traverses in backward direction a b-labelled edge
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Special forms of interpretations on trees

A rational restriction is an MSO-interpretation of tree defined by

ϕdom(x) = “ ∃ path π from root to x such that π ∈ L ”“ ∃ path π from root to x such that π ∈ L ”“ ∃ path π from root to x such that π ∈ L ”

Similarly, an inverse rational mapping is defined as

ϕe(x , y) = “ ∃ path π from x to y such that π ∈ Le ”“ ∃ path π from x to y such that π ∈ Le ”“ ∃ path π from x to y such that π ∈ Le ”

xxx yyy
e

π ∈ Le



Definition

A pushdown system is a tuple P = (Q,Σ, Γ,∆), where

Q is a finite set of control states

Σ is a finite alphabet for transition labels

Γ is a finite alphabet for stack symbols

∆ ⊆ Q × Γ × Σ × Q × Γ⋆ is a finite set of transition rules

Configurations = pairs ( q
®

state

, w
®

stack

) ∈ Q × Γ⋆

Transitions = (q, γw)
a
ÐÐÐ→ (q′, vw)

iff (q, γ, a, q′, v

®

∈ Γ≤2

) ∈ ∆

W.l.o.g. assume that stack length changes at most by 1
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Interest in properties of transition graphs of pushdown systems

Context-free graph

A connected component of a graph is a maximal subgraph

in which every two vertices can be connected by a path that

traverses edges in either direction.

A context-free graph is a connected component

of the transition graph of a pushdown system.

Example

q1 q2
γ, c

γ, a ∶ push γ

γ, b ∶ pop γ γ, d ∶ pop γ

q1ε q1γ q1γγ . . .

q2ε q2γ q1γγ . . .

b

a

b

a

b
c c

ddd



Theorem (Caucal ’96)

Context-free graphs are definable in the binary tree

using rational restrictions and inverse finite mappings.

Proof sketch in the next slide...

Corollary (Muller & Schupp ’85)

MSO is decidable over context-free graphs.



Context-free graphs are definable by restrictions and inverse mappings.

Consider a pushdown system P = (Q,Σ, Γ,∆) and

the Q ⊎ ΓQ ⊎ ΓQ ⊎ Γ-labelled tree (interpretable in the binary tree)

configurations of P: ϕdom(x) = ∃πroot,x ∈ Γ⋆ ⋅ QΓ⋆ ⋅ QΓ⋆ ⋅ Q

transitions of P: ϕa(x , y) = ∃πx ,y ∈∪(q,γ,a,q′,v)∈∆(q̄ ⋅ γ̄ ⋅ v rev ⋅ q′q̄ ⋅ γ̄ ⋅ v rev ⋅ q′q̄ ⋅ γ̄ ⋅ v rev ⋅ q′)

connected component...

⋮ ⋮

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

γ

q
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The previous result can be lifted to prefix-rewriting systems, which

generalize pushdown systems by giving graphs with infinite degree:

no distinction between control states and stack letters

(a single alphabet is used)

less restricted forms of rewriting rules

(more than one letter can be rewritten in a single transition)

Definition

A prefix-rewriting system is a tuple P = (Σ, Γ,∆), where

Σ is a finite alphabet for transition labels

Γ is a finite alphabet for “stack” symbols

∆ is a finite set of transition rules of the form (U, a,V )(U, a,V )(U, a,V ),

with a ∈ Σ and U,V regular languages over ΓU,V regular languages over ΓU,V regular languages over Γ.

Configurations = words in Γ⋆ (or in some regular language)

Transitions = u w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v w

iff u ∈ Uu ∈ Uu ∈ U and v ∈ Vv ∈ Vv ∈ V for some (U, a,V ) ∈ ∆(U, a,V ) ∈ ∆(U, a,V ) ∈ ∆
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Definition

A prefix-recognizable graph is

the transition graph of a prefix-rewriting system.

Example

Consider the prefix rewriting system P = (Σ, Γ,∆), where

Σ = {succsuccsucc, smallersmallersmaller}

Γ = {γ}

∆ consists of the two rules

({ε}, succsuccsucc, {γ}) and ({γ}+, smallersmallersmaller, {ε})

ε γ γ2 γ3 γ4 . . .



Theorem (Caucal ’96)

Prefix-recognizable graphs are definable in the binary tree

using rational restrictions and inverse rational mappings.

Exactly the same proof as before...

u w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v wu w a
ÐÐÐ→ v w

iff

u ∈ Uu ∈ Uu ∈ U and v ∈ Vv ∈ Vv ∈ V

for some (U, a,V ) ∈ ∆
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We just saw that

context-free graphs can be defined in the binary tree

using rational restrictions and inverse finite mappings

prefix-recognizable graphs can be defined in the binary tree

using rational restrictions and inverse rational mappings

The converse is also true:

Theorem (Caucal ’96)

The graphs that can be defined in the binary tree using

rational restrictions and inverse finite / rational mappings

are context-free / prefix-recognizable.
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Context-free graphs have alternative representations

based on hyperedge-replacement

Example of hyperedge replacement

G ∶

hhh

H ∶

111

222

333

G [h/H] ∶
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Some definitions

A hyperedge is a sequence of vertices h = (v1, . . . , vk)

A hypergraph is a structure of vertices and hyperedges

(different hyperedges are given different labels).

A hyperedge replacement is the replacement of a hyperedge

h = (v1, ..., vk) in a hypergraph G with another hypergraph H

(glueing points are represented by marking vertices of H)

A hyperedge replacement grammar is

a finite set of rewriting rules of the form

h1 ↦ H1 . . . hn ↦ Hn

together with an initial hyperedge h1.

Finally, one defines the limit of a series of replacements

h1 ↦ H1 ↦ H1[hi2/H2] ↦ . . .

Since hyperedge replacements are confluent,

the limit is the same for all (fair) series of replacements!
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Limit graph of a hyperedge replacement grammar
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Limit graph of a hyperedge replacement grammar
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H1 ∶
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If we restrict ourselves to special forms of grammars, where

there are no markings on hyperedges

there are no repetitions of vertices in hyperedges

vertices of hyperedges have incident terminal edges

. . .

Then:

Theorem (Muller & Schupp ’85)

The context-free graphs are the limit graphs of

special forms of hyperedge-replacement graph grammars.



Proof idea in one direction: consider end-components

Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }Vn = { v ∣ dist(v ,V0) ≥ n }
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Only finitely many non-isomorphic end-components,

each one inducing a hyperedge replacement rule:

h1 ↦
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Analogous results hold for prefix-recognizable graphs:

Theorem (Courcelle ’92)

The prefix-recognizable graphs are the limit graphs

of vertex-replacement graph grammars.

Operations underlying vertex-replacement grammars:

Disjoint union: G ⊎ G ′

Vertex relabelling: G [a/b]

Edge creation: G [a → b]



Transfer theorems can be proved for other transformations besides

MSO-interpretations and MSO-transductions, e.g. for unfoldings...

Definition

The unfolding of a rooted graph G is the tree unf(G)unf(G)unf(G), where

vertices are the finite pathsfinite pathsfinite paths in G originating from the root

edges are given by path-extensionpath-extensionpath-extension relation

i.e. (π, π′) is an a-labelled edge in unf(G) iff

π′ is the extension of π with an a-labelled edge in G

Transfer theorem (Muchnik ’84, Courcelle ’96, Walukiewicz ’02, ...)

Every sentence ψ can be transformed into unf −1(ψ) such that

unf(G) ⊧ ψunf(G) ⊧ ψunf(G) ⊧ ψ iff G ⊧ unf −1(ψ)G ⊧ unf −1(ψ)G ⊧ unf −1(ψ)

Next slide shows why this subsumes Büchi and Rabin’s theorems...
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Application example

Consider a context-free graph, which has decidable MSO theory.

1 First apply unfoldingunfoldingunfolding: this gives a tree with decidable MSO theory

2 Then apply MSO-interpretationMSO-interpretationMSO-interpretation: this gives (N,+1,Powers)

0 1
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Higher-order definable words (e.g. see Fratani & Senizergues ’06)

(N,+1, {2n2n2n ∣ n ∈ N})

(N,+1, {22
n

22
n

22
n
∣ n ∈ N})

(N,+1, {2 ⋱
2

2 ⋱
2

2 ⋱
2
}n times

∣ n ∈ N}) (but MSO is still decidable)

(N,+1, {⌊n
√

n⌋⌊n
√

n⌋⌊n
√

n⌋ ∣ n ∈ N})

(N,+1, {⌊n log n⌋⌊n log n⌋⌊n log n⌋ ∣ n ∈ N})

(N,+1, {n2n2n2 ∣ n ∈ N}, {n6n6n6 ∣ n ∈ N}, {n30n30n30 ∣ n ∈ N}, . . . )

(N,+1, {n2n2n2 ∣ n ∈ N}, {n3n3n3 ∣ n ∈ N}) (is MSO decidable?)
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Since interpretation and unfolding preserve decidability of MSO theories

we can iterate these two operations and produce new graphs...

Definition

The Caucal hierarchy is a series of inductively defined graphs and trees:

Graphs0Graphs0Graphs0 = { finite graphs }

TreesnTreesnTreesn = { unf(G) ∣ G ∈ Graphsn }

Graphsn+1Graphsn+1Graphsn+1 = { I(T) ∣ I interpretation, T ∈ Treesn }

Examples

Trees0 = { regular trees }, Graphs1 = { prefix-recognizable graphs }, . . .

Theorem (Caucal ’02)

Graphs and trees of Caucal hierarchy have decidable MSO theories.
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Theorem (Carayol & Wöhrle ’03)

The graphs in level n of Caucal hierarchylevel n of Caucal hierarchylevel n of Caucal hierarchy are ε-closures

of transition graphs of order-n-n-n pushdown systems.

a ∶ push γ

b ∶ pop γ
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∶
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d
∶
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a ∶ push γ
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ε ∶ pop γ′
γγγ γγγ
γ′γ′γ′
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Another example of application of unfolding

Consider the operation of substitution of variables by terms:

θxθxθx(g, h) ↦ g[x/h]

f

θx c

g h

a x b

↦

f

g c

a h

b

= unfunfunf

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

f

θx c

g h

a x b

Theorem (Courcelle & Knapik ’02)

The operation of substitution of (a fixed number of) variables by terms

preserves decidability of MSO theories.
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It is convenient to see substitution as a form of

β-reduction in λ-calculusβ-reduction in λ-calculusβ-reduction in λ-calculus, but without variable renaming:

(λx . g(a, x)) @ h(b) ↦ g(a, x) [x/h(b)]

Theorem (Knapik & Niwiński & Urzyczyn ’02)

In the safe fragment of typed λ-calculus, β-reduction can be

performed without variable renaming, that is, by substitution.

Corollary

In the safe typed λ-calculus, simultaneous β-reduction of redexes

can be implemented by MSO-interpretationMSO-interpretationMSO-interpretation followed by unfoldingunfoldingunfolding.

The above result applies also to infinitary terms!
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Previous ideas apply to any scheme with higher-order variables:

Theorem (Knapik & Niwiński & Urzyczyn ’02)

Limit trees of safe order-n recursive program schemessafe order-n recursive program schemessafe order-n recursive program schemes are in the

level n of Caucal hierarchylevel n of Caucal hierarchylevel n of Caucal hierarchy, hence they have decidable MSO theories.

Theorem (Parys ’12)

Starting from level 2, safety is a genuine restriction for λ-calculus.

Theorem (Ong ’06)

Limit trees of unsafe order-n recursive program schemesunsafe order-n recursive program schemesunsafe order-n recursive program schemes

have also decidable MSO theories.
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