The transformational approach

Gabriele Puppis

LaBRI / CNRS

MSO-interpretation as a graph transformation
S 9

y - P "
y oy
>, =
TEy

@ Start from a graph G (e.g. the binary tree)
that has a decidable MSO-theory

@ Transform G into a new graph G’
by logically defining nodes and edges of G’ inside G

© Given any MSO property 9 over G’,
decide it by rephrasing it into a property over G

Definition
An MSO-interpretation is a tuple Z of formulas

Paom (X) Qe (X, ¥) - Qe (X y) Qa(X) ... @an(X)
———
domain formula edge formulas color formulas

defining a transformation from graph G to graph Z(G) such that
@ v isa vertex of Z(G) iff (G, V) E @dom(x)
o (u,v)isan e-edge of Z(G) iff (G, u,v) E e (x,y)

@ v hascolorainZ(G) iff (G, V) E @a(x)

Definition
An MSO-interpretation is a tuple Z of formulas

Pdom (X) Qe (X, ¥) - Qe (X y) Qa(X) ... @an(X)
———
domain formula edge formulas color formulas

defining a transformation from graph G to graph Z(G) such that
@ v isa vertex of Z(G) iff (G, V) E ©dom(X)
o (u,v)isan e-edge of Z(G) iff (G, u,v) E e (x,y)

@ v hascolorainZ(G) iff (G, V) E @a(x)

Definition
An MSO-interpretation is a tuple Z of formulas

Paom(X) Per (X, ¥) - e (Xy) 0a(X) ... @0an(X)
———
domain formula edge formulas color formulas

defining a transformation from graph G to graph Z(G) such that
@ v isa vertex of Z(G) iff (G, V) E ®dom(X)
o (u,v)isan e-edge of Z(G) iff (G, u,v) E @e(x,y)

@ v hascolorainZ(G) iff (G, V) E @a(x)

Definition
An MSO-interpretation is a tuple Z of formulas

Pdom (X) Per (X, ¥) v e (X y) @a(X) ... Wa,(X)
———
domain formula edge formulas color formulas

defining a transformation from graph G to graph Z(G) such that
@ v isa vertex of Z(G) iff (G, V) E ©dom(X)
o (u,v)isan e-edge of Z(G) iff (G, u,v) E e (x,y)
@ v hascolor ainZ(G) iff (G, V) E @a(x)

Definition
An MSO-interpretation is a tuple Z of formulas

Paom (X) Qe (X, ¥) - Qe (X y) Qa(X) ... @an(X)
———
domain formula edge formulas color formulas

defining a transformation from graph G to graph Z(G) such that
@ v isa vertex of Z(G) iff (G, V) E @dom(x)
o (u,v)isan e-edge of Z(G) iff (G, u,v) E e (x,y)

@ v hascolorainZ(G) iff (G, V) E @a(x)

Transfer theorem

Every sentence 9 can be transformed into Z~!(4) such that
I(G)ry iff GeI'W)

Hence, if G has decidable MSO theory, then so has Z(G).

Definition
An MSO-intérprétationy transduction is a tuple Z of formulas

Pdom (X) (X, y) el (x,y) @ (X) o @5, (X)
———
domain formula edge formulas color formulas

defining a transformation from graph G to graph Z(G) such that
@ (/,v)is a vertex of Z(G) iff (G, V) E @gom(x)
o ((i,u),(J,v)) is an e-edge of Z(G) iff (G, u, v) E @ii(x,y)
@ (/,v) has color ain Z(G) iff (G, V) E @5(x)

Transfer theorem

Every sentence 9 can be transformed into Z~!(+) such that
I(G)ry iff GeI'W)

Hence, if G has decidable MSO theory, then so has Z(G).

Most edge formulas can be abbreviated by regular expressions:

@ "a" abbreviates (x,y) € E,
@ "3" abbreviates (y, x) € E;

@ “a+b" abbreviates (x,y) € E; v (x,y) € Ep

“a-b" abbreviates 3z. (x,z) € E; A (z2,¥) € Ep

“a*" abbreviates (x,y) € E}

@ “c" abbreviates c(x) (assume vertex colors # edge labels)

Most edge formulas can be abbreviated by regular expressions:

@ "a" abbreviates (x,y) € E,
@ "3" abbreviates (y, x) € E;
@ “a+b" abbreviates (x,y) € E; v (x,y) € Ep

@ "a-b" abbreviates 3z. (x,z) € E; A (z,y) € Ep

@ “a*" abbreviates (x,y) € E}
@ “c" abbreviates c(x) (assume vertex colors # edge labels)
Example

The regular expression “a* - (¢ + d) - b’ describes a formula
©(x, y) that witnesses a path from x to y such that

@ traverses a sequence of a-labelled edges
@ reaches a vertex with color ¢ or d

© finally traverses in backward direction a b-labelled edge

Most edge formulas can be abbreviated by regular expressions:

@ "a" abbreviates (x,y) € E,

@ "3" abbreviates (y, x) € E;

@ “a+ b’ abbreviates (x,y) € E; v (x,y) €

@ “a-b" abbreviates 3z. (x,z) € E; A (2,)

@ “a*" abbreviates (x,y) € E}
@ “c" abbreviates c(x) (assume vertex colors # edge labels)
Example

The regular expression “a* - (¢ + d) - b’ describes a formula
©(x, y) that witnesses a path from x to y such that

@ traverses a sequence of a-labelled edges
@ reaches a vertex with color ¢ or d

© finally traverses in backward direction a b-labelled edge

Special forms of interpretations on trees
A rational restriction is an MSO-interpretation of tree defined by

©Ydom(x) = "3 path 7 from root to x such that we L"
Similarly, an inverse rational mapping is defined as

we(x,y) = "3 path m from x to y such that me L."

Definition

A pushdown system is a tuple P = (Q, X, T, A), where
@ Q@ is a finite set of control states
@ X is a finite alphabet for transition labels
@ [is a finite alphabet for stack symbols

@ ACcRxIxXx@xI*is a finite set of transition rules

Definition

A pushdown system is a tuple P = (Q, X, T, A), where
@ Q@ is a finite set of control states
@ X is a finite alphabet for transition labels
@ [is a finite alphabet for stack symbols

@ ACcRxIxXx@xI*is a finite set of transition rules

Configurations = pairs (g, w) e QxI*
—

state stack

Transitions = (q.yw) 2 (¢, ww)

iff (q,v,a,q, v)eA

Definition

A pushdown system is a tuple P = (Q, X, T, A), where
@ Q@ is a finite set of control states
@ X is a finite alphabet for transition labels
@ [is a finite alphabet for stack symbols

@ ACcRxIxXx@xI*is a finite set of transition rules

Configurations = pairs (g, w) e QxI"
—~
state stack
Transitions = (q.vyw) > (q ww)
iff (q,v,a,q, v)eA
)
e =2

§Z W.l.o.g. assume that stack length changes at most by 1

Interest in properties of transition graphs of pushdown systems

Context-free graph

A connected component of a graph is a maximal subgraph
in which every two vertices can be connected by a path that
traverses edges in either direction.

A context-free graph is a connected component
of the transition graph of a pushdown system.

Example

v, a: push

Theorem (Caucal '96)

Context-free graphs are definable in the binary tree
using rational restrictions and inverse finite mappings.

Proof sketch in the next slide...

Corollary (Muller & Schupp '85)
MSO is decidable over context-free graphs.

Context-free graphs are definable by restrictions and inverse mappings. }

Consider a pushdown system P = (Q, %, I, A) and
the Q w I'-labelled tree (interpretable in the binary tree)

FYYd FYYd FVY4 FyYd Fyvd Fyyd Fyvd Fyvd

Context-free graphs are definable by restrictions and inverse mappings. J

Consider a pushdown system P = (Q, %, I, A) and
the Q w I'-labelled tree (interpretable in the binary tree)

e configurations of P: @gom(X) = I Moot x €M+ Q

FYVY FYYd FYYYd FYYd Fyvd Fyyd Fyvd Fyvd

Context-free graphs are definable by restrictions and inverse mappings.)

Consider a pushdown system P = (Q, %, I, A) and
the Q w I'-labelled tree (interpretable in the binary tree)

e configurations of P: @gom(X) = I Moot x €M+ Q

@ transitions of P: wa(x,y) = 3y € Ugyagneal@-7-ve-q')

FYVY FYYd FYYYd FYYd Fyvd Fyyd Fyvd Fyvd

Context-free graphs are definable by restrictions and inverse mappings.)

Consider a pushdown system P = (Q, %, I, A) and
the Q w I'-labelled tree (interpretable in the binary tree)

e configurations of P: @gom(X) = I Moot x €M+ Q
@ transitions of P: wa(x,y) = 3y € Ugyagneal@-7-ve-q')

@ connected component... LI

FYVY FYYd FYYYd FYYd Fyvd Fyyd Fyvd Fyvd

The previous result can be lifted to prefix-rewriting systems, which
generalize pushdown systems by giving graphs with infinite degree:
@ no distinction between control states and stack letters
(a single alphabet is used)
@ less restricted forms of rewriting rules
(more than one letter can be rewritten in a single transition)

The previous result can be lifted to prefix-rewriting systems, which
generalize pushdown systems by giving graphs with infinite degree:

@ no distinction between control states and stack letters
(a single alphabet is used)

@ less restricted forms of rewriting rules
(more than one letter can be rewritten in a single transition)

Definition

A prefix-rewriting system is a tuple P = (X, I, A), where
@ X is a finite alphabet for transition labels
@ [is a finite alphabet for “stack” symbols

@ A is a finite set of transition rules of the form (U, a, V),
with a € X and U, V regular languages over I".

The previous result can be lifted to prefix-rewriting systems, which
generalize pushdown systems by giving graphs with infinite degree:

@ no distinction between control states and stack letters
(a single alphabet is used)

@ less restricted forms of rewriting rules
(more than one letter can be rewritten in a single transition)
Definition
A prefix-rewriting system is a tuple P = (X, I, A), where
@ X is a finite alphabet for transition labels
@ [is a finite alphabet for “stack” symbols
@ A is a finite set of transition rules of the form (U, a, V),

with a € X and U, V regular languages over I".

Configurations = words in ['* (or in some regular language)

Transitions = uw 2, vw

iff we U and v e V for some (U,a, V) e A

Definition
A prefix-recognizable graph is
the transition graph of a prefix-rewriting system.

Example
Consider the prefix rewriting system P = (X, T, A), where

@ Y = {succ,smaller}

o ={v}
@ A consists of the two rules

({e},succ, {v}) and ({7}* smaller, {e})

Theorem (Caucal '96)

Prefix-recognizable graphs are definable in the binary tree
using rational restrictions and inverse rational mappings.

Exactly the same proof as before...

uw —2s vw

iff
uelU and veV
for some (U, a, V) e A

Theorem (Caucal '96)

Prefix-recognizable graphs are definable in the binary tree
using rational restrictions and inverse rational mappings.

Exactly the same proof as before...

(3 uw 25> vw
N iff

ueU and veV
A for some (U, a, V) e A

’.' c\

Theorem (Caucal '96)

Prefix-recognizable graphs are definable in the binary tree
using rational restrictions and inverse rational mappings.

Exactly the same proof as before...

a

($ uw 25 vw
N iff
-1'5.23 uelU and veV
Y 2
A for some (U, a, V) e A
/\)...' /’/‘@,,

Theorem (Caucal '96)

Prefix-recognizable graphs are definable in the binary tree
using rational restrictions and inverse rational mappings.

Exactly the same proof as before...

($ uw —25 vw
N tii

-1'5.23 uelU and veV
Y 2

oF for some (U, a, V) e A

@ ©a = Uwavyea U- V&

We just saw that

@ context-free graphs can be defined in the binary tree
using rational restrictions and inverse finite mappings

@ prefix-recognizable graphs can be defined in the binary tree
using rational restrictions and inverse rational mappings

We just saw that

@ context-free graphs can be defined in the binary tree
using rational restrictions and inverse finite mappings

@ prefix-recognizable graphs can be defined in the binary tree
using rational restrictions and inverse rational mappings

The converse is also true:

Theorem (Caucal '96)

The graphs that can be defined in the binary tree using
rational restrictions and inverse finite / rational mappings
are context-free / prefix-recognizable.

Context-free graphs have alternative representations
based on hyperedge-replacement

Context-free graphs have alternative representations
based on hyperedge-replacement

Example of hyperedge replacement
G: H:

Context-free graphs have alternative representations
based on hyperedge-replacement

Example of hyperedge replacement
G: H:

G[h/H] :

Some definitions
A hyperedge is a sequence of vertices h = (v,

Some definitions
A hyperedge is a sequence of vertices h = (vy, ..., Vk)

A hypergraph is a structure of vertices and hyperedges
(different hyperedges are given different labels).

Some definitions
A hyperedge is a sequence of vertices h = (vy, ..., Vk)

A hypergraph is a structure of vertices and hyperedges
(different hyperedges are given different labels).

A hyperedge replacement is the replacement of a hyperedge
h=(v1, ..., v) in a hypergraph G with another hypergraph H
(glueing points are represented by marking vertices of H)

Some definitions
A hyperedge is a sequence of vertices h = (vy, ..., Vk)

A hypergraph is a structure of vertices and hyperedges
(different hyperedges are given different labels).

A hyperedge replacement is the replacement of a hyperedge
h=(v1, ..., v) in a hypergraph G with another hypergraph H
(glueing points are represented by marking vertices of H)

A hyperedge replacement grammar is
a finite set of rewriting rules of the form

hl = Hl 500 hn g Hn
together with an initial hyperedge h;.

Some definitions
A hyperedge is a sequence of vertices h = (vi,..., V)

A hypergraph is a structure of vertices and hyperedges
(different hyperedges are given different labels).

A hyperedge replacement is the replacement of a hyperedge
h=(v1, ..., v) in a hypergraph G with another hypergraph H
(glueing points are represented by marking vertices of H)

A hyperedge replacement grammar is
a finite set of rewriting rules of the form

h1 = H;p e hp = Hp
together with an initial hyperedge h;.
Finally, one defines the limit of a series of replacements
hy = Hi = Hi[h,/H] =

§& Since hyperedge replacements are confluent,
the limit is the same for all (fair) series of replacements!

Limit graph of a hyperedge replacement grammar

H12

h

Limit graph of a hyperedge replacement grammar

H12

h

hy

Limit graph of a hyperedge replacement grammar

H12

h

hy

Limit graph of a hyperedge replacement grammar

H12

h

Limit graph of a hyperedge replacement grammar
Hl .

hy

g& Limit graphs can be disconnected and have unbounded degree

If we restrict ourselves to special forms of grammars, where
@ there are no markings on hyperedges
@ there are no repetitions of vertices in hyperedges
@ vertices of hyperedges have incident terminal edges

Then:

Theorem (Muller & Schupp '85)

The context-free graphs are the limit graphs of
special forms of hyperedge-replacement graph grammars.

N

Q Proof idea in one direction: consider end-components

Vi, = {v|dist(v, Vo) 2 n}

N

Q Proof idea in one direction: consider end-components

Vi, = {v|dist(v, Vo) 2 n}

N

\Q’ Proof idea in one d

consider end-components

Irection

Vo = {v|dist(v, Vo) 2n}

N

" Proof idea in one d

consider end-components

Irection

Vo = {v | dist(v, Vo) > n}

A

N
Q Proof idea in one direction: consider end-components

V, = v|dist(v, Vo Zn}

z
77777777777 IXEREY TN 777

R 2

P 4 A o
ey

ATALLLLULLULLULLALANNNANA NN ALY

N
Q Proof idea in one direction: consider end-components

Vo = {v|dist(v, Vo) 2n}

§& Only finitely many non-isomorphic end-components,
each one inducing a hyperedge replacement rule:

a
b
hy —> ho ho = c ho
d d

Analogous results hold for prefix-recognizable graphs:

Theorem (Courcelle '92)

The prefix-recognizable graphs are the limit graphs
of vertex-replacement graph grammars.

Operations underlying vertex-replacement grammars:
@ Disjoint union: Gy G’
@ \ertex relabelling: G[a/b]

@ Edge creation: G[a— b]

Transfer theorems can be proved for other transformations besides
MSO-interpretations and MSO-transductions, e.g. for unfoldings...

Transfer theorems can be proved for other transformations besides
MSO-interpretations and MSO-transductions, e.g. for unfoldings...

Definition
The unfolding of a rooted graph G is the tree unf(G), where
@ vertices are the finite paths in G originating from the root

@ edges are given by path-extension relation

i.e. (m,7") is an a-labelled edge in unf(G) iff
7" is the extension of 7 with an a-labelled edge in G

Transfer theorems can be proved for other transformations besides
MSO-interpretations and MSO-transductions, e.g. for unfoldings...

Definition
The unfolding of a rooted graph G is the tree unf(G), where
@ vertices are the finite paths in G originating from the root

@ edges are given by path-extension relation

i.e. (m,7") is an a-labelled edge in unf(G) iff
7" is the extension of 7 with an a-labelled edge in G

Transfer theorem (Muchnik ‘84, Courcelle '96, Walukiewicz '02, ...)

Every sentence 9 can be transformed into unf ~1(2)) such that

unf(G) ey iff G Eunfl(y)

§& Next slide shows why this subsumes Biichi and Rabin’s theorems...

Examples of unfoldings

>o© e—>0e—>0—>0—>0—> - .-

Examples of unfoldings

e—>0—>0—>0—>0—> - -

>)

AARARAR ARAR AR AN 4

\ V/
\/

QO

Examples of unfoldings

e—>0—>0—>0—>0—> - -

>)

AARARAR ARAR AR AN 4

VY
\/
N

QO

Examples of unfoldings

>)

e—>0—>0—>0—>0—> - -

----- >
./r° ------ >
/ \.:::j:::
°
/ \ /,m:i'.'.:
°
\.:- :::: 7
° =
\ /,m:i'.'.:
°
/ T
) =
\ /7"33::"
° =
\.:

Application example
Consider a context-free graph, which has decidable MSO theory.

Application example
Consider a context-free graph, which has decidable MSO theory.

@ First apply unfolding: this gives a tree with decidable MSO theory

>e >o >e >o > 0-ieeenn >
l lC)-C/\-C/\-:::::z::
s s
Lot l :
N, N\ N,
A2 AN
©¢¥© ©A© ©¢¥© ©A©

Application example
Consider a context-free graph, which has decidable MSO theory.

@ First apply unfolding: this gives a tree with decidable MSO theory
@ Then apply MSO-interpretation: this gives (N, +1, Powers)

>I I I > 0 s Y TETTrTTD >
Y ©K—\.r—\.r—\.¢‘......::
o——>0 > > 3> @urrnrnnrnn >

@\
¥
~
/
\
/

> 3 : AN
e S ST 4

000000 O

8 9 10 11 12 13 14 15

Higher-order definable words (e.g. see Fratani & Senizergues '06)

v (N, +1,{2" | neN})
v (N, +1,{2¥ | neN})

X (N, +1, {2-"2}” M) e NY) (but MSO is still decidable)

Higher-order definable words (e.g. see Fratani & Senizergues '06)

v (N,

+1,{2"| neN})

,+1,{2%" | neN})

 +1, {2-"2}” M) e NY) (but MSO is still decidable)
+1{lnv/n] | neN})

,+1,{nlogn| | neN})

+1,{n? | neN} {n®|neN} {n*®|neN},...)

+1,{n? | neN}, {n® | neN}) (is MSO decidable?)

Since interpretation and unfolding preserve decidability of MSO theories
we can iterate these two operations and produce new graphs...

Definition
The Caucal hierarchy is a series of inductively defined graphs and trees:

Graphsy = {finite graphs}

Trees,, { unf(G) | G € Graphs,, }

Graphs,,1 {Z(T) | T interpretation, T e Trees, }

Since interpretation and unfolding preserve decidability of MSO theories
we can iterate these two operations and produce new graphs...

Definition
The Caucal hierarchy is a series of inductively defined graphs and trees:

Graphsy = {finite graphs}

Trees,, { unf(G) | G € Graphs,, }

Graphs,,1 {Z(T) | T interpretation, T e Trees, }

Examples

Treesg = { regular trees }, Graphs; = { prefix-recognizable graphs}, ...

v

Since interpretation and unfolding preserve decidability of MSO theories
we can iterate these two operations and produce new graphs...

Definition
The Caucal hierarchy is a series of inductively defined graphs and trees:
Graphsy = {finite graphs}

Trees,, { unf(G) | G € Graphs,, }

Graphs,,1 {Z(T) | T interpretation, T e Trees, }

Examples
Treesg = { regular trees }, Graphs; = { prefix-recognizable graphs}, ...

v

Theorem (Caucal '02)
Graphs and trees of Caucal hierarchy have decidable MSO theories.

Theorem (Carayol & Wohrle '03)

The graphs in level n of Caucal hierarchy are e-closures
of transition graphs of order-n pushdown systems.

Theorem (Carayol & Wohrle '03)

The graphs in level n of Caucal hierarchy are e-closures
of transition graphs of order-n pushdown systems.

a: push -y

Theorem (Carayol & Wohrle '03)

The graphs in level n of Caucal hierarchy are e-closures
of transition graphs of order-n pushdown systems.

Theorem (Carayol & Wohrle '03)

The graphs in level n of Caucal hierarchy are e-closures
of transition graphs of order-n pushdown systems.

a: push y g : push v/

=2

_/

g : pop vy’

RN
NNNNNNNNY

77/
777
Y
777
ey
777
ey
777
v

Another example of application of unfolding
Consider the operation of substitution of variables by terms:

6x(g. h) = g[x/h]

Another example of application of unfolding
Consider the operation of substitution of variables by terms:

6x(g. h) = g[x/h]

® ®
/N
/\@ ® ©
/ N\ /\
©) ONO

Another example of application of unfolding
Consider the operation of substitution of variables by terms:

6x(g. h) = g[x/h]

@ @ M
/7 N\ .
& o+~ @ ® Y e o
/ N\ /\
AP ®9 >~

Another example of application of unfoldi
Consider the operation of substitution of va

® ® ®

/ \

/\/ \@ /@\ 6 g unf /{9;;\
€ ® ®® e/ e

Another example of application of unfolding
Consider the operation of substitution of variables by terms:

6x(g. h) = g[x/h]

® ® ®
/ \ .

/\/ he @ © Y £33 he
g o @6 e/
@ ® ® ® @ x ®

Theorem (Courcelle & Knapik '02)

The operation of substitution of (a fixed number of) variables by terms
preserves decidability of MSO theories.

[t is convenient to see substitution as a form of
B-reduction in A-calculus, but without variable renaming:

(Ax.g(a,x)) @ h(b) +~ g(a,x)[x/h(b)]

[t is convenient to see substitution as a form of
B-reduction in A-calculus, but without variable renaming:

(Ax.g(a,x)) @ h(b) + g(a,x) [x/h(b)]

Theorem (Knapik & Niwinski & Urzyczyn '02)
In the safe fragment of typed A-calculus, B-reduction can be
performed without variable renaming, that is, by substitution.

Corollary

In the safe typed A-calculus, simultaneous B-reduction of redexes
can be implemented by MSO-interpretation followed by unfolding.

[t is convenient to see substitution as a form of
B-reduction in A-calculus, but without variable renaming:

(Ax.g(a,x)) @ h(b) + g(a,x) [x/h(b)]

Theorem (Knapik & Niwinski & Urzyczyn '02)
In the safe fragment of typed A-calculus, B-reduction can be
performed without variable renaming, that is, by substitution.

Corollary

In the safe typed A-calculus, simultaneous B-reduction of redexes
can be implemented by MSO-interpretation followed by unfolding.

g% The above result applies also to infinitary terms!

A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables

F if
I = /X
n n F
I
d
n

~

Abstraction of a program, e.g.

function Foo(n)
if [n is prime] then
return n

else
return Foo(divide (n))

A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

= if F
| = /X |
n n F 9

1

d

n

~

Abstraction of a program, e.g.

function Foo(n)
if [n is prime] then
return n

else
return Foo(divide (n))

A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if if
I =/ \ /7 \
n n F 9 F
| |
d d
n 9

~

Abstraction of a program, e.g.

function Foo(n)
if [n is prime] then
return n

else
return Foo(divide (n))

A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if if
I =/ \ /7 \
n n F 9 if
1 /7 \
d F
n 9 d
d
9

~

Abstraction of a program, e.g.

function Foo(n)
if [n is prime] then
return n
else
return Foo(divide (n))

A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if if
I =/ \ /7 \
n n F 9 if
I 7\
d d if.
1 ' /
n 9 d
d
9

~

Abstraction of a program, e.g.

function Foo(n)
if [n is prime] then
return n

else
return Foo(divide (n))

A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if if
=/ N\ /7 \
n n F 9 if

I 7\

d if

. : s
/ n 9 d

A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if if
I =/ \ /7 \
n n F 9 if
I 7\
d if
1 /
/ n 9 (
d

A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if
| =/ N\
n

SEISECRT]

if
/7 \
9 if
7\
if
. /oo
9 d

A real application example for unfolding and A-calculus!

Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if
| =/ N\
n F

/ ;

if
/7 \
9 if
7\
if
. /oo
9 d

A real application example for unfolding and A-calculus!

Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if
| =/ N\
n F

/ ;

if
/7 \
9 if
7\
if
. s
9 d
d
9
An/ \9 “tail”
I recursion
if
/ \@ I
RN regular
.‘)‘”... c|1 tree!
. . !

A real application example for unfolding and A-calculus!

Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if if
=/ N\ /7 \
n n F 9 if
I 7\ =
d d /if.. =
1 =)
d g
) .)i
F B An
' 7N “tail”
if An 9 .
/\. I recursion
n @ if
VRN 7\ U
F d n @
I RN regular
.‘)"7.. c|1 tree!

Previous ideas apply to any scheme with higher-order variables:

Theorem (Knapik & Niwinski & Urzyczyn '02)

Limit trees of safe order-n recursive program schemes are in the
level n of Caucal hierarchy, hence they have decidable MSO theories.

Previous ideas apply to any scheme with higher-order variables:

Theorem (Knapik & Niwinski & Urzyczyn '02)

Limit trees of safe order-n recursive program schemes are in the
level n of Caucal hierarchy, hence they have decidable MSO theories.

Theorem (Parys '12)
Starting from level 2, safety is a genuine restriction for A—calculus.J

Previous ideas apply to any scheme with higher-order variables:

Theorem (Knapik & Niwinski & Urzyczyn '02)

Limit trees of safe order-n recursive program schemes are in the
level n of Caucal hierarchy, hence they have decidable MSO theories.

Theorem (Parys '12)
Starting from level 2, safety is a genuine restriction for A-calculus.

Theorem (Ong '06)

Limit trees of unsafe order-n recursive program schemes
have also decidable MSO theories.

