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MSO-interpretation as a graph transformation
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@ Start from a graph G (e.g. the binary tree)
that has a decidable MSO-theory

@ Transform G into a new graph G’
by logically defining nodes and edges of G’ inside G

© Given any MSO property 9 over G’,
decide it by rephrasing it into a property over G



Definition
An MSO-interpretation is a tuple Z of formulas

Paom (X) Qe (X, ¥) - Qe (X y)  Qa(X) ... @an(X)
———
domain formula edge formulas color formulas

defining a transformation from graph G to graph Z(G) such that
@ v isa vertex of Z(G) iff (G, V) E @dom(x)
o (u,v)isan e-edge of Z(G) iff (G, u,v) E e (x,y)

@ v hascolorainZ(G) iff (G, V) E @a(x)
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Definition
An MSO-interpretation is a tuple Z of formulas
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Transfer theorem

Every sentence 9 can be transformed into Z~!(4) such that
I(G)ry iff GeI'W)

Hence, if G has decidable MSO theory, then so has Z(G).




Definition
An MSO-intérprétationy transduction is a tuple Z of formulas

Pdom (X) (X, y) el (x,y) @ (X) o @5, (X)
———
domain formula edge formulas color formulas

defining a transformation from graph G to graph Z(G) such that
@ (/,v)is a vertex of Z(G) iff (G, V) E @gom(x)
o ((i,u),(J,v)) is an e-edge of Z(G) iff (G, u, v) E @ii(x,y)
@ (/,v) has color ain Z(G) iff (G, V) E @5(x)

Transfer theorem

Every sentence 9 can be transformed into Z~!(+) such that
I(G)ry iff GeI'W)

Hence, if G has decidable MSO theory, then so has Z(G).




Most edge formulas can be abbreviated by regular expressions:

@ "a" abbreviates (x,y) € E,
@ "3" abbreviates (y, x) € E;

@ “a+b" abbreviates (x,y) € E; v (x,y) € Ep

“a-b" abbreviates 3z. (x,z) € E; A (z2,¥) € Ep

“a*" abbreviates (x,y) € E}

@ “c" abbreviates c(x)  (assume vertex colors # edge labels)
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Example

The regular expression “a* - (¢ + d) - b’ describes a formula
©(x, y) that witnesses a path from x to y such that

@ traverses a sequence of a-labelled edges
@ reaches a vertex with color ¢ or d

© finally traverses in backward direction a b-labelled edge
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Special forms of interpretations on trees
A rational restriction is an MSO-interpretation of tree defined by

©Ydom(x) = "3 path 7 from root to x such that we L"
Similarly, an inverse rational mapping is defined as

we(x,y) = "3 path m from x to y such that me L."




Definition

A pushdown system is a tuple P = (Q, X, T, A), where
@ Q@ is a finite set of control states
@ X is a finite alphabet for transition labels
@ [ is a finite alphabet for stack symbols

@ ACcRxIxXx@xI*is a finite set of transition rules
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Definition

A pushdown system is a tuple P = (Q, X, T, A), where
@ Q@ is a finite set of control states
@ X is a finite alphabet for transition labels
@ [ is a finite alphabet for stack symbols

@ ACcRxIxXx@xI*is a finite set of transition rules

Configurations = pairs (g, w) e QxI"
—~
state stack
Transitions = (q.vyw) > (q ww)
iff (q,v,a,q, v )eA
)
e =2

§Z W.l.o.g. assume that stack length changes at most by 1



Interest in properties of transition graphs of pushdown systems

Context-free graph

A connected component of a graph is a maximal subgraph
in which every two vertices can be connected by a path that
traverses edges in either direction.

A context-free graph is a connected component
of the transition graph of a pushdown system.

Example

v, a: push




Theorem (Caucal '96)

Context-free graphs are definable in the binary tree
using rational restrictions and inverse finite mappings.

Proof sketch in the next slide...

Corollary (Muller & Schupp '85)
MSO is decidable over context-free graphs.




Context-free graphs are definable by restrictions and inverse mappings. }

Consider a pushdown system P = (Q, %, I, A) and
the Q w I'-labelled tree (interpretable in the binary tree)
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Consider a pushdown system P = (Q, %, I, A) and
the Q w I'-labelled tree (interpretable in the binary tree)

e configurations of P: @gom(X) = I Moot x €M+ Q
@ transitions of P: wa(x,y) = 3y € Ugyagneal@-7-ve-q')

@ connected component... LI
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The previous result can be lifted to prefix-rewriting systems, which
generalize pushdown systems by giving graphs with infinite degree:
@ no distinction between control states and stack letters
(a single alphabet is used)
@ less restricted forms of rewriting rules
(more than one letter can be rewritten in a single transition)
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Definition

A prefix-rewriting system is a tuple P = (X, I, A), where
@ X is a finite alphabet for transition labels
@ [ is a finite alphabet for “stack” symbols

@ A is a finite set of transition rules of the form (U, a, V),
with a € X and U, V regular languages over I".




The previous result can be lifted to prefix-rewriting systems, which
generalize pushdown systems by giving graphs with infinite degree:

@ no distinction between control states and stack letters
(a single alphabet is used)

@ less restricted forms of rewriting rules
(more than one letter can be rewritten in a single transition)
Definition
A prefix-rewriting system is a tuple P = (X, I, A), where
@ X is a finite alphabet for transition labels
@ [ is a finite alphabet for “stack” symbols
@ A is a finite set of transition rules of the form (U, a, V),

with a € X and U, V regular languages over I".

Configurations = words in ['* (or in some regular language)

Transitions = uw 2, vw

iff we U and v e V for some (U,a, V) e A




Definition
A prefix-recognizable graph is
the transition graph of a prefix-rewriting system.

Example
Consider the prefix rewriting system P = (X, T, A), where

@ Y = {succ,smaller}

o ={v}
@ A consists of the two rules

({e},succ, {v}) and ({7}* smaller, {e})




Theorem (Caucal '96)

Prefix-recognizable graphs are definable in the binary tree
using rational restrictions and inverse rational mappings.

Exactly the same proof as before...

uw —2s vw
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Theorem (Caucal '96)

Prefix-recognizable graphs are definable in the binary tree
using rational restrictions and inverse rational mappings.

Exactly the same proof as before...

($ uw —25 vw
N tii

-1'5.23 uelU and veV
Y 2

oF for some (U, a, V) e A

@ ©a = Uwavyea U- V&




We just saw that

@ context-free graphs can be defined in the binary tree
using rational restrictions and inverse finite mappings

@ prefix-recognizable graphs can be defined in the binary tree
using rational restrictions and inverse rational mappings



We just saw that

@ context-free graphs can be defined in the binary tree
using rational restrictions and inverse finite mappings

@ prefix-recognizable graphs can be defined in the binary tree
using rational restrictions and inverse rational mappings

The converse is also true:

Theorem (Caucal '96)

The graphs that can be defined in the binary tree using
rational restrictions and inverse finite / rational mappings
are context-free / prefix-recognizable.
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Context-free graphs have alternative representations
based on hyperedge-replacement

Example of hyperedge replacement
G: H:

G[h/H] :
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h=(v1, ..., v) in a hypergraph G with another hypergraph H
(glueing points are represented by marking vertices of H)
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Some definitions
A hyperedge is a sequence of vertices h = (vi,..., V)

A hypergraph is a structure of vertices and hyperedges
(different hyperedges are given different labels).

A hyperedge replacement is the replacement of a hyperedge
h=(v1, ..., v) in a hypergraph G with another hypergraph H
(glueing points are represented by marking vertices of H)

A hyperedge replacement grammar is
a finite set of rewriting rules of the form

h1 = H;p e hp = Hp
together with an initial hyperedge h;.
Finally, one defines the limit of a series of replacements
hy = Hi = Hi[h,/H] =

§& Since hyperedge replacements are confluent,
the limit is the same for all (fair) series of replacements!




Limit graph of a hyperedge replacement grammar
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Limit graph of a hyperedge replacement grammar
Hl .

hy

g& Limit graphs can be disconnected and have unbounded degree



If we restrict ourselves to special forms of grammars, where
@ there are no markings on hyperedges
@ there are no repetitions of vertices in hyperedges
@ vertices of hyperedges have incident terminal edges

Then:

Theorem (Muller & Schupp '85)

The context-free graphs are the limit graphs of
special forms of hyperedge-replacement graph grammars.
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consider end-components

Irection

Vo = {v | dist(v, Vo) > n}
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N
Q Proof idea in one direction: consider end-components

Vo = {v|dist(v, Vo) 2n}

§& Only finitely many non-isomorphic end-components,
each one inducing a hyperedge replacement rule:

a
b
hy —> ho ho = c ho
d d



Analogous results hold for prefix-recognizable graphs:

Theorem (Courcelle '92)

The prefix-recognizable graphs are the limit graphs
of vertex-replacement graph grammars.

Operations underlying vertex-replacement grammars:
@ Disjoint union: Gy G’
@ \ertex relabelling:  G[a/b]

@ Edge creation: G[a— b]



Transfer theorems can be proved for other transformations besides
MSO-interpretations and MSO-transductions, e.g. for unfoldings...
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Definition
The unfolding of a rooted graph G is the tree unf(G), where
@ vertices are the finite paths in G originating from the root

@ edges are given by path-extension relation

i.e. (m,7") is an a-labelled edge in unf(G) iff
7" is the extension of 7 with an a-labelled edge in G




Transfer theorems can be proved for other transformations besides
MSO-interpretations and MSO-transductions, e.g. for unfoldings...

Definition
The unfolding of a rooted graph G is the tree unf(G), where
@ vertices are the finite paths in G originating from the root

@ edges are given by path-extension relation

i.e. (m,7") is an a-labelled edge in unf(G) iff
7" is the extension of 7 with an a-labelled edge in G

Transfer theorem (Muchnik ‘84, Courcelle '96, Walukiewicz '02, ...)

Every sentence 9 can be transformed into unf ~1(2)) such that

unf(G) ey  iff G Eunfl(y)

§& Next slide shows why this subsumes Biichi and Rabin’s theorems...



Examples of unfoldings
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Examples of unfoldings
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Application example
Consider a context-free graph, which has decidable MSO theory.
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@ First apply unfolding: this gives a tree with decidable MSO theory
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Application example
Consider a context-free graph, which has decidable MSO theory.

@ First apply unfolding: this gives a tree with decidable MSO theory
@ Then apply MSO-interpretation: this gives (N, +1, Powers)
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Higher-order definable words (e.g. see Fratani & Senizergues '06)

v (N, +1,{2" | neN})
v (N, +1,{2¥ | neN})

X (N, +1, {2-"2}” M) e NY) (but MSO is still decidable)




Higher-order definable words (e.g. see Fratani & Senizergues '06)

v (N,

+1,{2"| neN})

,+1,{2%" | neN})

 +1, {2-"2}” M) e NY) (but MSO is still decidable)
+1{lnv/n] | neN})

,+1,{nlogn| | neN})

+1,{n? | neN} {n®|neN} {n*®|neN},...)

+1,{n? | neN}, {n® | neN}) (is MSO decidable?)




Since interpretation and unfolding preserve decidability of MSO theories
we can iterate these two operations and produce new graphs...

Definition
The Caucal hierarchy is a series of inductively defined graphs and trees:

Graphsy = {finite graphs}

Trees,, { unf(G) | G € Graphs,, }

Graphs,,1 {Z(T) | T interpretation, T e Trees, }
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Since interpretation and unfolding preserve decidability of MSO theories
we can iterate these two operations and produce new graphs...

Definition
The Caucal hierarchy is a series of inductively defined graphs and trees:
Graphsy = {finite graphs}

Trees,, { unf(G) | G € Graphs,, }

Graphs,,1 {Z(T) | T interpretation, T e Trees, }

Examples
Treesg = { regular trees }, Graphs; = { prefix-recognizable graphs}, ...

v

Theorem (Caucal '02)
Graphs and trees of Caucal hierarchy have decidable MSO theories.
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The graphs in level n of Caucal hierarchy are e-closures
of transition graphs of order-n pushdown systems.
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Theorem (Carayol & Wohrle '03)

The graphs in level n of Caucal hierarchy are e-closures
of transition graphs of order-n pushdown systems.
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Another example of application of unfolding
Consider the operation of substitution of variables by terms:

6x(g. h) = g[x/h]
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Another example of application of unfolding
Consider the operation of substitution of variables by terms:

6x(g. h) = g[x/h]
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Theorem (Courcelle & Knapik '02)

The operation of substitution of (a fixed number of) variables by terms
preserves decidability of MSO theories.




[t is convenient to see substitution as a form of
B-reduction in A-calculus, but without variable renaming:

(Ax.g(a,x)) @ h(b) +~ g(a,x)[x/h(b)]
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(Ax.g(a,x)) @ h(b) + g(a,x) [x/h(b)]

Theorem (Knapik & Niwinski & Urzyczyn '02)
In the safe fragment of typed A-calculus, B-reduction can be
performed without variable renaming, that is, by substitution.

Corollary

In the safe typed A-calculus, simultaneous B-reduction of redexes
can be implemented by MSO-interpretation followed by unfolding.




[t is convenient to see substitution as a form of
B-reduction in A-calculus, but without variable renaming:

(Ax.g(a,x)) @ h(b) + g(a,x) [x/h(b)]

Theorem (Knapik & Niwinski & Urzyczyn '02)
In the safe fragment of typed A-calculus, B-reduction can be
performed without variable renaming, that is, by substitution.

Corollary

In the safe typed A-calculus, simultaneous B-reduction of redexes
can be implemented by MSO-interpretation followed by unfolding.

g% The above result applies also to infinitary terms!



A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
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Abstraction of a program, e.g.

function Foo(n)
if [n is prime] then
return n

else
return Foo(divide (n))




A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

= if F
| = /X |
n n  F 9

1

d

n

~

Abstraction of a program, e.g.

function Foo(n)
if [n is prime] then
return n

else
return Foo(divide (n))




A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if if
I =/ \ /7 \
n n F 9 F
| |
d d
n 9

~

Abstraction of a program, e.g.

function Foo(n)
if [n is prime] then
return n

else
return Foo(divide (n))




A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if if
I =/ \ /7 \
n n F 9 if
1 /7 \
d F
n 9 d
d
9

~

Abstraction of a program, e.g.

function Foo(n)
if [n is prime] then
return n
else
return Foo(divide (n))




A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if if
I =/ \ /7 \
n n F 9 if
I 7\
d d if.
1 ' /
n 9 d
d
9

~

Abstraction of a program, e.g.

function Foo(n)
if [n is prime] then
return n

else
return Foo(divide (n))




A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if if
=/ N\ /7 \
n n F 9 if

I 7\

d if

. : s
/ n 9 d




A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if if
I =/ \ /7 \
n n F 9 if
I 7\
d if
1 /
/ n 9 (
d




A real application example for unfolding and A-calculus!
Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if
| =/ N\
n

SEISECRT]

if
/7 \
9 if
7\
if
. /oo
9 d




A real application example for unfolding and A-calculus!

Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if
| =/ N\
n F

/ ;

if
/7 \
9 if
7\
if
. /oo
9 d




A real application example for unfolding and A-calculus!

Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if
| =/ N\
n F

/ ;

if
/7 \
9 if
7\
if
. s
9 d
d
9
An/ \9 “tail”
I recursion
if
/ \@ I
RN regular
.‘)‘”... c|1 tree!
. . !




A real application example for unfolding and A-calculus!

Consider a safe recursive program scheme with functional variables
and the limit tree generated from an initial axiom F(9)

F if if
=/ N\ /7 \
n n F 9 if
I 7\ =
d d /if.. =
1 =)
d g
) . )i
F B An
' 7N “tail”
if An 9 .
/\. I recursion
n @ if
VRN 7\ U
F d n @
I RN regular
.‘)"7.. c|1 tree!




Previous ideas apply to any scheme with higher-order variables:

Theorem (Knapik & Niwinski & Urzyczyn '02)

Limit trees of safe order-n recursive program schemes are in the
level n of Caucal hierarchy, hence they have decidable MSO theories.
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Previous ideas apply to any scheme with higher-order variables:

Theorem (Knapik & Niwinski & Urzyczyn '02)

Limit trees of safe order-n recursive program schemes are in the
level n of Caucal hierarchy, hence they have decidable MSO theories.

Theorem (Parys '12)
Starting from level 2, safety is a genuine restriction for A-calculus.

Theorem (Ong '06)

Limit trees of unsafe order-n recursive program schemes
have also decidable MSO theories.







