Reachability via saturation

Gabriele Puppis

LaBRI / CNRS

A path connecting two sets, if exists, can be found in finitely many steps.

A path connecting two sets, if exists, can be found in finitely many steps.

A path connecting two sets, if exists, can be found in finitely many steps.

A path connecting two sets, if exists, can be found in finitely many steps.

A path connecting two sets, if exists, can be found in finitely many steps.

A path connecting two sets, if exists, can be found in finitely many steps.

The problem is of course termination, namely, to detect non-reachability...

Acceleration / pumping

Invariant analysis

Given a pushdown system $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta)$ and a set $B_0 \subseteq Q \cdot \Gamma^*$ of target configurations, define:

$$B_{n+1} = B_n \cup \left\{ qz \mid \exists q'z' \in B_n. \exists a \in \Sigma. qz \xrightarrow{a} q'z' \right\}$$

 $B_{\omega} = \bigcup_{n \in \mathbb{N}} B_n$

Given a pushdown system $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta)$ and a set $B_0 \subseteq Q \cdot \Gamma^*$ of target configurations, define:

$$B_{n+1} = B_n \cup \left\{ qz \mid \exists q'z' \in B_n. \exists a \in \Sigma. qz \xrightarrow{a} q'z' \right\}$$

 $B_{\omega} = \bigcup_{n \in \mathbb{N}} B_n$

 \mathcal{B}_{ω} contains the configurations from which one can reach B_0

Given a pushdown system $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta)$ and a set $B_0 \subseteq Q \cdot \Gamma^*$ of target configurations, define:

$$B_{n+1} = B_n \cup \left\{ qz \mid \exists q'z' \in B_n. \exists a \in \Sigma. qz \xrightarrow{a} q'z' \right\}$$

 $B_{\omega} = \bigcup_{n \in \mathbb{N}} B_n$

W B_{ω} contains the configurations from which one can reach B_0 B_{ω} is usually infinite, but is it perhaps regular?

Given a pushdown system $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta)$ and a set $B_0 \subseteq Q \cdot \Gamma^*$ of target configurations, define:

$$B_{n+1} = B_n \cup \left\{ qz \mid \exists q'z' \in B_n. \exists a \in \Sigma. qz \xrightarrow{a} q'z' \right\}$$

 $B_{\omega} = \bigcup_{n \in \mathbb{N}} B_n$

 \mathcal{B}_{ω} contains the configurations from which one can reach B_0 B_{ω} is usually infinite, but is it perhaps regular?

Example Consider the pushdown system $\begin{array}{c} q \\ \end{array} pop \gamma \\ B_0 = \{q\epsilon\} \quad B_1 = \{q\epsilon, q\gamma\} \quad B_2 = \{q\epsilon, q\gamma, q\gamma\gamma\} \quad \dots \end{array}$

Given a pushdown system $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta)$ and a set $B_0 \subseteq Q \cdot \Gamma^*$ of target configurations, define:

$$B_{n+1} = B_n \cup \left\{ qz \mid \exists q'z' \in B_n. \exists a \in \Sigma. qz \xrightarrow{a} q'z' \right\}$$

 $B_{\omega} = \bigcup_{n \in \mathbb{N}} B_n$

 \mathcal{B}_{ω} contains the configurations from which one can reach B_0 B_{ω} is usually infinite, but is it perhaps regular?

Example Consider the pushdown system $\begin{array}{c} q \\ \end{array} pop \gamma \\ B_0 = \{q\varepsilon\} \quad B_1 = \{q\varepsilon, q\gamma\} \quad B_2 = \{q\varepsilon, q\gamma, q\gamma\gamma\} \\ B_{\omega} = q\varepsilon^* \text{ is indeed regular, but how to efficiently compute it?} \end{array}$

"' "Pump" the changes from B_n to B_{n+1} to obtain a new sequence C_0 , C_1 , ... that converges more quickly:

(completeness) $\forall n \in \mathbb{N}.$ $B_n \subseteq C_n$ (soundness) $\forall n \in \mathbb{N}.$ $C_n \subseteq B_\omega$ (termination) $\exists n \in \mathbb{N}.$ $C_n = C_{n+1}$

 \mathbb{I} the limit $\bigcup_{n\in\mathbb{N}} C_n$ coincides with B_{ω}

"' "Pump" the changes from B_n to B_{n+1} to obtain a new sequence C_0 , C_1 , ... that converges more quickly:

(completeness) $\forall n \in \mathbb{N}.$ $B_n \subseteq C_n$ (soundness) $\forall n \in \mathbb{N}.$ $C_n \subseteq B_\omega$ (termination) $\exists n \in \mathbb{N}.$ $C_n = C_{n+1}$

 \mathbb{I} the limit $\bigcup_{n\in\mathbb{N}} C_n$ coincides with B_ω

The sets C_0 , C_1 , ... will be defined by automata A_0 , A_1 , ... sharing the same state space...

• The pushdown system \mathcal{P} has m states q_1, \ldots, q_m

- The pushdown system \mathcal{P} has m states q_1, \ldots, q_m
- The automaton A₀ recognizing C₀ = B₀ has a single initial non-final state s₀, m distinct states s₁,..., s_m, and possibly other states

- The pushdown system \mathcal{P} has m states q_1, \ldots, q_m
- The automaton A₀ recognizing C₀ = B₀ has a single initial non-final state s₀, m distinct states s₁,..., s_m, and possibly other states
- No transition in \mathcal{A}_0 reaches the initial state s_0

- The pushdown system \mathcal{P} has m states q_1, \ldots, q_m
- The automaton A₀ recognizing C₀ = B₀ has a single initial non-final state s₀, m distinct states s₁,..., s_m, and possibly other states
- No transition in \mathcal{A}_0 reaches the initial state s_0
- The unique q_i -labelled transition in \mathcal{A}_0 is (s_0, q_i, s_i)

- The pushdown system \mathcal{P} has m states q_1, \ldots, q_m
- The automaton A₀ recognizing C₀ = B₀ has a single initial non-final state s₀, m distinct states s₁,..., s_m, and possibly other states
- No transition in \mathcal{A}_0 reaches the initial state s_0
- The unique q_i -labelled transition in \mathcal{A}_0 is (s_0, q_i, s_i)
- \bullet The other transitions in \mathcal{A}_0 are labelled by stack symbols

Construct A_{n+1} from A_n by adding transitions, as follows:

. . .

1 select a transition rule $(q_i \gamma, a, q_j z)$ in the pushdown system \mathcal{P}

Construct A_{n+1} from A_n by adding transitions, as follows:

() select a transition rule $(q_i \gamma, a, q_j z)$ in the pushdown system \mathcal{P}

2 select a state s' in A_n reachable from s_0 via a $q_j z$ -labelled path

Construct A_{n+1} from A_n by adding transitions, as follows:

- **1** select a transition rule $(q_i \gamma, a, q_j z)$ in the pushdown system \mathcal{P}
- 2 select a state s' in A_n reachable from s_0 via a $q_j z$ -labelled path
- 3 add transition (s_i, γ, s')

Construct A_{n+1} from A_n by adding transitions, as follows:

- **(**) select a transition rule $(q_i \gamma, a, q_j z)$ in the pushdown system \mathcal{P}
- 2 select a state s' in A_n reachable from s_0 via a $q_j z$ -labelled path
- 3 add transition (s_i, γ, s')

Termination: straightforward

Only polynomially many transitions can be added

 $(\Rightarrow$ reachability in PTIME)

Construct A_{n+1} from A_n by adding transitions, as follows:

- **(**) select a transition rule $(q_i \gamma, a, q_j z)$ in the pushdown system \mathcal{P}
- 2 select a state s' in A_n reachable from s_0 via a $q_j z$ -labelled path
- 3 add transition (s_i, γ, s')

Termination: straightforward **Soundness**: by induction on *n* $s_0 \xrightarrow{q'z'}_{A_{n+1}} s'$ \downarrow $s_0 \xrightarrow{qz}_{A_0} s' \land q'z' \xrightarrow{\star}_{\mathcal{P}} qz$

Construct A_{n+1} from A_n by adding transitions, as follows:

- **0** select a transition rule $(q_i \gamma, a, q_j z)$ in the pushdown system \mathcal{P}
- 2 select a state s' in A_n reachable from s_0 via a $q_j z$ -labelled path
- 3 add transition (s_i, γ, s')

Termination: straightforward

Soundness: by induction on n

Completeness:

- \forall config. $q_i \gamma w \in B_{n+1} \smallsetminus B_n$
- $\exists \text{ trans. } q_i \gamma w \xrightarrow{a}_{\mathcal{P}} q_j z w$ with $q_j z w \in B_n$

Select rule $(q_i\gamma, a, q_jz)$ in \mathcal{P} and path $s_0 \xrightarrow{q_iz} s'$ in \mathcal{A}_n to prove that $q_i\gamma w \in \mathscr{L}(\mathcal{A}_{n+1})$

Example

Consider the target set $B_0 = \{q_2\gamma_1\gamma_2\gamma_3\}$ over the pushdown system

Consider the target set $B_0 = \{q_2\gamma_1\gamma_2\gamma_3\}$ over the pushdown system

 $C_0 = \{q_2\gamma_1\gamma_2\gamma_3\}$ $C_1 = \{q_2\gamma_1\gamma_2\gamma_3, q_2\gamma_4\gamma_3\}$ $C_2 = \{q_2\gamma_1\gamma_2\gamma_3, q_2\gamma_4\gamma_3, q_1\gamma_5\}$

Theorem (Bouajjani, Esparza & Maler '97)

Given a pushdown system \mathcal{P} and a regular set B of configurations, the set of configurations that can reach B is regular and can be computed in polynomial time.

Theorem (Bouajjani, Esparza & Maler '97)

Given an **alternating** pushdown system \mathcal{P} and a regular set B of conf., the **winning region** for the *B***-reachability game** is regular and can be computed in polynomial time.

Theorem (Bouajjani, Esparza & Maler '97)

Given an **alternating** pushdown system \mathcal{P} and a regular set B of conf., the **winning region** for the *B***-reachability game** is regular and can be computed in polynomial time.

Similar generalizations can be proved for:

- tree rewriting systems (Löding '06, ...)
- reachability games on higher-order pushdown systems (Bouajjani & Meyer '04, Hague & Ong '07, ...)

Next we will focus on reachability for systems that use **variables over natural numbers** instead of a stack...

(x, y) := (0, 0)while $(x, y) \neq (0, 1)$ do if [input is north west] then (x, y) := (x, y) + (1, 3)else if [input is north east] then (x, y) := (x, y) + (-1, 1)else if [input is south] then (x, y) := (x, y) + (0, -2)

Next we will focus on reachability for systems that use **variables over natural numbers** instead of a stack...

 $(x, y) \coloneqq (0, 0)$ while $(x, y) \neq (0, 1)$ do
if [input is north west] then $(x, y) \coloneqq (x, y) + (1, 3)$ else if [input is north east] then $(x, y) \coloneqq (x, y) + (-1, 1)$ else if [input is south] then $(x, y) \coloneqq (x, y) + (0, -2)$

Definition

A vector addition system (VAS) is a transition system (\mathbb{N}^k, Δ) , where Δ is a finite subset of \mathbb{Z}^k and

Х

$$\bar{x} \longrightarrow \bar{y}$$
 iff $\begin{cases} \bar{x}, \bar{y} \ge 0\\ \bar{y} - \bar{x} \in \Delta \end{cases}$

Definition

A **lossy VAS** is a transition system (\mathbb{N}^k, Δ) , where Δ is a finite subset of $Q \times \mathbb{Z}^k \times Q$ and

$$\bar{\mathbf{x}} \longrightarrow \bar{\mathbf{y}}$$
 iff $\begin{cases} \bar{\mathbf{x}}, \bar{\mathbf{y}} \ge \mathbf{0} \\ \\ \bar{\mathbf{y}}' - \bar{\mathbf{x}} \in \mathbf{\Delta} \end{cases}$ for some $\bar{y}' \ge \bar{y}$

Definition

A **lossy VAS** is a transition system (\mathbb{N}^k, Δ) , where Δ is a finite subset of $Q \times \mathbb{Z}^k \times Q$ and

$$\bar{x} \longrightarrow \bar{y}$$
 iff $\begin{cases} \bar{x}, \bar{y} \ge 0 \\ \bar{y}' - \bar{x} \in \Delta \end{cases}$ for some $\bar{y}' \ge \bar{y}$

A **VAS with states** is a transition system $(Q \times \mathbb{N}^k, \Delta)$, where Δ is a finite subset of $Q \times \mathbb{Z}^k \times Q$ and

$$(p, \bar{x}) \longrightarrow (q, \bar{y})$$
 iff $\begin{cases} \bar{x}, \bar{y} \ge 0\\ (p, \bar{y} - \bar{x}, q) \in \Delta \end{cases}$

Definition

A **lossy VAS** is a transition system (\mathbb{N}^k, Δ) , where Δ is a finite subset of $Q \times \mathbb{Z}^k \times Q$ and

$$\bar{x} \longrightarrow \bar{y}$$
 iff $\begin{cases} \bar{x}, \bar{y} \ge 0 \\ \bar{y}' - \bar{x} \in \Delta \end{cases}$ for some $\bar{y}' \ge \bar{y}$

A **VAS with states** is a transition system $(Q \times \mathbb{N}^k, \Delta)$, where Δ is a finite subset of $Q \times \mathbb{Z}^k \times Q$ and

$$(p,\bar{x}) \longrightarrow (q,\bar{y}) \quad \text{iff} \quad \begin{cases} \bar{x}, \bar{y} \ge 0\\ (p, \bar{y} - \bar{x}, q) \in \Delta \end{cases}$$

States do not add power, as they can be implemented by counters e.g. 2 states = 2 additional counters that sum up to 1 $(p, \bar{x}) \longrightarrow (q, \bar{y})$ becomes $(0, 1, \bar{x}) \longrightarrow (1, 0, \bar{y})$

VAS are the same as **Petri nets**:

configurations = tokens per location (e.g. (2, 1, 3, 0, 0)) transitions = transfers of tokens (e.g. (0, -1, -1, 0, 1))

$(0,0) + (3,1)\mathbb{N}$

$(0,0) + (3,1)\mathbb{N} + (-1,1)\mathbb{N}$

$$(0,0) + (3,1)\mathbb{N} + (-1,1)\mathbb{N} + (0,-2)\mathbb{N}$$

$$(0,0) + (3,1)\mathbb{N} + (-1,1)\mathbb{N} + (0,-2)\mathbb{N}$$

Theorem (Ginsburg '66)

Finite unions of linear sets are precisely the **Presburger sets** i.e. sets definable in $FO[\mathbb{N}, +]$

e.g.
$$\varphi(x, y) = \exists z. x + y = z + z$$

 $(x+y) \leq \mathbf{z} \leq \mathcal{O}((x+y)^2)$

$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \, \bar{y} \in V. \, \bar{z} \leq \bar{y} \right\}$$

$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \, \bar{y} \in V. \, \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for lossy VAS!

$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \, \bar{y} \in V. \, \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for lossy VAS!

Dickson's Lemma 1913

The pointwise order \leq on \mathbb{N}^k is a **well partial order** (i.e. all **decreasing chains** and all **antichains** are finite)

$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \, \bar{y} \in V. \, \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for lossy VAS!

Dickson's Lemma 1913

The pointwise order \leq on \mathbb{N}^k is a **well partial order** (i.e. all **decreasing chains** and all **antichains** are finite)

$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \, \bar{y} \in V. \, \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for lossy VAS!

Dickson's Lemma 1913

The pointwise order \leq on \mathbb{N}^k is a **well partial order** (i.e. all **decreasing chains** and all **antichains** are finite)

$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \, \bar{y} \in V. \, \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for lossy VAS!

Dickson's Lemma 1913

The pointwise order \leq on \mathbb{N}^k is a **well partial order** (i.e. all **decreasing chains** and all **antichains** are finite)

$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \, \bar{y} \in V. \, \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for lossy VAS!

Dickson's Lemma 1913

The pointwise order \leq on \mathbb{N}^k is a **well partial order** (i.e. all **decreasing chains** and all **antichains** are finite)

$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \, \bar{y} \in V. \, \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for lossy VAS!

Dickson's Lemma 1913

The pointwise order \leq on \mathbb{N}^k is a **well partial order** (i.e. all **decreasing chains** and all **antichains** are finite)

Lemma

For all subsets V of $(\mathbb{N} \cup \{\infty\})^k$, there is an **antichain** W such that

$$V^{\downarrow} = W^{\downarrow}$$

 \Rightarrow we can finitely represent downward-closed sets by antichains

Saturation of downward-closed sets via transition function $\boldsymbol{\Delta}$

😌 acceleration on emerging dominating sets...

Saturation of downward-closed sets via transition function $\boldsymbol{\Delta}$

acceleration on emerging dominating sets...

Example V (-1, +1)(+1, -1)(+2, 0)(0, +2)Х

Saturation of downward-closed sets via transition function $\boldsymbol{\Delta}$

acceleration on emerging dominating sets...

Saturation of downward-closed sets via transition function $\boldsymbol{\Delta}$

acceleration on emerging dominating sets...

Saturation of downward-closed sets via transition function $\boldsymbol{\Delta}$

acceleration on emerging dominating sets...

Saturation of downward-closed sets via transition function $\boldsymbol{\Delta}$

acceleration on emerging dominating sets...

Example

Saturation of downward-closed sets via transition function $\boldsymbol{\Delta}$

acceleration on emerging dominating sets...

Example

Saturation of downward-closed sets via transition function $\boldsymbol{\Delta}$

acceleration on emerging dominating sets...

Example

Theorem (Rackoff '78)

Coverability on VAS (i.e. given \bar{x}, \bar{y} , tell if $\exists \bar{z} \ge \bar{y}, \bar{x} \xrightarrow{*} \bar{z}$) is EXPSPACE-complete.

Theorem (Rackoff '78)

Coverability on VAS (i.e. given \bar{x}, \bar{y} , tell if $\exists \bar{z} \ge \bar{y}, \bar{x} \xrightarrow{\star} \bar{z}$) is EXPSPACE-complete.

Corollary 1

Reachability on lossy VAS is EXPSPACE-complete.

Corollary 2

Control-state reachability on VAS is EXPSPACE-complete.

There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson '96, ...)

Coverability is decidable (non-primitive recursive) on VAS with

- resets (e.g. x := 0)
- transfers (e.g. $x \coloneqq y + z$)
- positive guards (e.g. if [x > 0] then ...)

Reachability is decidable on analogous extensions of lossy VAS.

There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson '96, ...)

Coverability is decidable (non-primitive recursive) on VAS with

- resets (e.g. x := 0)
- transfers (e.g. $x \coloneqq y + z$)
- positive guards (e.g. if [x > 0] then ...)

Reachability is decidable on analogous extensions of lossy VAS.

Unfortunately, acceleration for the above systems does not work, e.g. $(1,0) \xrightarrow[y=1]{reset \times} (0,1) \xrightarrow[y=y-1]{x=x+2} (2,0)$, but $(1,0) \xrightarrow{*/} (3,0)$ There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson '96, ...)

Coverability is decidable (non-primitive recursive) on VAS with

- resets (e.g. x := 0)
- transfers (e.g. $x \coloneqq y + z$)
- positive guards (e.g. if [x > 0] then ...)

Reachability is decidable on analogous extensions of lossy VAS.

Unfortunately, acceleration for the above systems does not work, e.g. (1,0) $\xrightarrow{reset \times} (0,1) \xrightarrow{\chi:=\chi+2} (2,0)$, but (1,0) $\xrightarrow{\star} (3,0)$

Y However, we can still exploit Dickson's Lemma with

upward-closed sets

they cover more vectors than downward-closed sets!

2 backward reachability

i.e. compute $B_{n+1} = \{ \bar{x} \mid \exists \bar{y} \in B_n, \bar{x} \longrightarrow \bar{y} \}$

VAS transitions with resets, transfers, and positive guards are **backward-compatible with upward-closures**, i.e.

Example of backward coverability analysis

VAS transitions with resets, transfers, and positive guards are **backward-compatible with upward-closures**, i.e.

Example of backward coverability analysis

VAS transitions with resets, transfers, and positive guards are **backward-compatible with upward-closures**, i.e.

Example of backward coverability analysis

VAS transitions with resets, transfers, and positive guards are **backward-compatible with upward-closures**, i.e.

Example of backward coverability analysis

These ideas for coverability analysis can be extended to:

• Lossy Channel Systems

(instead of Dickson's Lemma, use Higman's Lemma for the sub-sequence partial order)

• Timed Petri nets

(token have time-stamps, transitions have time constraints)

• Alternating Finite Memory Automata

(finite control states + one register to store and compare symbols from an infinite alphabet)

- If $\bar{x} \xrightarrow{\star}_{\Delta} \bar{y}$, then there is a partition (X, Y) of \mathbb{N}^k such that
 - A and Y are finite unions of linear sets (or, equally, sets definable in Presburger logic FO[N, +])
 - $\ \ \, \bigcirc \ \, \bar{x} \in X \text{ and } \overline{y} \in Y$
 - **③** X is a **forward invariant**, i.e. $(X + \Delta) \cap \mathbb{N}^k \subseteq X$
 - **(**) Y is a **backward invariant**, i.e. $(Y \Delta) \cap \mathbb{N}^k \subseteq Y$

- If $\bar{x} \xrightarrow{\star}_{\Delta} \bar{y}$, then there is a partition (X, Y) of \mathbb{N}^k such that
 - Q X and Y are finite unions of linear sets (or, equally, sets definable in Presburger logic FO[N, +])
 - $\ \ \, \bigcirc \ \, \bar{x} \in X \text{ and } \overline{y} \in Y$
 - **③** X is a **forward invariant**, i.e. $(X + \Delta) \cap \mathbb{N}^k \subseteq X$
 - **(9** *Y* is a **backward invariant**, i.e. $(Y Δ) ∩ \mathbb{N}^k ⊆ Y$

- If $\bar{x} \xrightarrow{\star}_{\Delta} \bar{y}$, then there is a partition (X, Y) of \mathbb{N}^k such that
 - X and Y are finite unions of linear sets (or, equally, sets definable in Presburger logic FO[N, +])
 - $\ \ \, \bigcirc \ \, \bar{x} \in X \text{ and } \overline{y} \in Y$
 - **③** X is a **forward invariant**, i.e. $(X + \Delta) \cap \mathbb{N}^k \subseteq X$
 - **(**) Y is a **backward invariant**, i.e. $(Y \Delta) \cap \mathbb{N}^k \subseteq Y$

- If $\bar{x} \xrightarrow{\star}_{\Delta} \bar{y}$, then there is a partition (X, Y) of \mathbb{N}^k such that
 - X and Y are finite unions of linear sets (or, equally, sets definable in Presburger logic FO[N, +])
 - $\ \ \, \bigcirc \ \, \bar{x} \in X \text{ and } \overline{y} \in Y$
 - **③** X is a **forward invariant**, i.e. $(X + \Delta) \cap \mathbb{N}^k \subseteq X$
 - **()** *Y* is a **backward invariant**, i.e. $(Y Δ) ∩ \mathbb{N}^k ⊆ Y$

- If $\bar{x} \xrightarrow{\star}_{\Delta} \bar{y}$, then there is a partition (X, Y) of \mathbb{N}^k such that
 - X and Y are finite unions of linear sets (or, equally, sets definable in Presburger logic FO[N, +])
 - $\ \ \, \bigcirc \ \, \bar{x} \in X \text{ and } \overline{y} \in Y$
 - **③** X is a **forward invariant**, i.e. $(X + \Delta) \cap \mathbb{N}^k \subseteq X$
 - **()** *Y* is a **backward invariant**, i.e. $(Y Δ) ∩ \mathbb{N}^k ⊆ Y$

Corollary (Lipton '76, Mayr '81, Kosaraju '82, Reutenauer '90, ...

The reachability problem for VAS is decidable with complexity between EXPSPACE and non-primitive recursive.

Corollary (Lipton '76, Mayr '81, Kosaraju '82, Reutenauer '90, ...)

The reachability problem for VAS is decidable with complexity between EXPSPACE and non-primitive recursive.

- the possible finite sequences π of transitions (answer positively if $\bar{x} \xrightarrow{\pi} \bar{y}$)
- ② the possible Presburger formulas defining partitions (X, Y) of N^k (answer negatively if (X, Y) is an invariant separating x̄ and ȳ)

