
Reachability via saturation

Gabriele Puppis

LaBRI / CNRS



Reachability is semi-decidable

A path connecting two sets, if exists, can be found in finitely many steps.

Forward analysis

III FFF

The problem is of course termination,

namely, to detect non-reachability...



Reachability is semi-decidable

A path connecting two sets, if exists, can be found in finitely many steps.

Forward analysis

III FFF

The problem is of course termination,

namely, to detect non-reachability...



Reachability is semi-decidable

A path connecting two sets, if exists, can be found in finitely many steps.

Forward analysis

III FFF

The problem is of course termination,

namely, to detect non-reachability...



Reachability is semi-decidable

A path connecting two sets, if exists, can be found in finitely many steps.

Forward analysis

III FFF

The problem is of course termination,

namely, to detect non-reachability...



Reachability is semi-decidable

A path connecting two sets, if exists, can be found in finitely many steps.

Forward analysis

III FFF

The problem is of course termination,

namely, to detect non-reachability...



Reachability is semi-decidable

A path connecting two sets, if exists, can be found in finitely many steps.

Forward analysis

III FFF

Backward analysis

III FFF

The problem is of course termination,

namely, to detect non-reachability...



Sometimes non-reachability can be checked effectively

using “safe” over-approximations of reachable sets

guess a
separator

Both approaches require symbolic representations of infinite sets



Sometimes non-reachability can be checked effectively

using “safe” over-approximations of reachable sets

a

Acceleration / pumping

III FFF

guess a
separator

Both approaches require symbolic representations of infinite sets



Sometimes non-reachability can be checked effectively

using “safe” over-approximations of reachable sets

a

a⋆

Acceleration / pumping

III FFF

guess a
separator

Both approaches require symbolic representations of infinite sets



Sometimes non-reachability can be checked effectively

using “safe” over-approximations of reachable sets

a

b

a⋆

Acceleration / pumping

III FFF

guess a
separator

Both approaches require symbolic representations of infinite sets



Sometimes non-reachability can be checked effectively

using “safe” over-approximations of reachable sets

a

b

a⋆

b⋆

Acceleration / pumping

III FFF

guess a
separator

Both approaches require symbolic representations of infinite sets



Sometimes non-reachability can be checked effectively

using “safe” over-approximations of reachable sets

a

b

a⋆

b⋆

π

Acceleration / pumping

III FFF

guess a
separator

Both approaches require symbolic representations of infinite sets



Sometimes non-reachability can be checked effectively

using “safe” over-approximations of reachable sets

a

b

a⋆

b⋆

π

π⋆

Acceleration / pumping

III FFF

guess a
separator

Both approaches require symbolic representations of infinite sets



Sometimes non-reachability can be checked effectively

using “safe” over-approximations of reachable sets

a

b

a⋆

b⋆

π

π⋆

Acceleration / pumping

III FFF

Invariant analysis

III FFF

guess a
separator

Both approaches require symbolic representations of infinite sets



Sometimes non-reachability can be checked effectively

using “safe” over-approximations of reachable sets

a

b

a⋆

b⋆

π

π⋆

Acceleration / pumping

III FFF

Invariant analysis

III FFF

guess a
separator
guess a

separator

Both approaches require symbolic representations of infinite sets



Sometimes non-reachability can be checked effectively

using “safe” over-approximations of reachable sets

a

b

a⋆

b⋆

π

π⋆

Acceleration / pumping

III FFF

Invariant analysis

III FFF

guess a
separator

Both approaches require symbolic representations of infinite sets



Backward reachability for pushdown systems

Given a pushdown system P = (Q,Σ, Γ,∆) and

a set B0 ⊆ Q ⋅ Γ⋆ of target configurations, define:

Bn+1 = Bn ∪ { qz ∣ ∃q′z ′ ∈ Bn. ∃a ∈ Σ. qz
a
ÐÐÐ→ q′z ′qz a
ÐÐÐ→ q′z ′qz a
ÐÐÐ→ q′z ′ }

Bω = ∪n ∈N Bn

Bω contains the configurations from which one can reach B0

Bω is usually infinite, but is it perhaps regular?

Example

Consider the pushdown system
q pop γ

B0 = {qε} B1 = {qε, qγ} B2 = {qε, qγ, qγγ} . . .

Bω = qε⋆ is indeed regular, but how to efficiently compute it?



Backward reachability for pushdown systems

Given a pushdown system P = (Q,Σ, Γ,∆) and

a set B0 ⊆ Q ⋅ Γ⋆ of target configurations, define:

Bn+1 = Bn ∪ { qz ∣ ∃q′z ′ ∈ Bn. ∃a ∈ Σ. qz
a
ÐÐÐ→ q′z ′qz a
ÐÐÐ→ q′z ′qz a
ÐÐÐ→ q′z ′ }

Bω = ∪n ∈N Bn

Bω contains the configurations from which one can reach B0

Bω is usually infinite, but is it perhaps regular?

Example

Consider the pushdown system
q pop γ

B0 = {qε} B1 = {qε, qγ} B2 = {qε, qγ, qγγ} . . .

Bω = qε⋆ is indeed regular, but how to efficiently compute it?



Backward reachability for pushdown systems

Given a pushdown system P = (Q,Σ, Γ,∆) and

a set B0 ⊆ Q ⋅ Γ⋆ of target configurations, define:

Bn+1 = Bn ∪ { qz ∣ ∃q′z ′ ∈ Bn. ∃a ∈ Σ. qz
a
ÐÐÐ→ q′z ′qz a
ÐÐÐ→ q′z ′qz a
ÐÐÐ→ q′z ′ }

Bω = ∪n ∈N Bn

Bω contains the configurations from which one can reach B0

Bω is usually infinite, but is it perhaps regular?

Example

Consider the pushdown system
q pop γ

B0 = {qε} B1 = {qε, qγ} B2 = {qε, qγ, qγγ} . . .

Bω = qε⋆ is indeed regular, but how to efficiently compute it?



Backward reachability for pushdown systems

Given a pushdown system P = (Q,Σ, Γ,∆) and

a set B0 ⊆ Q ⋅ Γ⋆ of target configurations, define:

Bn+1 = Bn ∪ { qz ∣ ∃q′z ′ ∈ Bn. ∃a ∈ Σ. qz
a
ÐÐÐ→ q′z ′qz a
ÐÐÐ→ q′z ′qz a
ÐÐÐ→ q′z ′ }

Bω = ∪n ∈N Bn

Bω contains the configurations from which one can reach B0

Bω is usually infinite, but is it perhaps regular?

Example

Consider the pushdown system
q pop γ

B0 = {qε} B1 = {qε, qγ} B2 = {qε, qγ, qγγ} . . .

Bω = qε⋆ is indeed regular, but how to efficiently compute it?



Backward reachability for pushdown systems

Given a pushdown system P = (Q,Σ, Γ,∆) and

a set B0 ⊆ Q ⋅ Γ⋆ of target configurations, define:

Bn+1 = Bn ∪ { qz ∣ ∃q′z ′ ∈ Bn. ∃a ∈ Σ. qz
a
ÐÐÐ→ q′z ′qz a
ÐÐÐ→ q′z ′qz a
ÐÐÐ→ q′z ′ }

Bω = ∪n ∈N Bn

Bω contains the configurations from which one can reach B0

Bω is usually infinite, but is it perhaps regular?

Example

Consider the pushdown system
q pop γ

B0 = {qε} B1 = {qε, qγ} B2 = {qε, qγ, qγγ} . . .

Bω = qε⋆ is indeed regular, but how to efficiently compute it?



“Pump” the changes from Bn to Bn+1 to obtain

a new sequence C0, C1, . . . that converges more quickly:

(completeness) ∀n ∈ N. BnBnBn ⊆⊆⊆ CnCnCn

(soundness) ∀n ∈ N. CnCnCn ⊆⊆⊆ BωBωBω

(termination) ∃n ∈ N. CnCnCn === Cn+1Cn+1Cn+1

the limit ∪n∈N Cn coincides with Bω

The sets C0, C1, . . . will be defined by

automata A0,A1, . . . sharing the same state spacesame state spacesame state space...



“Pump” the changes from Bn to Bn+1 to obtain

a new sequence C0, C1, . . . that converges more quickly:

(completeness) ∀n ∈ N. BnBnBn ⊆⊆⊆ CnCnCn

(soundness) ∀n ∈ N. CnCnCn ⊆⊆⊆ BωBωBω

(termination) ∃n ∈ N. CnCnCn === Cn+1Cn+1Cn+1

the limit ∪n∈N Cn coincides with Bω

The sets C0, C1, . . . will be defined by

automata A0,A1, . . . sharing the same state spacesame state spacesame state space...



Initial conditions

The pushdown system P has m states q1, . . . , qm

The automaton A0 recognizing C0 = B0 has a single

initial non-final state s0, m distinct states s1, . . . , sm,

and possibly other states

No transition in A0 reaches the initial state s0

The unique qi -labelled transition in A0 is (s0, qi , si)

The other transitions in A0 are labelled by stack symbols

A0

s0s0

s1

⋮

sm

. . .

. . .

×××

q1

qm

Γ

Γ



Initial conditions

The pushdown system P has m states q1, . . . , qm

The automaton A0 recognizing C0 = B0 has a single

initial non-final state s0, m distinct states s1, . . . , sm,

and possibly other states

No transition in A0 reaches the initial state s0

The unique qi -labelled transition in A0 is (s0, qi , si)

The other transitions in A0 are labelled by stack symbols

A0

s0s0

s1

⋮

sm

. . .

. . .

×××

q1

qm

Γ

Γ



Initial conditions

The pushdown system P has m states q1, . . . , qm

The automaton A0 recognizing C0 = B0 has a single

initial non-final state s0, m distinct states s1, . . . , sm,

and possibly other states

No transition in A0 reaches the initial state s0

The unique qi -labelled transition in A0 is (s0, qi , si)

The other transitions in A0 are labelled by stack symbols

A0

s0s0

s1

⋮

sm

. . .

. . .

×××

q1

qm

Γ

Γ



Initial conditions

The pushdown system P has m states q1, . . . , qm

The automaton A0 recognizing C0 = B0 has a single

initial non-final state s0, m distinct states s1, . . . , sm,

and possibly other states

No transition in A0 reaches the initial state s0

The unique qi -labelled transition in A0 is (s0, qi , si)

The other transitions in A0 are labelled by stack symbols

A0

s0s0

s1

⋮

sm

. . .

. . .

×××

q1

qm

Γ

Γ



Initial conditions

The pushdown system P has m states q1, . . . , qm

The automaton A0 recognizing C0 = B0 has a single

initial non-final state s0, m distinct states s1, . . . , sm,

and possibly other states

No transition in A0 reaches the initial state s0

The unique qi -labelled transition in A0 is (s0, qi , si)

The other transitions in A0 are labelled by stack symbols

A0

s0s0

s1

⋮

sm

. . .

. . .

×××

q1

qm

Γ

Γ



Saturation procedure

Construct An+1 from An by adding transitions, as follows:

1 select a transition rule (qiγqiγqiγ, a,qjzqjzqjz) in the pushdown system P

2 select a state s ′s ′s ′ in An reachable from s0s0s0 via a qjzqjzqjz-labelled path

3 add transition (sisisi , γγγ, s
′s ′s ′)

An

s0s0

si

⋮

sj

. . .

. . .

qi

qj

s ′

z

γ

Termination: straightforward

Only polynomially many

transitions can be added

(⇒ reachability in PTIME)

Soundness: by induction on n

s0s0s0
q′z ′q′z ′q′z ′
ÐÐÐ→
An+1

s ′s ′s ′

⇓

s0s0s0
qzqzqz
ÐÐÐ→
A0
s ′s ′s ′ ∧ q′z ′q′z ′q′z ′ ⋆

ÐÐÐ→
P

qzqzqz

Completeness:

∀ config. qiγwqiγwqiγw ∈ Bn+1 ∖ Bn

∃ trans. qiγwqiγwqiγw
a
ÐÐÐ→
P
qjzwqjzwqjzw

with qjzwqjzwqjzw ∈ Bn

Select rule (qiγqiγqiγ, a,qjzqjzqjz) in P

and path s0s0s0
qjzqjzqjz
ÐÐÐ→
An
s ′s ′s ′ in An

to prove that qiγwqiγwqiγw ∈ L (An+1)



Saturation procedure

Construct An+1 from An by adding transitions, as follows:

1 select a transition rule (qiγqiγqiγ, a,qjzqjzqjz) in the pushdown system P

2 select a state s ′s ′s ′ in An reachable from s0s0s0 via a qjzqjzqjz-labelled path

3 add transition (sisisi , γγγ, s
′s ′s ′)

An

s0s0

si

⋮

sj

. . .

. . .

qi

qj

s ′

z

γ

Termination: straightforward

Only polynomially many

transitions can be added

(⇒ reachability in PTIME)

Soundness: by induction on n

s0s0s0
q′z ′q′z ′q′z ′
ÐÐÐ→
An+1

s ′s ′s ′

⇓

s0s0s0
qzqzqz
ÐÐÐ→
A0
s ′s ′s ′ ∧ q′z ′q′z ′q′z ′ ⋆

ÐÐÐ→
P

qzqzqz

Completeness:

∀ config. qiγwqiγwqiγw ∈ Bn+1 ∖ Bn

∃ trans. qiγwqiγwqiγw
a
ÐÐÐ→
P
qjzwqjzwqjzw

with qjzwqjzwqjzw ∈ Bn

Select rule (qiγqiγqiγ, a,qjzqjzqjz) in P

and path s0s0s0
qjzqjzqjz
ÐÐÐ→
An
s ′s ′s ′ in An

to prove that qiγwqiγwqiγw ∈ L (An+1)



Saturation procedure

Construct An+1 from An by adding transitions, as follows:

1 select a transition rule (qiγqiγqiγ, a,qjzqjzqjz) in the pushdown system P

2 select a state s ′s ′s ′ in An reachable from s0s0s0 via a qjzqjzqjz-labelled path

3 add transition (sisisi , γγγ, s
′s ′s ′)

An

s0s0

si

⋮

sj

. . .

. . .

qi

qj

s ′

z

γ

Termination: straightforward

Only polynomially many

transitions can be added

(⇒ reachability in PTIME)

Soundness: by induction on n

s0s0s0
q′z ′q′z ′q′z ′
ÐÐÐ→
An+1

s ′s ′s ′

⇓

s0s0s0
qzqzqz
ÐÐÐ→
A0
s ′s ′s ′ ∧ q′z ′q′z ′q′z ′ ⋆

ÐÐÐ→
P

qzqzqz

Completeness:

∀ config. qiγwqiγwqiγw ∈ Bn+1 ∖ Bn

∃ trans. qiγwqiγwqiγw
a
ÐÐÐ→
P
qjzwqjzwqjzw

with qjzwqjzwqjzw ∈ Bn

Select rule (qiγqiγqiγ, a,qjzqjzqjz) in P

and path s0s0s0
qjzqjzqjz
ÐÐÐ→
An
s ′s ′s ′ in An

to prove that qiγwqiγwqiγw ∈ L (An+1)



Saturation procedure

Construct An+1 from An by adding transitions, as follows:

1 select a transition rule (qiγqiγqiγ, a,qjzqjzqjz) in the pushdown system P

2 select a state s ′s ′s ′ in An reachable from s0s0s0 via a qjzqjzqjz-labelled path

3 add transition (sisisi , γγγ, s
′s ′s ′)

An

s0s0

si

⋮

sj

. . .

. . .

qi

qj

s ′

z

γ

Termination: straightforward

Only polynomially many

transitions can be added

(⇒ reachability in PTIME)

Soundness: by induction on n

s0s0s0
q′z ′q′z ′q′z ′
ÐÐÐ→
An+1

s ′s ′s ′

⇓

s0s0s0
qzqzqz
ÐÐÐ→
A0
s ′s ′s ′ ∧ q′z ′q′z ′q′z ′ ⋆

ÐÐÐ→
P

qzqzqz

Completeness:

∀ config. qiγwqiγwqiγw ∈ Bn+1 ∖ Bn

∃ trans. qiγwqiγwqiγw
a
ÐÐÐ→
P
qjzwqjzwqjzw

with qjzwqjzwqjzw ∈ Bn

Select rule (qiγqiγqiγ, a,qjzqjzqjz) in P

and path s0s0s0
qjzqjzqjz
ÐÐÐ→
An
s ′s ′s ′ in An

to prove that qiγwqiγwqiγw ∈ L (An+1)



Saturation procedure

Construct An+1 from An by adding transitions, as follows:

1 select a transition rule (qiγqiγqiγ, a,qjzqjzqjz) in the pushdown system P

2 select a state s ′s ′s ′ in An reachable from s0s0s0 via a qjzqjzqjz-labelled path

3 add transition (sisisi , γγγ, s
′s ′s ′)

An

s0s0

si

⋮

sj

. . .

. . .

qi

qj

s ′

z

γ

Termination: straightforward

Only polynomially many

transitions can be added

(⇒ reachability in PTIME)

Soundness: by induction on n

s0s0s0
q′z ′q′z ′q′z ′
ÐÐÐ→
An+1

s ′s ′s ′

⇓

s0s0s0
qzqzqz
ÐÐÐ→
A0
s ′s ′s ′ ∧ q′z ′q′z ′q′z ′ ⋆

ÐÐÐ→
P

qzqzqz

Completeness:

∀ config. qiγwqiγwqiγw ∈ Bn+1 ∖ Bn

∃ trans. qiγwqiγwqiγw
a
ÐÐÐ→
P
qjzwqjzwqjzw

with qjzwqjzwqjzw ∈ Bn

Select rule (qiγqiγqiγ, a,qjzqjzqjz) in P

and path s0s0s0
qjzqjzqjz
ÐÐÐ→
An
s ′s ′s ′ in An

to prove that qiγwqiγwqiγw ∈ L (An+1)



Saturation procedure

Construct An+1 from An by adding transitions, as follows:

1 select a transition rule (qiγqiγqiγ, a,qjzqjzqjz) in the pushdown system P

2 select a state s ′s ′s ′ in An reachable from s0s0s0 via a qjzqjzqjz-labelled path

3 add transition (sisisi , γγγ, s
′s ′s ′)

An

s0s0

si

⋮

sj

. . .

. . .

qi

qj

s ′

z

γ

Termination: straightforward

Only polynomially many

transitions can be added

(⇒ reachability in PTIME)

Soundness: by induction on n

s0s0s0
q′z ′q′z ′q′z ′
ÐÐÐ→
An+1

s ′s ′s ′

⇓

s0s0s0
qzqzqz
ÐÐÐ→
A0
s ′s ′s ′ ∧ q′z ′q′z ′q′z ′ ⋆

ÐÐÐ→
P

qzqzqz

Completeness:

∀ config. qiγwqiγwqiγw ∈ Bn+1 ∖ Bn

∃ trans. qiγwqiγwqiγw
a
ÐÐÐ→
P
qjzwqjzwqjzw

with qjzwqjzwqjzw ∈ Bn

Select rule (qiγqiγqiγ, a,qjzqjzqjz) in P

and path s0s0s0
qjzqjzqjz
ÐÐÐ→
An
s ′s ′s ′ in An

to prove that qiγwqiγwqiγw ∈ L (An+1)



Example

Consider the target set B0 = {q2γ1γ2γ3} over the pushdown system

q1 q2

γ6γ6γ6/εεεγ6/ε

γ5/γ4γ3

γ4γ4γ4/γ1γ2γ1γ2γ1γ2γ4/γ1γ2

s0

s1

s2 s3 s4 s5

q1

q2

γ1γ1γ1γ1 γ2 γ3γ3γ3γ3

C0 = {q2γ1γ2γ3}

C1 = {q2γ1γ2γ3, q2γ4γ3}

C2 = {q2γ1γ2γ3, q2γ4γ3, q1γ5}

C3 = {q2γ1γ2γ3, q2γ4γ3, q1γ6γ5}



Example

Consider the target set B0 = {q2γ1γ2γ3} over the pushdown system

q1 q2

γ6γ6γ6/εεεγ6/ε

γ5/γ4γ3

γ4γ4γ4/γ1γ2γ1γ2γ1γ2γ4γ4γ4/γ1γ2γ1γ2γ1γ2

s0

s1

s2 s3 s4 s5

q1

q2q2q2
γ1γ1γ1γ1γ1γ1 γ2γ2γ2γ2γ2γ2 γ3γ3γ3γ3

γ4γ4γ4

C0 = {q2γ1γ2γ3}

C1 = {q2γ1γ2γ3, q2γ4γ3}

C2 = {q2γ1γ2γ3, q2γ4γ3, q1γ5}

C3 = {q2γ1γ2γ3, q2γ4γ3, q1γ6γ5}



Example

Consider the target set B0 = {q2γ1γ2γ3} over the pushdown system

q1 q2

γ6γ6γ6/εεεγ6/ε

γ5/γ4γ3

γ4γ4γ4/γ1γ2γ1γ2γ1γ2γ4/γ1γ2

s0

s1

s2 s3 s4 s5

q1

q2

γ1γ1γ1γ1 γ2 γ3γ3γ3γ3

γ4

C0 = {q2γ1γ2γ3}

C1 = {q2γ1γ2γ3, q2γ4γ3}

C2 = {q2γ1γ2γ3, q2γ4γ3, q1γ5}

C3 = {q2γ1γ2γ3, q2γ4γ3, q1γ6γ5}



Example

Consider the target set B0 = {q2γ1γ2γ3} over the pushdown system

q1 q2

γ6γ6γ6/εεεγ6/ε

γ5γ5γ5/γ4γ3γ4γ3γ4γ3

γ4γ4γ4/γ1γ2γ1γ2γ1γ2γ4/γ1γ2

s0

s1

s2 s3 s4 s5

q1

q2q2q2
γ1γ1γ1γ1 γ2 γ3γ3γ3γ3γ3γ3

γ4γ4γ4

γ5γ5γ5

C0 = {q2γ1γ2γ3}

C1 = {q2γ1γ2γ3, q2γ4γ3}

C2 = {q2γ1γ2γ3, q2γ4γ3, q1γ5}

C3 = {q2γ1γ2γ3, q2γ4γ3, q1γ6γ5}



Example

Consider the target set B0 = {q2γ1γ2γ3} over the pushdown system

q1 q2

γ6γ6γ6/εεεγ6/ε

γ5/γ4γ3

γ4γ4γ4/γ1γ2γ1γ2γ1γ2γ4/γ1γ2

s0

s1

s2 s3 s4 s5

q1

q2

γ1γ1γ1γ1 γ2 γ3γ3γ3γ3

γ4

γ5

C0 = {q2γ1γ2γ3}

C1 = {q2γ1γ2γ3, q2γ4γ3}

C2 = {q2γ1γ2γ3, q2γ4γ3, q1γ5}

C3 = {q2γ1γ2γ3, q2γ4γ3, q1γ6γ5}



Example

Consider the target set B0 = {q2γ1γ2γ3} over the pushdown system

q1 q2

γ6γ6γ6/εεεγ6γ6γ6/εεε

γ5/γ4γ3

γ4γ4γ4/γ1γ2γ1γ2γ1γ2γ4/γ1γ2

s0

s1

s2 s3 s4 s5

q1q1q1

q2

γ1γ1γ1γ1 γ2 γ3γ3γ3γ3

γ4

γ5

γ6γ6γ6

C0 = {q2γ1γ2γ3}

C1 = {q2γ1γ2γ3, q2γ4γ3}

C2 = {q2γ1γ2γ3, q2γ4γ3, q1γ5}

C3 = {q2γ1γ2γ3, q2γ4γ3, q1γ6γ5}



Example

Consider the target set B0 = {q2γ1γ2γ3} over the pushdown system

q1 q2

γ6γ6γ6/εεεγ6/ε

γ5/γ4γ3

γ4γ4γ4/γ1γ2γ1γ2γ1γ2γ4/γ1γ2

s0

s1

s2 s3 s4 s5

q1

q2

γ1γ1γ1γ1 γ2 γ3γ3γ3γ3

γ4

γ5

γ6

C0 = {q2γ1γ2γ3}

C1 = {q2γ1γ2γ3, q2γ4γ3}

C2 = {q2γ1γ2γ3, q2γ4γ3, q1γ5}

C3 = {q2γ1γ2γ3, q2γ4γ3, q1γ
⋆
6γ5}

= Bω



Theorem (Bouajjani, Esparza & Maler ’97)

Given a pushdown system P and a regular set B of configurations,

the set of configurations that can reach B

is regular and can be computed in polynomial time.

Similar generalizations can be proved for:

tree rewriting systems

(Löding ’06, . . . )

reachability games on higher-order pushdown systems

(Bouajjani & Meyer ’04, Hague & Ong ’07, . . . )

. . .



Theorem (Bouajjani, Esparza & Maler ’97)

Given an alternatingalternatingalternating pushdown system P and a regular set B of conf.,

the winning regionwinning regionwinning region for the B-reachability gameB-reachability gameB-reachability game

is regular and can be computed in polynomial time.

Similar generalizations can be proved for:

tree rewriting systems

(Löding ’06, . . . )

reachability games on higher-order pushdown systems

(Bouajjani & Meyer ’04, Hague & Ong ’07, . . . )

. . .



Theorem (Bouajjani, Esparza & Maler ’97)

Given an alternatingalternatingalternating pushdown system P and a regular set B of conf.,

the winning regionwinning regionwinning region for the B-reachability gameB-reachability gameB-reachability game

is regular and can be computed in polynomial time.

Similar generalizations can be proved for:

tree rewriting systems

(Löding ’06, . . . )

reachability games on higher-order pushdown systems

(Bouajjani & Meyer ’04, Hague & Ong ’07, . . . )

. . .



Next we will focus on reachability for systems that use

variables over natural numbers instead of a stack...

(x , y) ∶= (0, 0)(x , y) ∶= (0, 0)(x , y) ∶= (0, 0)

while (x , y) ≠ (0, 1)(x , y) ≠ (0, 1)(x , y) ≠ (0, 1) do

if [input is north west] then

(x , y) ∶= (x , y) + (1, 3)(x , y) ∶= (x , y) + (1, 3)(x , y) ∶= (x , y) + (1, 3)

else if [input is north east] then

(x , y) ∶= (x , y) + (−1, 1)(x , y) ∶= (x , y) + (−1, 1)(x , y) ∶= (x , y) + (−1, 1)

else if [input is south] then

(x , y) ∶= (x , y) + (0,−2)(x , y) ∶= (x , y) + (0,−2)(x , y) ∶= (x , y) + (0,−2)

x

y

?

Definition

A vector addition system (VAS) is a transition system (Nk ,∆),

where ∆ is a finite subset of Zk and

x̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳ iff

⎧⎪⎪
⎨
⎪⎪⎩

x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0

ȳ − x̄ ∈ ∆ȳ − x̄ ∈ ∆ȳ − x̄ ∈ ∆



Next we will focus on reachability for systems that use

variables over natural numbers instead of a stack...

(x , y) ∶= (0, 0)(x , y) ∶= (0, 0)(x , y) ∶= (0, 0)

while (x , y) ≠ (0, 1)(x , y) ≠ (0, 1)(x , y) ≠ (0, 1) do

if [input is north west] then

(x , y) ∶= (x , y) + (1, 3)(x , y) ∶= (x , y) + (1, 3)(x , y) ∶= (x , y) + (1, 3)

else if [input is north east] then

(x , y) ∶= (x , y) + (−1, 1)(x , y) ∶= (x , y) + (−1, 1)(x , y) ∶= (x , y) + (−1, 1)

else if [input is south] then

(x , y) ∶= (x , y) + (0,−2)(x , y) ∶= (x , y) + (0,−2)(x , y) ∶= (x , y) + (0,−2)

x

y

?

Definition

A vector addition system (VAS) is a transition system (Nk ,∆),

where ∆ is a finite subset of Zk and

x̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳ iff

⎧⎪⎪
⎨
⎪⎪⎩

x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0

ȳ − x̄ ∈ ∆ȳ − x̄ ∈ ∆ȳ − x̄ ∈ ∆



Definition

A lossy VAS is a transition system (Nk ,∆),

where ∆ is a finite subset of Q × Zk ×Q and

x̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳ iff

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0

ȳ ′ − x̄ ∈ ∆ȳ ′ − x̄ ∈ ∆ȳ ′ − x̄ ∈ ∆ for some ȳ ′ ≥ ȳ

A VAS with states is a transition system (Q × Nk ,∆),

where ∆ is a finite subset of Q × Zk ×Q and

(p, x̄) ÐÐÐ→ (q, ȳ)(p, x̄) ÐÐÐ→ (q, ȳ)(p, x̄) ÐÐÐ→ (q, ȳ) iff

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0

(p, ȳ − x̄ , q) ∈ ∆(p, ȳ − x̄ , q) ∈ ∆(p, ȳ − x̄ , q) ∈ ∆

States do not add power, as they can be implemented by counters

e.g. 2 states = 2 additional counters that sum up to 1

(p, x̄) ÐÐ→ (q, ȳ) becomes (0, 1, x̄) ÐÐ→ (1, 0, ȳ)



Definition

A lossy VAS is a transition system (Nk ,∆),

where ∆ is a finite subset of Q × Zk ×Q and

x̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳ iff

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0

ȳ ′ − x̄ ∈ ∆ȳ ′ − x̄ ∈ ∆ȳ ′ − x̄ ∈ ∆ for some ȳ ′ ≥ ȳ

A VAS with states is a transition system (Q × Nk ,∆),

where ∆ is a finite subset of Q × Zk ×Q and

(p, x̄) ÐÐÐ→ (q, ȳ)(p, x̄) ÐÐÐ→ (q, ȳ)(p, x̄) ÐÐÐ→ (q, ȳ) iff

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0

(p, ȳ − x̄ , q) ∈ ∆(p, ȳ − x̄ , q) ∈ ∆(p, ȳ − x̄ , q) ∈ ∆

States do not add power, as they can be implemented by counters

e.g. 2 states = 2 additional counters that sum up to 1

(p, x̄) ÐÐ→ (q, ȳ) becomes (0, 1, x̄) ÐÐ→ (1, 0, ȳ)



Definition

A lossy VAS is a transition system (Nk ,∆),

where ∆ is a finite subset of Q × Zk ×Q and

x̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳ iff

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0

ȳ ′ − x̄ ∈ ∆ȳ ′ − x̄ ∈ ∆ȳ ′ − x̄ ∈ ∆ for some ȳ ′ ≥ ȳ

A VAS with states is a transition system (Q × Nk ,∆),

where ∆ is a finite subset of Q × Zk ×Q and

(p, x̄) ÐÐÐ→ (q, ȳ)(p, x̄) ÐÐÐ→ (q, ȳ)(p, x̄) ÐÐÐ→ (q, ȳ) iff

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0

(p, ȳ − x̄ , q) ∈ ∆(p, ȳ − x̄ , q) ∈ ∆(p, ȳ − x̄ , q) ∈ ∆

States do not add power, as they can be implemented by counters

e.g. 2 states = 2 additional counters that sum up to 1

(p, x̄) ÐÐ→ (q, ȳ) becomes (0, 1, x̄) ÐÐ→ (1, 0, ȳ)



VAS are the same as Petri nets:

configurations = tokens per location (e.g. (2, 1, 3, 0, 0))

transitions = transfers of tokens (e.g. (0,−1,−1, 0, 1))



VAS are the same as Petri nets:

configurations = tokens per location (e.g. (2, 1, 3, 0, 0))

transitions = transfers of tokens (e.g. (0,−1,−1, 0, 1))



VAS are the same as Petri nets:

configurations = tokens per location (e.g. (2, 1, 3, 0, 0))

transitions = transfers of tokens (e.g. (0,−1,−1, 0, 1))



VAS are the same as Petri nets:

configurations = tokens per location (e.g. (2, 1, 3, 0, 0))

transitions = transfers of tokens (e.g. (0,−1,−1, 0, 1))



VAS are the same as Petri nets:

configurations = tokens per location (e.g. (2, 1, 3, 0, 0))

transitions = transfers of tokens (e.g. (0,−1,−1, 0, 1))



VAS are the same as Petri nets:

configurations = tokens per location (e.g. (2, 1, 3, 0, 0))

transitions = transfers of tokens (e.g. (0,−1,−1, 0, 1))



VAS are the same as Petri nets:

configurations = tokens per location (e.g. (2, 1, 3, 0, 0))

transitions = transfers of tokens (e.g. (0,−1,−1, 0, 1))



VAS are the same as Petri nets:

configurations = tokens per location (e.g. (2, 1, 3, 0, 0))

transitions = transfers of tokens (e.g. (0,−1,−1, 0, 1))



VAS are the same as Petri nets:

configurations = tokens per location (e.g. (2, 1, 3, 0, 0))

transitions = transfers of tokens (e.g. (0,−1,−1, 0, 1))



VAS are the same as Petri nets:

configurations = tokens per location (e.g. (2, 1, 3, 0, 0))

transitions = transfers of tokens (e.g. (0,−1,−1, 0, 1))



We may expect that reachable sets are linear...

but they are not!

(0, 0)

+ (3, 1)N + (−1, 1)N + (0,−2)N

Theorem (Ginsburg ’66)

Finite unions of linear sets are

precisely the Presburger sets

i.e. sets definable in FO[N,+]FO[N,+]FO[N,+]

e.g. ϕ(x , y) = ∃z . x + y = z + z

x + y x

y

(x + y) ≤ zzz ≤ O((x + y)2)



We may expect that reachable sets are linear...

but they are not!

(0, 0) + (3, 1)N

+ (−1, 1)N + (0,−2)N

Theorem (Ginsburg ’66)

Finite unions of linear sets are

precisely the Presburger sets

i.e. sets definable in FO[N,+]FO[N,+]FO[N,+]

e.g. ϕ(x , y) = ∃z . x + y = z + z

x + y x

y

(x + y) ≤ zzz ≤ O((x + y)2)



We may expect that reachable sets are linear...

but they are not!

(0, 0) + (3, 1)N + (−1, 1)N

+ (0,−2)N

Theorem (Ginsburg ’66)

Finite unions of linear sets are

precisely the Presburger sets

i.e. sets definable in FO[N,+]FO[N,+]FO[N,+]

e.g. ϕ(x , y) = ∃z . x + y = z + z

x + y x

y

(x + y) ≤ zzz ≤ O((x + y)2)



We may expect that reachable sets are linear...

but they are not!

(0, 0) + (3, 1)N + (−1, 1)N + (0,−2)N

Theorem (Ginsburg ’66)

Finite unions of linear sets are

precisely the Presburger sets

i.e. sets definable in FO[N,+]FO[N,+]FO[N,+]

e.g. ϕ(x , y) = ∃z . x + y = z + z

x + y x

y

(x + y) ≤ zzz ≤ O((x + y)2)



We may expect that reachable sets are linear...

but they are not!

(0, 0) + (3, 1)N + (−1, 1)N + (0,−2)N

Theorem (Ginsburg ’66)

Finite unions of linear sets are

precisely the Presburger sets

i.e. sets definable in FO[N,+]FO[N,+]FO[N,+]

e.g. ϕ(x , y) = ∃z . x + y = z + z

x + y x

y

(x + y) ≤ zzz ≤ O((x + y)2)



We may expect that reachable sets are linear... but they are not!

p q

(+1, 0)

,+1+1+1

(0,+1)

,+1+1+1

(+1,−1)

,+1+1+1

(−1,+1)

,+1+1+1

x + y x

y

(x + y) ≤ zzz ≤ O((x + y)2)



We may expect that reachable sets are linear... but they are not!

p q

(+1, 0,+1+1+1)

(0,+1,+1+1+1)

(+1,−1,+1+1+1) (−1,+1,+1+1+1)

x + y x

y

(x + y) ≤ zzz ≤ O((x + y)2)



We may expect that reachable sets are linear... but they are not!

p q

(+1, 0,+1+1+1)

(0,+1,+1+1+1)

(+1,−1,+1+1+1) (−1,+1,+1+1+1)

x + y

z

(x + y) ≤ zzz ≤ O((x + y)2)



To overcome the problem of representing reachable sets,

we try to over-approximate by downward closures:

V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }

This is not an approximation for lossylossylossy VAS! x̄̄x̄x ȳ̄ȳy

z̄̄z̄z

≥ ≥≥

Dickson’s Lemma 1913

The pointwise order ≤ on Nk is a well partial order

(i.e. all decreasing chains and all antichains are finite)

x

y
Lemma

For all subsets V of (N ∪ {∞}N ∪ {∞}N ∪ {∞})k , there is an antichainantichainantichain W such that

V ↓ = W ↓V ↓ = W ↓V ↓ = W ↓

⇒ we can finitely represent downward-closed sets by antichains



To overcome the problem of representing reachable sets,

we try to over-approximate by downward closures:

V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }

This is not an approximation for lossylossylossy VAS! x̄̄x̄x ȳ̄ȳy

z̄̄z̄z

≥ ≥≥

Dickson’s Lemma 1913

The pointwise order ≤ on Nk is a well partial order

(i.e. all decreasing chains and all antichains are finite)

x

y
Lemma

For all subsets V of (N ∪ {∞}N ∪ {∞}N ∪ {∞})k , there is an antichainantichainantichain W such that

V ↓ = W ↓V ↓ = W ↓V ↓ = W ↓

⇒ we can finitely represent downward-closed sets by antichains



To overcome the problem of representing reachable sets,

we try to over-approximate by downward closures:

V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }

This is not an approximation for lossylossylossy VAS! x̄̄x̄x ȳ̄ȳy

z̄̄z̄z

≥ ≥≥

Dickson’s Lemma 1913

The pointwise order ≤ on Nk is a well partial order

(i.e. all decreasing chains and all antichains are finite)

x

y

Lemma

For all subsets V of (N ∪ {∞}N ∪ {∞}N ∪ {∞})k , there is an antichainantichainantichain W such that

V ↓ = W ↓V ↓ = W ↓V ↓ = W ↓

⇒ we can finitely represent downward-closed sets by antichains



To overcome the problem of representing reachable sets,

we try to over-approximate by downward closures:

V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }

This is not an approximation for lossylossylossy VAS! x̄̄x̄x ȳ̄ȳy

z̄̄z̄z

≥ ≥≥

Dickson’s Lemma 1913

The pointwise order ≤ on Nk is a well partial order

(i.e. all decreasing chains and all antichains are finite)

x

y

Lemma

For all subsets V of (N ∪ {∞}N ∪ {∞}N ∪ {∞})k , there is an antichainantichainantichain W such that

V ↓ = W ↓V ↓ = W ↓V ↓ = W ↓

⇒ we can finitely represent downward-closed sets by antichains



To overcome the problem of representing reachable sets,

we try to over-approximate by downward closures:

V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }

This is not an approximation for lossylossylossy VAS! x̄̄x̄x ȳ̄ȳy

z̄̄z̄z

≥ ≥≥

Dickson’s Lemma 1913

The pointwise order ≤ on Nk is a well partial order

(i.e. all decreasing chains and all antichains are finite)

x

y

Lemma

For all subsets V of (N ∪ {∞}N ∪ {∞}N ∪ {∞})k , there is an antichainantichainantichain W such that

V ↓ = W ↓V ↓ = W ↓V ↓ = W ↓

⇒ we can finitely represent downward-closed sets by antichains



To overcome the problem of representing reachable sets,

we try to over-approximate by downward closures:

V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }

This is not an approximation for lossylossylossy VAS! x̄̄x̄x ȳ̄ȳy

z̄̄z̄z

≥ ≥≥

Dickson’s Lemma 1913

The pointwise order ≤ on Nk is a well partial order

(i.e. all decreasing chains and all antichains are finite)

x

y

Lemma

For all subsets V of (N ∪ {∞}N ∪ {∞}N ∪ {∞})k , there is an antichainantichainantichain W such that

V ↓ = W ↓V ↓ = W ↓V ↓ = W ↓

⇒ we can finitely represent downward-closed sets by antichains



To overcome the problem of representing reachable sets,

we try to over-approximate by downward closures:

V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }

This is not an approximation for lossylossylossy VAS! x̄̄x̄x ȳ̄ȳy

z̄̄z̄z

≥ ≥≥

Dickson’s Lemma 1913

The pointwise order ≤ on Nk is a well partial order

(i.e. all decreasing chains and all antichains are finite)

x

y

Lemma

For all subsets V of (N ∪ {∞}N ∪ {∞}N ∪ {∞})k , there is an antichainantichainantichain W such that

V ↓ = W ↓V ↓ = W ↓V ↓ = W ↓

⇒ we can finitely represent downward-closed sets by antichains



To overcome the problem of representing reachable sets,

we try to over-approximate by downward closures:

V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }

This is not an approximation for lossylossylossy VAS! x̄̄x̄x ȳ̄ȳy

z̄̄z̄z

≥ ≥≥

Dickson’s Lemma 1913

The pointwise order ≤ on Nk is a well partial order

(i.e. all decreasing chains and all antichains are finite)

x

y

Lemma

For all subsets V of (N ∪ {∞}N ∪ {∞}N ∪ {∞})k , there is an antichainantichainantichain W such that

V ↓ = W ↓V ↓ = W ↓V ↓ = W ↓

⇒ we can finitely represent downward-closed sets by antichains



Karp & Miller Algorithm ’69

Saturation of downward-closed sets via transition function ∆

acceleration on emerging dominating sets...

Example

p q

(+2, 0)

(0,+2)

(−1,+1)(−1,+1)(−1,+1) (+1,−1)(+1,−1)(+1,−1)

x

y

∞∞∞

∞∞∞

Correctness of acceleration

x̄ ⋆
ÐÐ→ x̄ + δ̄ for some δ̄ ∈ Nk

⇓ (by linearity)

x̄ ⋆
ÐÐ→ x̄ + n ⋅ δ̄ ≤ x̄ + lim

n→∞
(n ⋅ δ̄)



Karp & Miller Algorithm ’69

Saturation of downward-closed sets via transition function ∆

acceleration on emerging dominating sets...

Example

p q

(+2, 0)(+2, 0)

(0,+2)(0,+2)

(−1,+1)(−1,+1)(−1,+1)(−1,+1) (+1,−1)(+1,−1)(+1,−1)(+1,−1)

x

y

∞∞∞

∞∞∞

Correctness of acceleration

x̄ ⋆
ÐÐ→ x̄ + δ̄ for some δ̄ ∈ Nk

⇓ (by linearity)

x̄ ⋆
ÐÐ→ x̄ + n ⋅ δ̄ ≤ x̄ + lim

n→∞
(n ⋅ δ̄)



Karp & Miller Algorithm ’69

Saturation of downward-closed sets via transition function ∆

acceleration on emerging dominating sets...

Example

p q

(+2, 0)(+2, 0)

(0,+2)(0,+2)

(−1,+1)(−1,+1)(−1,+1)(−1,+1)(−1,+1)(−1,+1) (+1,−1)(+1,−1)(+1,−1)(+1,−1)

x

y

∞∞∞

∞∞∞

Correctness of acceleration

x̄ ⋆
ÐÐ→ x̄ + δ̄ for some δ̄ ∈ Nk

⇓ (by linearity)

x̄ ⋆
ÐÐ→ x̄ + n ⋅ δ̄ ≤ x̄ + lim

n→∞
(n ⋅ δ̄)



Karp & Miller Algorithm ’69

Saturation of downward-closed sets via transition function ∆

acceleration on emerging dominating sets...

Example

p q

(+2, 0)(+2, 0)

(0,+2)(0,+2)

(−1,+1)(−1,+1)(−1,+1)(−1,+1)(−1,+1)(−1,+1) (+1,−1)(+1,−1)(+1,−1)(+1,−1)

x

y

∞∞∞

∞∞∞

Correctness of acceleration

x̄ ⋆
ÐÐ→ x̄ + δ̄ for some δ̄ ∈ Nk

⇓ (by linearity)

x̄ ⋆
ÐÐ→ x̄ + n ⋅ δ̄ ≤ x̄ + lim

n→∞
(n ⋅ δ̄)



Karp & Miller Algorithm ’69

Saturation of downward-closed sets via transition function ∆

acceleration on emerging dominating sets...

Example

p q

(+2, 0)(+2, 0)

(0,+2)(0,+2)

(−1,+1)(−1,+1)(−1,+1)(−1,+1) (+1,−1)(+1,−1)(+1,−1)(+1,−1)

x

y

∞∞∞

∞∞∞

Correctness of acceleration

x̄ ⋆
ÐÐ→ x̄ + δ̄ for some δ̄ ∈ Nk

⇓ (by linearity)

x̄ ⋆
ÐÐ→ x̄ + n ⋅ δ̄ ≤ x̄ + lim

n→∞
(n ⋅ δ̄)



Karp & Miller Algorithm ’69

Saturation of downward-closed sets via transition function ∆

acceleration on emerging dominating sets...

Example

p q

(+2, 0)(+2, 0)

(0,+2)(0,+2)

(−1,+1)(−1,+1)(−1,+1)(−1,+1) (+1,−1)(+1,−1)(+1,−1)(+1,−1)

x

y

∞∞∞∞∞∞

∞∞∞

Correctness of acceleration

x̄ ⋆
ÐÐ→ x̄ + δ̄ for some δ̄ ∈ Nk

⇓ (by linearity)

x̄ ⋆
ÐÐ→ x̄ + n ⋅ δ̄ ≤ x̄ + lim

n→∞
(n ⋅ δ̄)



Karp & Miller Algorithm ’69

Saturation of downward-closed sets via transition function ∆

acceleration on emerging dominating sets...

Example

p q

(+2, 0)(+2, 0)

(0,+2)(0,+2)

(−1,+1)(−1,+1)(−1,+1)(−1,+1) (+1,−1)(+1,−1)(+1,−1)(+1,−1)

x

y

∞∞∞∞∞∞

∞∞∞

Correctness of acceleration

x̄ ⋆
ÐÐ→ x̄ + δ̄ for some δ̄ ∈ Nk

⇓ (by linearity)

x̄ ⋆
ÐÐ→ x̄ + n ⋅ δ̄ ≤ x̄ + lim

n→∞
(n ⋅ δ̄)



Karp & Miller Algorithm ’69

Saturation of downward-closed sets via transition function ∆

acceleration on emerging dominating sets...

Example

p q

(+2, 0)(+2, 0)

(0,+2)(0,+2)

(−1,+1)(−1,+1)(−1,+1)(−1,+1) (+1,−1)(+1,−1)(+1,−1)(+1,−1)

x

y

∞∞∞∞∞∞

∞∞∞∞∞∞

Correctness of acceleration

x̄ ⋆
ÐÐ→ x̄ + δ̄ for some δ̄ ∈ Nk

⇓ (by linearity)

x̄ ⋆
ÐÐ→ x̄ + n ⋅ δ̄ ≤ x̄ + lim

n→∞
(n ⋅ δ̄)



Theorem (Rackoff ’78)

Coverability on VAS (i.e. given x̄ , ȳ , tell if ∃ z̄ ≥ ȳ . x̄ ⋆
ÐÐ→ z̄)

is EXPSPACE-complete.

Corollary 1

Reachability on lossy VASReachability on lossy VASReachability on lossy VAS is EXPSPACE-complete.

Corollary 2

Control-state reachabilityControl-state reachabilityControl-state reachability on VAS is EXPSPACE-complete.



Theorem (Rackoff ’78)

Coverability on VAS (i.e. given x̄ , ȳ , tell if ∃ z̄ ≥ ȳ . x̄ ⋆
ÐÐ→ z̄)

is EXPSPACE-complete.

Corollary 1

Reachability on lossy VASReachability on lossy VASReachability on lossy VAS is EXPSPACE-complete.

Corollary 2

Control-state reachabilityControl-state reachabilityControl-state reachability on VAS is EXPSPACE-complete.



There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson ’96, . . . )

Coverability is decidable (non-primitive recursivenon-primitive recursivenon-primitive recursive) on VAS with

resets (e.g. x ∶= 0)

transfers (e.g. x ∶= y + z)

positive guards (e.g. if [x > 0] then . . . )

Reachability is decidable on analogous extensions of lossy VASlossy VASlossy VAS.

Unfortunately, acceleration for the above systems does not work,

e.g. (1, 0) reset x
ÐÐÐÐ→
y ∶= 1

(0, 1) x ∶= x+2
ÐÐÐÐ→
y ∶= y−1

(2, 0), but (1, 0) ⋆
ÐÐ/Ð→ (3, 0)

However, we can still exploit Dickson’s Lemma with

1 upward-closed sets

they cover more vectors than downward-closed sets!

2 backward reachability

i.e. compute Bn+1 = { x̄ ∣ ∃ ȳ ∈ Bn. x̄ ÐÐ→ ȳ }



There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson ’96, . . . )

Coverability is decidable (non-primitive recursivenon-primitive recursivenon-primitive recursive) on VAS with

resets (e.g. x ∶= 0)

transfers (e.g. x ∶= y + z)

positive guards (e.g. if [x > 0] then . . . )

Reachability is decidable on analogous extensions of lossy VASlossy VASlossy VAS.

Unfortunately, acceleration for the above systems does not work,

e.g. (1, 0) reset x
ÐÐÐÐ→
y ∶= 1

(0, 1) x ∶= x+2
ÐÐÐÐ→
y ∶= y−1

(2, 0), but (1, 0) ⋆
ÐÐ/Ð→ (3, 0)

However, we can still exploit Dickson’s Lemma with

1 upward-closed sets

they cover more vectors than downward-closed sets!

2 backward reachability

i.e. compute Bn+1 = { x̄ ∣ ∃ ȳ ∈ Bn. x̄ ÐÐ→ ȳ }



There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson ’96, . . . )

Coverability is decidable (non-primitive recursivenon-primitive recursivenon-primitive recursive) on VAS with

resets (e.g. x ∶= 0)

transfers (e.g. x ∶= y + z)

positive guards (e.g. if [x > 0] then . . . )

Reachability is decidable on analogous extensions of lossy VASlossy VASlossy VAS.

Unfortunately, acceleration for the above systems does not work,

e.g. (1, 0) reset x
ÐÐÐÐ→
y ∶= 1

(0, 1) x ∶= x+2
ÐÐÐÐ→
y ∶= y−1

(2, 0), but (1, 0) ⋆
ÐÐ/Ð→ (3, 0)

However, we can still exploit Dickson’s Lemma with

1 upward-closed sets

they cover more vectors than downward-closed sets!

2 backward reachability

i.e. compute Bn+1 = { x̄ ∣ ∃ ȳ ∈ Bn. x̄ ÐÐ→ ȳ }



Lemma

VAS transitions with resets, transfers, and positive guards

are backward-compatible with upward-closures, i.e.

x̄̄x̄x ȳ̄ȳy

Example of backward coverability analysis

x

y

Termination by Dickson’s Lemma:

infinitely many emerging points

⇓

infinite decreasing chain or antichain



Lemma

VAS transitions with resets, transfers, and positive guards

are backward-compatible with upward-closures, i.e.

x̄̄x̄x ȳ̄ȳy

∀ x̄ ′x̄ ′x̄ ′

≥ ≥≥

Example of backward coverability analysis

x

y

Termination by Dickson’s Lemma:

infinitely many emerging points

⇓

infinite decreasing chain or antichain



Lemma

VAS transitions with resets, transfers, and positive guards

are backward-compatible with upward-closures, i.e.

x̄̄x̄x ȳ̄ȳy

∀ x̄ ′x̄ ′x̄ ′ ∃ ȳ ′ȳ ′ȳ ′

≥ ≥≥ ≥ ≥≥

Example of backward coverability analysis

x

y

Termination by Dickson’s Lemma:

infinitely many emerging points

⇓

infinite decreasing chain or antichain



Lemma

VAS transitions with resets, transfers, and positive guards

are backward-compatible with upward-closures, i.e.

x̄̄x̄x ȳ̄ȳy

∀ x̄ ′x̄ ′x̄ ′ ∃ ȳ ′ȳ ′ȳ ′

≥ ≥≥ ≥ ≥≥

Example of backward coverability analysis

x

y

Termination by Dickson’s Lemma:

infinitely many emerging points

⇓

infinite decreasing chain or antichain



Lemma

VAS transitions with resets, transfers, and positive guards

are backward-compatible with upward-closures, i.e.

x̄̄x̄x ȳ̄ȳy

∀ x̄ ′x̄ ′x̄ ′ ∃ ȳ ′ȳ ′ȳ ′

≥ ≥≥ ≥ ≥≥
Example of backward coverability analysis

x

y

Termination by Dickson’s Lemma:

infinitely many emerging points

⇓

infinite decreasing chain or antichain



Lemma

VAS transitions with resets, transfers, and positive guards

are backward-compatible with upward-closures, i.e.

x̄̄x̄x ȳ̄ȳy

∀ x̄ ′x̄ ′x̄ ′ ∃ ȳ ′ȳ ′ȳ ′

≥ ≥≥ ≥ ≥≥
Example of backward coverability analysis

x

y

x
∶=
x
−
2

y
∶=
y
−
2

Termination by Dickson’s Lemma:

infinitely many emerging points

⇓

infinite decreasing chain or antichain



Lemma

VAS transitions with resets, transfers, and positive guards

are backward-compatible with upward-closures, i.e.

x̄̄x̄x ȳ̄ȳy

∀ x̄ ′x̄ ′x̄ ′ ∃ ȳ ′ȳ ′ȳ ′

≥ ≥≥ ≥ ≥≥
Example of backward coverability analysis

x

y

x
∶=
x
−
2

y
∶=
y
−
2

x
∶=
x
−
2

y
∶=
y
−
2

Termination by Dickson’s Lemma:

infinitely many emerging points

⇓

infinite decreasing chain or antichain



Lemma

VAS transitions with resets, transfers, and positive guards

are backward-compatible with upward-closures, i.e.

x̄̄x̄x ȳ̄ȳy

∀ x̄ ′x̄ ′x̄ ′ ∃ ȳ ′ȳ ′ȳ ′

≥ ≥≥ ≥ ≥≥
Example of backward coverability analysis

x

y

x
∶=
x
−
2

y
∶=
y
−
2

x
∶=
x
−
2

y
∶=
y
−
2

reset
x

y ∶= y
− 1

Termination by Dickson’s Lemma:

infinitely many emerging points

⇓

infinite decreasing chain or antichain



Lemma

VAS transitions with resets, transfers, and positive guards

are backward-compatible with upward-closures, i.e.

x̄̄x̄x ȳ̄ȳy

∀ x̄ ′x̄ ′x̄ ′ ∃ ȳ ′ȳ ′ȳ ′

≥ ≥≥ ≥ ≥≥
Example of backward coverability analysis

x

y

x
∶=
x
−
2

y
∶=
y
−
2

x
∶=
x
−
2

y
∶=
y
−
2

reset
x

y ∶= y
− 1

x
∶= x

+ 3
y
∶= y

+ 2

Termination by Dickson’s Lemma:

infinitely many emerging points

⇓

infinite decreasing chain or antichain



Lemma

VAS transitions with resets, transfers, and positive guards

are backward-compatible with upward-closures, i.e.

x̄̄x̄x ȳ̄ȳy

∀ x̄ ′x̄ ′x̄ ′ ∃ ȳ ′ȳ ′ȳ ′

≥ ≥≥ ≥ ≥≥
Example of backward coverability analysis

x

y

x
∶=
x
−
2

y
∶=
y
−
2

x
∶=
x
−
2

y
∶=
y
−
2

reset
x

y ∶= y
− 1

x
∶= x

+ 3
y
∶= y

+ 2

Termination by Dickson’s Lemma:

infinitely many emerging points

⇓

infinite decreasing chain or antichain



These ideas for coverability analysis can be extended to:

Lossy Channel Systems

(instead of Dickson’s Lemma,

use Higman’s Lemma for the sub-sequence partial order)

Timed Petri nets

(token have time-stamps, transitions have time constraints)

Alternating Finite Memory Automata

(finite control states + one register to store

and compare symbols from an infinite alphabet)

. . .



Now, back to the original reachability problem on VAS...

Separation Theorem (Leroux ’92, ’09, . . . , ’12)

If x̄ ⋆
ÐÐ/Ð→

∆
ȳx̄ ⋆

ÐÐ/Ð→
∆
ȳx̄ ⋆

ÐÐ/Ð→
∆
ȳ , then there is a partition (XXX ,YYY ) of Nk such that

1 X and Y are finite unions of linear setsfinite unions of linear setsfinite unions of linear sets

(or, equally, sets definable in Presburger logic FO[N,+]Presburger logic FO[N,+]Presburger logic FO[N,+])

2 x̄ ∈ X and ȳ ∈ Y

3 X is a forward invariant, i.e. (X +∆) ∩ Nk ⊆ X

4 Y is a backward invariant, i.e. (Y −∆) ∩ Nk ⊆ Y

x

y



Now, back to the original reachability problem on VAS...

Separation Theorem (Leroux ’92, ’09, . . . , ’12)

If x̄ ⋆
ÐÐ/Ð→

∆
ȳx̄ ⋆

ÐÐ/Ð→
∆
ȳx̄ ⋆

ÐÐ/Ð→
∆
ȳ , then there is a partition (XXX ,YYY ) of Nk such that

1 X and Y are finite unions of linear setsfinite unions of linear setsfinite unions of linear sets

(or, equally, sets definable in Presburger logic FO[N,+]Presburger logic FO[N,+]Presburger logic FO[N,+])

2 x̄ ∈ X and ȳ ∈ Y

3 X is a forward invariant, i.e. (X +∆) ∩ Nk ⊆ X

4 Y is a backward invariant, i.e. (Y −∆) ∩ Nk ⊆ Y

x

y



Now, back to the original reachability problem on VAS...

Separation Theorem (Leroux ’92, ’09, . . . , ’12)

If x̄ ⋆
ÐÐ/Ð→

∆
ȳx̄ ⋆

ÐÐ/Ð→
∆
ȳx̄ ⋆

ÐÐ/Ð→
∆
ȳ , then there is a partition (XXX ,YYY ) of Nk such that

1 X and Y are finite unions of linear setsfinite unions of linear setsfinite unions of linear sets

(or, equally, sets definable in Presburger logic FO[N,+]Presburger logic FO[N,+]Presburger logic FO[N,+])

2 x̄ ∈ X and ȳ ∈ Y

3 X is a forward invariant, i.e. (X +∆) ∩ Nk ⊆ X

4 Y is a backward invariant, i.e. (Y −∆) ∩ Nk ⊆ Y

x

y



Now, back to the original reachability problem on VAS...

Separation Theorem (Leroux ’92, ’09, . . . , ’12)

If x̄ ⋆
ÐÐ/Ð→

∆
ȳx̄ ⋆

ÐÐ/Ð→
∆
ȳx̄ ⋆

ÐÐ/Ð→
∆
ȳ , then there is a partition (XXX ,YYY ) of Nk such that

1 X and Y are finite unions of linear setsfinite unions of linear setsfinite unions of linear sets

(or, equally, sets definable in Presburger logic FO[N,+]Presburger logic FO[N,+]Presburger logic FO[N,+])

2 x̄ ∈ X and ȳ ∈ Y

3 X is a forward invariant, i.e. (X +∆) ∩ Nk ⊆ X

4 Y is a backward invariant, i.e. (Y −∆) ∩ Nk ⊆ Y

x

y



Now, back to the original reachability problem on VAS...

Separation Theorem (Leroux ’92, ’09, . . . , ’12)

If x̄ ⋆
ÐÐ/Ð→

∆
ȳx̄ ⋆

ÐÐ/Ð→
∆
ȳx̄ ⋆

ÐÐ/Ð→
∆
ȳ , then there is a partition (XXX ,YYY ) of Nk such that

1 X and Y are finite unions of linear setsfinite unions of linear setsfinite unions of linear sets

(or, equally, sets definable in Presburger logic FO[N,+]Presburger logic FO[N,+]Presburger logic FO[N,+])

2 x̄ ∈ X and ȳ ∈ Y

3 X is a forward invariant, i.e. (X +∆) ∩ Nk ⊆ X

4 Y is a backward invariant, i.e. (Y −∆) ∩ Nk ⊆ Y

x

y



Corollary (Lipton ’76, Mayr ’81, Kosaraju ’82, Reutenauer ’90, ...)

The reachability problem for VAS is decidable

with complexity between EXPSPACE and non-primitive recursive.

Enumerate in parallel:

1 the possible finite sequences π of transitions

(answer positively if x̄ π
ÐÐÐ→ ȳ)

2 the possible Presburger formulas defining partitions (X ,Y ) of Nk

(answer negatively if (X ,Y ) is an invariant separating x̄ and ȳ)



Corollary (Lipton ’76, Mayr ’81, Kosaraju ’82, Reutenauer ’90, ...)

The reachability problem for VAS is decidable

with complexity between EXPSPACE and non-primitive recursive.

Enumerate in parallel:

1 the possible finite sequences π of transitions

(answer positively if x̄ π
ÐÐÐ→ ȳ)

2 the possible Presburger formulas defining partitions (X ,Y ) of Nk

(answer negatively if (X ,Y ) is an invariant separating x̄ and ȳ)




