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Backward reachability for pushdown systems

Given a pushdown system P = (Q,Σ, Γ,∆) and

a set B0 ⊆ Q ⋅ Γ⋆ of target configurations, define:

Bn+1 = Bn ∪ { qz ∣ ∃q′z ′ ∈ Bn. ∃a ∈ Σ. qz
a
ÐÐÐ→ q′z ′qz a
ÐÐÐ→ q′z ′qz a
ÐÐÐ→ q′z ′ }

Bω = ∪n ∈N Bn

Bω contains the configurations from which one can reach B0

Bω is usually infinite, but is it perhaps regular?

Example

Consider the pushdown system
q pop γ

B0 = {qε} B1 = {qε, qγ} B2 = {qε, qγ, qγγ} . . .

Bω = qε⋆ is indeed regular, but how to efficiently compute it?
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“Pump” the changes from Bn to Bn+1 to obtain

a new sequence C0, C1, . . . that converges more quickly:

(completeness) ∀n ∈ N. BnBnBn ⊆⊆⊆ CnCnCn

(soundness) ∀n ∈ N. CnCnCn ⊆⊆⊆ BωBωBω

(termination) ∃n ∈ N. CnCnCn === Cn+1Cn+1Cn+1

the limit ∪n∈N Cn coincides with Bω

The sets C0, C1, . . . will be defined by

automata A0,A1, . . . sharing the same state spacesame state spacesame state space...
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Initial conditions

The pushdown system P has m states q1, . . . , qm

The automaton A0 recognizing C0 = B0 has a single

initial non-final state s0, m distinct states s1, . . . , sm,

and possibly other states

No transition in A0 reaches the initial state s0

The unique qi -labelled transition in A0 is (s0, qi , si)

The other transitions in A0 are labelled by stack symbols

A0

s0s0

s1

⋮

sm

. . .

. . .

×××

q1

qm

Γ

Γ
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Saturation procedure

Construct An+1 from An by adding transitions, as follows:

1 select a transition rule (qiγqiγqiγ, a,qjzqjzqjz) in the pushdown system P

2 select a state s ′s ′s ′ in An reachable from s0s0s0 via a qjzqjzqjz-labelled path

3 add transition (sisisi , γγγ, s
′s ′s ′)

An

s0s0

si

⋮

sj

. . .

. . .

qi

qj

s ′

z

γ

Termination: straightforward

Only polynomially many

transitions can be added

(⇒ reachability in PTIME)

Soundness: by induction on n

s0s0s0
q′z ′q′z ′q′z ′
ÐÐÐ→
An+1

s ′s ′s ′

⇓

s0s0s0
qzqzqz
ÐÐÐ→
A0
s ′s ′s ′ ∧ q′z ′q′z ′q′z ′ ⋆

ÐÐÐ→
P

qzqzqz

Completeness:

∀ config. qiγwqiγwqiγw ∈ Bn+1 ∖ Bn

∃ trans. qiγwqiγwqiγw
a
ÐÐÐ→
P
qjzwqjzwqjzw

with qjzwqjzwqjzw ∈ Bn

Select rule (qiγqiγqiγ, a,qjzqjzqjz) in P

and path s0s0s0
qjzqjzqjz
ÐÐÐ→
An
s ′s ′s ′ in An

to prove that qiγwqiγwqiγw ∈ L (An+1)
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Example

Consider the target set B0 = {q2γ1γ2γ3} over the pushdown system

q1 q2
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γ5/γ4γ3

γ4γ4γ4/γ1γ2γ1γ2γ1γ2γ4/γ1γ2
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q1

q2

γ1γ1γ1γ1 γ2 γ3γ3γ3γ3

C0 = {q2γ1γ2γ3}

C1 = {q2γ1γ2γ3, q2γ4γ3}

C2 = {q2γ1γ2γ3, q2γ4γ3, q1γ5}

C3 = {q2γ1γ2γ3, q2γ4γ3, q1γ6γ5}
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s0

s1

s2 s3 s4 s5

q1

q2

γ1γ1γ1γ1 γ2 γ3γ3γ3γ3

γ4

γ5

γ6

C0 = {q2γ1γ2γ3}

C1 = {q2γ1γ2γ3, q2γ4γ3}

C2 = {q2γ1γ2γ3, q2γ4γ3, q1γ5}

C3 = {q2γ1γ2γ3, q2γ4γ3, q1γ
⋆
6γ5}

= Bω



Theorem (Bouajjani, Esparza & Maler ’97)

Given a pushdown system P and a regular set B of configurations,

the set of configurations that can reach B

is regular and can be computed in polynomial time.

Similar generalizations can be proved for:

tree rewriting systems

(Löding ’06, . . . )

reachability games on higher-order pushdown systems

(Bouajjani & Meyer ’04, Hague & Ong ’07, . . . )

. . .
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Next we will focus on reachability for systems that use

variables over natural numbers instead of a stack...

(x , y) ∶= (0, 0)(x , y) ∶= (0, 0)(x , y) ∶= (0, 0)

while (x , y) ≠ (0, 1)(x , y) ≠ (0, 1)(x , y) ≠ (0, 1) do

if [input is north west] then

(x , y) ∶= (x , y) + (1, 3)(x , y) ∶= (x , y) + (1, 3)(x , y) ∶= (x , y) + (1, 3)

else if [input is north east] then

(x , y) ∶= (x , y) + (−1, 1)(x , y) ∶= (x , y) + (−1, 1)(x , y) ∶= (x , y) + (−1, 1)

else if [input is south] then

(x , y) ∶= (x , y) + (0,−2)(x , y) ∶= (x , y) + (0,−2)(x , y) ∶= (x , y) + (0,−2)

x

y

?

Definition

A vector addition system (VAS) is a transition system (Nk ,∆),

where ∆ is a finite subset of Zk and

x̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳ iff

⎧⎪⎪
⎨
⎪⎪⎩

x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0

ȳ − x̄ ∈ ∆ȳ − x̄ ∈ ∆ȳ − x̄ ∈ ∆
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Definition

A lossy VAS is a transition system (Nk ,∆),

where ∆ is a finite subset of Q × Zk ×Q and

x̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳx̄ ÐÐÐ→ ȳ iff

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0

ȳ ′ − x̄ ∈ ∆ȳ ′ − x̄ ∈ ∆ȳ ′ − x̄ ∈ ∆ for some ȳ ′ ≥ ȳ

A VAS with states is a transition system (Q × Nk ,∆),

where ∆ is a finite subset of Q × Zk ×Q and

(p, x̄) ÐÐÐ→ (q, ȳ)(p, x̄) ÐÐÐ→ (q, ȳ)(p, x̄) ÐÐÐ→ (q, ȳ) iff

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0x̄ , ȳ ≥ 0

(p, ȳ − x̄ , q) ∈ ∆(p, ȳ − x̄ , q) ∈ ∆(p, ȳ − x̄ , q) ∈ ∆

States do not add power, as they can be implemented by counters

e.g. 2 states = 2 additional counters that sum up to 1

(p, x̄) ÐÐ→ (q, ȳ) becomes (0, 1, x̄) ÐÐ→ (1, 0, ȳ)
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(p, x̄) ÐÐ→ (q, ȳ) becomes (0, 1, x̄) ÐÐ→ (1, 0, ȳ)
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VAS are the same as Petri nets:

configurations = tokens per location (e.g. (2, 1, 3, 0, 0))

transitions = transfers of tokens (e.g. (0,−1,−1, 0, 1))
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We may expect that reachable sets are linear...

but they are not!

(0, 0)

+ (3, 1)N + (−1, 1)N + (0,−2)N

Theorem (Ginsburg ’66)

Finite unions of linear sets are

precisely the Presburger sets

i.e. sets definable in FO[N,+]FO[N,+]FO[N,+]

e.g. ϕ(x , y) = ∃z . x + y = z + z

x + y x

y

(x + y) ≤ zzz ≤ O((x + y)2)
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We may expect that reachable sets are linear... but they are not!

p q

(+1, 0)

,+1+1+1

(0,+1)

,+1+1+1

(+1,−1)

,+1+1+1

(−1,+1)

,+1+1+1

x + y x

y

(x + y) ≤ zzz ≤ O((x + y)2)
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We may expect that reachable sets are linear... but they are not!

p q

(+1, 0,+1+1+1)

(0,+1,+1+1+1)

(+1,−1,+1+1+1) (−1,+1,+1+1+1)

x + y

z

(x + y) ≤ zzz ≤ O((x + y)2)



To overcome the problem of representing reachable sets,

we try to over-approximate by downward closures:

V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }V ↓ = { z̄ ∣ ∃ ȳ ∈ V . z̄ ≤ ȳ }

This is not an approximation for lossylossylossy VAS! x̄̄x̄x ȳ̄ȳy

z̄̄z̄z

≥ ≥≥

Dickson’s Lemma 1913

The pointwise order ≤ on Nk is a well partial order

(i.e. all decreasing chains and all antichains are finite)

x

y
Lemma

For all subsets V of (N ∪ {∞}N ∪ {∞}N ∪ {∞})k , there is an antichainantichainantichain W such that

V ↓ = W ↓V ↓ = W ↓V ↓ = W ↓

⇒ we can finitely represent downward-closed sets by antichains
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This is not an approximation for lossylossylossy VAS! x̄̄x̄x ȳ̄ȳy
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Karp & Miller Algorithm ’69

Saturation of downward-closed sets via transition function ∆

acceleration on emerging dominating sets...

Example

p q

(+2, 0)

(0,+2)

(−1,+1)(−1,+1)(−1,+1) (+1,−1)(+1,−1)(+1,−1)

x

y

∞∞∞

∞∞∞

Correctness of acceleration

x̄ ⋆
ÐÐ→ x̄ + δ̄ for some δ̄ ∈ Nk

⇓ (by linearity)

x̄ ⋆
ÐÐ→ x̄ + n ⋅ δ̄ ≤ x̄ + lim

n→∞
(n ⋅ δ̄)
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Theorem (Rackoff ’78)

Coverability on VAS (i.e. given x̄ , ȳ , tell if ∃ z̄ ≥ ȳ . x̄ ⋆
ÐÐ→ z̄)

is EXPSPACE-complete.

Corollary 1

Reachability on lossy VASReachability on lossy VASReachability on lossy VAS is EXPSPACE-complete.

Corollary 2

Control-state reachabilityControl-state reachabilityControl-state reachability on VAS is EXPSPACE-complete.
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There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson ’96, . . . )

Coverability is decidable (non-primitive recursivenon-primitive recursivenon-primitive recursive) on VAS with

resets (e.g. x ∶= 0)

transfers (e.g. x ∶= y + z)

positive guards (e.g. if [x > 0] then . . . )

Reachability is decidable on analogous extensions of lossy VASlossy VASlossy VAS.

Unfortunately, acceleration for the above systems does not work,

e.g. (1, 0) reset x
ÐÐÐÐ→
y ∶= 1

(0, 1) x ∶= x+2
ÐÐÐÐ→
y ∶= y−1

(2, 0), but (1, 0) ⋆
ÐÐ/Ð→ (3, 0)

However, we can still exploit Dickson’s Lemma with

1 upward-closed sets

they cover more vectors than downward-closed sets!

2 backward reachability

i.e. compute Bn+1 = { x̄ ∣ ∃ ȳ ∈ Bn. x̄ ÐÐ→ ȳ }
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Lemma

VAS transitions with resets, transfers, and positive guards

are backward-compatible with upward-closures, i.e.

x̄̄x̄x ȳ̄ȳy

Example of backward coverability analysis

x

y

Termination by Dickson’s Lemma:

infinitely many emerging points

⇓

infinite decreasing chain or antichain
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These ideas for coverability analysis can be extended to:

Lossy Channel Systems

(instead of Dickson’s Lemma,

use Higman’s Lemma for the sub-sequence partial order)

Timed Petri nets

(token have time-stamps, transitions have time constraints)

Alternating Finite Memory Automata

(finite control states + one register to store

and compare symbols from an infinite alphabet)

. . .



Now, back to the original reachability problem on VAS...

Separation Theorem (Leroux ’92, ’09, . . . , ’12)

If x̄ ⋆
ÐÐ/Ð→

∆
ȳx̄ ⋆

ÐÐ/Ð→
∆
ȳx̄ ⋆

ÐÐ/Ð→
∆
ȳ , then there is a partition (XXX ,YYY ) of Nk such that

1 X and Y are finite unions of linear setsfinite unions of linear setsfinite unions of linear sets

(or, equally, sets definable in Presburger logic FO[N,+]Presburger logic FO[N,+]Presburger logic FO[N,+])

2 x̄ ∈ X and ȳ ∈ Y

3 X is a forward invariant, i.e. (X +∆) ∩ Nk ⊆ X

4 Y is a backward invariant, i.e. (Y −∆) ∩ Nk ⊆ Y

x

y



Now, back to the original reachability problem on VAS...

Separation Theorem (Leroux ’92, ’09, . . . , ’12)

If x̄ ⋆
ÐÐ/Ð→

∆
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Corollary (Lipton ’76, Mayr ’81, Kosaraju ’82, Reutenauer ’90, ...)

The reachability problem for VAS is decidable

with complexity between EXPSPACE and non-primitive recursive.

Enumerate in parallel:

1 the possible finite sequences π of transitions

(answer positively if x̄ π
ÐÐÐ→ ȳ)

2 the possible Presburger formulas defining partitions (X ,Y ) of Nk

(answer negatively if (X ,Y ) is an invariant separating x̄ and ȳ)
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