
Verification of infinite state systems

Gabriele Puppis

LaBRI / CNRS

Outline of the course

1 Warm-up

(transition systems, automata, logics)

2 First-order theories

(undecidability, Presburger logic, automatic structures)

3 The monadic theory of one successor

(contraction and composition methods, factorization forests)

4 The monadic theory of two successors

(Rabin’s complementation, application examples)

5 The transformational approach

(interpretations, context-free and prefix-rewriting graphs,

unfoldings, Caucal hierarchy, recursive program schemes)

6 Reachability via saturation

(pushdown systems, VAS / Petri nets, lossy counter machines)

Goal

Automatic verification of properties of systems.

which properties?

safety “something bad never happens”

liveness “something good eventually happens”

⎫⎪⎪
⎬
⎪⎪⎭

rea
ch

a
b

ility

fairness “if something happens infinitely often

then something else eventually happens”

formulas “ ∀t. ∃t ′. t ≤ t ′ ∧ a(t ′) ”

which systems?

reactive “transitions enabled on the basis of input”

infinite

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

stacks (or recursion)

variables

queues

lists

Goal

Automatic verification of properties of systems.

which properties?

safety “something bad never happens”

liveness “something good eventually happens”

⎫⎪⎪
⎬
⎪⎪⎭

rea
ch

a
b

ility

fairness “if something happens infinitely often

then something else eventually happens”

formulas “ ∀t. ∃t ′. t ≤ t ′ ∧ a(t ′) ”

which systems?

reactive “transitions enabled on the basis of input”

infinite

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

stacks (or recursion)

variables

queues

lists

Goal

Automatic verification of properties of systems.

which properties?

safety “something bad never happens”

liveness “something good eventually happens”

⎫⎪⎪
⎬
⎪⎪⎭

rea
ch

a
b

ility

fairness “if something happens infinitely often

then something else eventually happens”

formulas “ ∀t. ∃t ′. t ≤ t ′ ∧ a(t ′) ”

which systems?

reactive “transitions enabled on the basis of input”

infinite

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

stacks (or recursion)

variables

queues

lists

A ∶ repeat forever

do atomically

produceproduceproduce

count ∶= count + 1count ∶= count + 1count ∶= count + 1

B ∶ repeat forever

do atomically

if count > 0 thenif count > 0 thenif count > 0 then

consumeconsumeconsume

count ∶= count − 1count ∶= count − 1count ∶= count − 1

Definition

A transition system is a graph G = ((VaVaVa)a ∈Σ, (EbEbEb)b ∈∆) where

vertices are associated with labels from a finite alphabet Σ

edges are associated with labels from a finite alphabet ∆

A, 0 A, 1 A, 2 . . .

B, 0 B, 1 B, 2 . . .

ε ε ε

produce produce produce

consume consume consume

A ∶ repeat forever

do atomically

produceproduceproduce

count ∶= count + 1count ∶= count + 1count ∶= count + 1

B ∶ repeat forever

do atomically

if count > 0 thenif count > 0 thenif count > 0 then

consumeconsumeconsume

count ∶= count − 1count ∶= count − 1count ∶= count − 1

Definition

A transition system is a graph G = ((VaVaVa)a ∈Σ, (EbEbEb)b ∈∆) where

vertices are associated with labels from a finite alphabet Σ

edges are associated with labels from a finite alphabet ∆

A, 0 A, 1 A, 2 . . .

B, 0 B, 1 B, 2 . . .

ε ε ε

produce produce produce

consume consume consume

B

Bα

Bβ

Bα

Bαβ

Bβα

Bββ

. . .

. . .

. . .

. . .

ε

ε

ε

ε

ε

ε

ε

A

Aα

Aβ

Aα

Aαβ

Aβα

Aββ

. . .

. . .

. . .

. . .

po
p α

pop β

pop
α

pop β

pop α

pop β

pu
sh
α

push β

pus
h α

push β

push
α

push β

Automata = finite transition systems

but mostly used as representations of languages

Definition

A finite state automaton is a tuple A = (Q,Σ,∆, I ,F), where

Q is a finite set of control states

Σ is a finite alphabet for transition labels

∆ ⊆ Q × Σ × Q is a finite set of transition rules

I ⊆ Q is a set of initial states

F ⊆ Q is a set of final states

Example

q0 qf

a

a

L (A) = a (a a)⋆

Automata = finite transition systems

but mostly used as representations of languages

Definition

A finite state automaton is a tuple A = (Q,Σ,∆, I ,F), where

Q is a finite set of control states

Σ is a finite alphabet for transition labels

∆ ⊆ Q × Σ × Q is a finite set of transition rules

I ⊆ Q is a set of initial states

F ⊆ Q is a set of final states

Example

q0 qf

a

a

L (A) = a (a a)⋆

Automata = finite transition systems

but mostly used as representations of languages

Definition

A finite state automaton is a tuple A = (Q,Σ,∆, I ,F), where

Q is a finite set of control states

Σ is a finite alphabet for transition labels

∆ ⊆ Q × Σ × Q is a finite set of transition rules

I ⊆ Q is a set of initial states

F ⊆ Q is a set of final states

Example

q0 qf

a

a

L (A) = a (a a)⋆

Different types of automata:

deterministic q
q1

q2

a

a
implies q1 = q2

with ε-transitions q q′ε

complete ∀a∀a∀a. ∀q. ∃q′. q q′a

Büchi/parity conditions q0 qfb

a, b b

Language theoretic operations on automata

union concatenation complementation

ε

ε

ε

intersection projection subset construction

a

b

a

a, b

a

a

b

aaa×f (a)

bbb×f (b)

q
q1

q2

a

a

q

⋮

q1
q2
⋮

a

Language theoretic operations on automata

union concatenation complementation

ε

ε

ε

intersection projection subset construction

a

b

a

a, b

a

a

b

aaa×f (a)

bbb×f (b)

q
q1

q2

a

a

q

⋮

q1
q2
⋮

a

Language theoretic operations on automata

union concatenation complementation

ε

ε

ε

intersection projection subset construction

a

b

a

a, b

a

a

b

aaa×f (a)

bbb×f (b)

q
q1

q2

a

a

q

⋮

q1
q2
⋮

a

Problems on automata

Non-emptiness

L (A) ≠ ∅ iff

...
there is a path

from in
itial to final

states

Universality

L (A) = Σ⋆ iff L (AC) = ∅

Containment

L (A) ⊆ L (B) iff L (A) ∩L (BC) = ∅

These are simple graph search problems!

Logics for specification of properties

Propositional logic

b ∨ ¬b

First-order logic

a(x0x0x0) ∧ ∀x .∀x .∀x . (a(x) → b(x)) → b(x0)

Monadic second-order logic

∃Z∃Z∃Z . ∀x . ∃y . (Z(y)Z(y)Z(y) ∧ y = x + 1)

Logics for specification of properties

Propositional logic

b ∨ ¬b

First-order logic

a(x0x0x0) ∧ ∀x .∀x .∀x . (a(x) → b(x)) → b(x0)

Monadic second-order logic

∃Z∃Z∃Z . ∀x . ∃y . (Z(y)Z(y)Z(y) ∧ y = x + 1)

Logics for specification of properties

Propositional logic

b ∨ ¬b

First-order logic

a(x0x0x0) ∧ ∀x .∀x .∀x . (a(x) → b(x)) → b(x0)

Monadic second-order logic

∃Z∃Z∃Z . ∀x . ∃y . (Z(y)Z(y)Z(y) ∧ y = x + 1)

Examples of sentences and formulas

ψdense = ∀x , y . ∃z . (x < y → x < z ∧ z < y)

´¹¹¸¹¹¶
FO[<] over QFO[<] over QFO[<] over Q

ψconnected = ∀Z . (∃x , y . Z(x) ∧ ¬Z(y)) →

(∃x , y . Z(x) ∧ ¬Z(y) ∧ E(x , y))

´¹¹¹¸¹¹¶
MSO[E] over G=(V ,E)MSO[E] over G=(V ,E)MSO[E] over G=(V ,E)

ψpath(x , y) = ∀Z . Z(x) ∧

∀x ′, y ′. (Z(x ′) ∧ E(x ′, y ′) → Z(y ′)) → Z(y)

´¹¹¹¸¹¹¶
MSO[E] over G=(V ,E)MSO[E] over G=(V ,E)MSO[E] over G=(V ,E)

The underlying signature and domain are important!

MSO[+1] over NMSO[+1] over NMSO[+1] over N = MSO[<] over NMSO[<] over NMSO[<] over N

FO[0, 1,+] = Presburger arithmeticFO[0, 1,+] = Presburger arithmeticFO[0, 1,+] = Presburger arithmetic

MSO over NMSO over NMSO over N = FO[⊆] over 2NFO[⊆] over 2NFO[⊆] over 2N

FO[∈] over models of Zermelo–Fraenkel set theory...FO[∈] over models of Zermelo–Fraenkel set theory...FO[∈] over models of Zermelo–Fraenkel set theory...

Examples of sentences and formulas

ψdense = ∀x , y . ∃z . (x < y → x < z ∧ z < y)
´¹¹¸¹¹¶

FO[<] over QFO[<] over QFO[<] over Q

ψconnected = ∀Z . (∃x , y . Z(x) ∧ ¬Z(y)) →

(∃x , y . Z(x) ∧ ¬Z(y) ∧ E(x , y))
´¹¹¹¸¹¹¶

MSO[E] over G=(V ,E)MSO[E] over G=(V ,E)MSO[E] over G=(V ,E)

ψpath(x , y) = ∀Z . Z(x) ∧

∀x ′, y ′. (Z(x ′) ∧ E(x ′, y ′) → Z(y ′)) → Z(y)
´¹¹¹¸¹¹¶

MSO[E] over G=(V ,E)MSO[E] over G=(V ,E)MSO[E] over G=(V ,E)

The underlying signature and domain are important!

MSO[+1] over NMSO[+1] over NMSO[+1] over N = MSO[<] over NMSO[<] over NMSO[<] over N

FO[0, 1,+] = Presburger arithmeticFO[0, 1,+] = Presburger arithmeticFO[0, 1,+] = Presburger arithmetic

MSO over NMSO over NMSO over N = FO[⊆] over 2NFO[⊆] over 2NFO[⊆] over 2N

FO[∈] over models of Zermelo–Fraenkel set theory...FO[∈] over models of Zermelo–Fraenkel set theory...FO[∈] over models of Zermelo–Fraenkel set theory...

Other examples of MSO properties

ψ3-colorability = ∃X ,Y ,Z . ∀v . (X(v) ∨ Y (v) ∨ Z(v))

∀u, v . E(u, v) → ¬(X(u) ∧ X(v)) ∧

¬(Y (u) ∧ Y (v)) ∧

¬(Z(u) ∧ Z(v))

ψK5(x1, ..., x5) = ∧
i≠j

(xi ≠ xj ∧ ψpath(xi , xj))

ψK3,3(x1, ..., x3, y1, ..., y3) = ∧
i≠j

(xi ≠ xj ∧ yi ≠ yj) ∧ ∧
i ,j
ψpath(xi , yj)

ψplanar = ¬∃x1, ..., x5. ψK5(x1, ..., x5) ∧

¬∃x1, ..., x3, y1, ..., y3. ψK33(x1, ..., x3, y1, ..., y3)

A real example

let Foo(g, h) =

g(h)

ififif [user hits key] thenthenthen

g ⋅ closecloseclose(h)

elseelseelse

Foo(g ⋅writewritewrite, h)

Foo(openopenopen,aaa)

ififif

openopenopen

closecloseclose

aaa

ififif

openopenopen

writewritewrite

closecloseclose

aaa

ififif

⋮ ⋮

One may want to verify that all sequences of write operations

occur between open and close operations:

∀Z path. ∀z ∈ Z . writewritewrite(z) → ∃x , y ∈ Z . x < z < y ∧

openopenopen(x) ∧ closecloseclose(y)

A real example

let Foo(g, h) =

g(h)

ififif [user hits key] thenthenthen

g ⋅ closecloseclose(h)

elseelseelse

Foo(g ⋅writewritewrite, h)

Foo(openopenopen,aaa)

ififif

openopenopen

closecloseclose

aaa

ififif

openopenopen

writewritewrite

closecloseclose

aaa

ififif

⋮ ⋮

One may want to verify that all sequences of write operations

occur between open and close operations:

∀Z path. ∀z ∈ Z . writewritewrite(z) → ∃x , y ∈ Z . x < z < y ∧

openopenopen(x) ∧ closecloseclose(y)

Next

