Verification of infinite state systems

Gabriele Puppis

LaBRI / CNRS

Outline of the course
©@ Warm-up

(transition systems, automata, logics)

@ First-order theories

(undecidability, Presburger logic, automatic structures)

© The monadic theory of one successor

(contraction and composition methods, factorization forests)

© The monadic theory of two successors

(Rabin's complementation, application examples)

©@ The transformational approach

(interpretations, context-free and prefix-rewriting graphs,
unfoldings, Caucal hierarchy, recursive program schemes)

©@ Reachability via saturation

(pushdown systems, VAS / Petri nets, lossy counter machines)

Goal
Automatic verification of properties of systems.

Goal

Automatic verification of properties of systems.

@ which properties?

safety

liveness

fairness

formulas

“something bad never happens”

“something good eventually happens”

—
Ayljigeyoea.

“If something happens infinitely often
then something else eventually happens”

‘vt 3t t<t' aa(t)”

Goal
Automatic verification of properties of systems.

@ which properties?

@
safety “something bad never happens” ?a:j_
Q
liveness “something good eventually happens” | E.
=
fairness “If something happens infinitely often =
then something else eventually happens”
formulas “ve 3t t<t' ana(t)”
@ which systems?
reactive “transitions enabled on the basis of input”

stacks (or recursion)
variables

queues

lists

infinite

A repeat forever B : repeat forever

do atomically do atomically
produce if count > 0 then
count := count + 1 consume

count := count -1

produce produce produce
A0 (1) o(4.2) ,

> g > 9 >

B,0 | B, 1 | B,2 |

~ consume _’/‘ consume _‘/‘ consume

Definition
A transition system is a graph G = ((Va)aex, (Ep)pen) where

@ vertices are associated with labels from a finite alphabet ¥

@ edges are associated with labels from a finite alphabet A

produce produce produce
A0 (1) o(4.2) ,

> g > 9 >

B,0 | B, 1 | B, 2 |

~ consume _’J‘ consume _‘J‘ consume

Automata = finite transition systems

gZ& but mostly used as representations of languages

Automata = finite transition systems

§& but mostly used as representations of languages

Definition
A finite state automaton is a tuple A= (Q, X, A, /, F), where
@ Q is a finite set of control states
@ Y is a finite alphabet for transition labels
@ A ¢ QxXxQis a finite set of transition rules
@ /| © Q is a set of initial states

@ F c Q@ is a set of final states

Automata = finite transition systems

§& but mostly used as representations of languages

Definition
A finite state automaton is a tuple A = (Q, X, A, /, F), where
@ Q is a finite set of control states
@ Y is a finite alphabet for transition labels
@ A ¢ QxXxQis a finite set of transition rules
@ /| © Q is a set of initial states

@ F c Q@ is a set of final states

Example

a
@ @ 2 = a(oy

a

Different types of automata:

@ deterministic

@ with e-transitions

@ complete

@ Biichi/parity conditions

@)
implies

@——@
Va. Vq. 3¢'.

b
®

a, b b

Language theoretic operations on automata

union concatenation complementation

Language theoretic operations on automata

union concatenation complementation

Language theoretic operations on automata

union

intersection

concatenation complementation

projection subset construction
a_>(qy
f 2 0
& 7 @

Problems on automata
@ Non-emptiness

Z(A) +a iff

@ Universality

ZL(A)=x* iff Z(A%) =0

@ Containment

ZL(A)c 2(B) iff L(A)nZL(B%) =0

& These are simple graph search problems!

Logics for specification of properties

@ Propositional logic

Logics for specification of properties

@ Propositional logic

@ First-order logic

a(xo) A Vx. (a(x) - b(x)) - b(x0)

Logics for specification of properties

@ Propositional logic

@ First-order logic

a(xo) A Vx. (a(x) - b(x)) - b(x0)

@ Monadic second-order logic

3Z. Vx. Jy. (Z(y) Ay =x+1)

Examples of sentences and formulas

Wgense = VX, y.3z. (x<y ->Xx<z A 2<Yy)

Yeonnected = VZ. (ElX:Y- Z(x) A _‘Z(Y)) -
(Elx,y. Z(x) A =Z(y) A E(XJ/))

VZ. Z(x) A
VX' Yy (Z(X)AEX Y = Z(y")) - Z(y)

"/)path (X: Y)

Examples of sentences and formulas

Wgense = VX, y.3z. (x<y ->Xx<z A 2<Yy)

FO[<] over Q

Yeonnected = VZ. (ElX:Y- Z(x) A _‘Z(Y)) -
(Elx,y. Z(x) A =Z(y) A E(XJ/))

MSOI[E] over G=(V,E)

VZ. Z(x) A
VX' Yy (Z(X)AEX Y = Z(y")) - Z(y)

MSO[E] over G=(V,E)

"/Jpath (X: Y)

§& The underlying signature and domain are important!
e MSQO[+1] over N = MSOJ[<] over N
e FO[0,1,+] = Presburger arithmetic
o MSO over N = FO[c] over 2N

e FO[€] over models of Zermelo—Fraenkel set theory...

Other examples of MSO properties

Y3-colorability = 3X, Y, Z. Yv. (X(v) v Y(v) Vv Z(V))
Vu,v. E(u,v) » =(X(u) A X(v)) A
—.(Y(u) A Y(v)) A

—.(Z(u) A Z(v))

Yrs(X1, ..., X5) = I_/Q_(XHEXJ A Ppath (X, X))

Y33(X1, .., X3, Y1, ..., ¥3) = Q(Xiixj/\%'?’:)ﬁ) A I/>¢path(xi,yj')

"/}p|anar S ﬂ3X1,,X5¢K5(X]_,,X5) A
—|3X1,...,X3,y1,...,y3. ¢K33(X1,...,X3,y1,...,y3)

A real example

let Foo(g, h) =

g(h)

if [user hits key] then
g - close(h)

else
Foo(g - write, h)

Foo(open, a)

if
N

open if
| N

open if
close | s
| write

|

close

A real example

let Foo(g, h) =

g(h)

if [user hits key] then
g - close(h)

else
Foo(g - write, h)

Foo(open, a)

if
open if
| N
open if
close | SN
| write
|
close
|
a

One may want to verify that all sequences of write operations
occur between open and close operations:

VZ path.Vze Z. write(z) - 3Ix,ye”Z. x<z<yA

open(x) A close(y)

