
INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

THÈSE

pour obtenir le titre de

DOCTEUR DE L’INPG

spécialité Modèles et instruments en médecine et biologie

préparée au sein du projet iMAGIS, laboratoire GRAVIR, INRIA Rhône-Alpes
dans le cadre de l’école doctorale Ingénierie pour le vivant

présentée et soutenue publiquement

par

David Bourguignon

le 8 janvier 2003

Titre

Interactive Animation and Modeling by Drawing

Pedagogical Applications in Medicine

Directrice de thèse

Marie-Paule Cani

JURY

James Crowley, Président
Ronen Barzel, Rapporteur

Christophe Chaillou, Rapporteur
Jean-Daniel Fekete, Rapporteur

Marie-Paule Cani, Directrice de thèse
George Drettakis, Examinateur

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

THÈSE

pour obtenir le titre de

DOCTEUR DE L’INPG

spécialité Modèles et instruments en médecine et biologie

préparée au sein du projet iMAGIS, laboratoire GRAVIR, INRIA Rhône-Alpes
dans le cadre de l’école doctorale Ingénierie pour le vivant

présentée et soutenue publiquement

par

David Bourguignon

le 8 janvier 2003

Titre

Interactive Animation and Modeling by Drawing

Pedagogical Applications in Medicine

Directrice de thèse

Marie-Paule Cani

JURY

James Crowley, Président
Ronen Barzel, Rapporteur

Christophe Chaillou, Rapporteur
Jean-Daniel Fekete, Rapporteur

Marie-Paule Cani, Directrice de thèse
George Drettakis, Examinateur

To see this opposition between Hugh’s science and ours more clearly, per-
haps we should stick to Hugh’s term, and with Dindimus, speak about it
as philosophia – as “the caring pursuit of truth, motivated not by that love
which cherishes the well-known, but driven by the desire to pursue further
what has been tasted and has been found pleasing”, as Dindimus says.

Ivan Illich1

1 From Illich (1981). The excerpt is from Hugh of Saint Victor, Epitome Dindimi in philosophiam,
circa 1129 (of Saint Victor, 1966).

Abridged Contents

Preface 7

1 Introduction 9

2 Animating Anisotropic Elastic Materials 19

3 Drawing for Illustration and Annotation in 3D 51

4 Relief: A Modeling by Drawing Tool 85

5 Conclusion and Future Work 105

A What is Ergonomics? 107

B Bézier Curves and Surfaces 109

Bibliography 111

5

Preface

From Molecular Biology to Computer Graphics
Before stepping into the subject of this thesis, I would like to talk a little bit about
its ontogenesis, or in other terms, the circumstances of its development. Above all,
I would like to explain what motivated the quite bold curricula move of mine from
molecular biology to computer graphics.

When I graduated in 1997, I realized that my interest in biology, initially moti-
vated by the pleasure found in the contemplation of living things, had been seriously
challenged by years of manipulating test tubes filled with transparent liquids. I had
to find something else to do. By an incredible stroke of luck, at the same moment I
was looking for a research laboratory interested in computer modeling of biological
forms, Marie-Paule Cani proposed a research subject on human heart motion simu-
lation. This was the ideal occasion to bridge the gap between the two distant fields
of biology and computer science. But this also entailed bridging my own knowledge
gap: a few classes on Ada language for biological simulation purposes were obviously
not sufficient, and my programming inexperience was only the emerging tip of the
immense iceberg of my ignorance in computer matters (so to speak).

Sometimes, it helps to know that you don’t know, because you avoid thinking that
you have the solution even before looking at the problem. Nevertheless, the pessimistic
diagnosis of Joe Marks (Marks et al., 1994) on the capacity of a single individual to
embrace computer graphics as a whole was not very encouraging. His words were
resonating in my (empty) head as a menacing thunder:

Just a few years ago, all one needed to be a competent researcher or practi-
tioner in computer graphics was a solid background in geometry, algebra,
calculus, topology, probability, mechanics, electromagnetism, signal pro-
cessing, image processing, electrical engineering, mechanical engineer-
ing, optics, information theory, structured programming, basic algorithms
and data structures, complexity theory, computer architecture, human fac-
tors, perceptual psychology, colorimetry, graphic design, industrial de-
sign, semiotic, and art! Unfortunately, the list is growing [...].

Ignoring these warnings, and some might say, foolishly, I decided to embark on a
three-year voyage on the wide open sea of image synthesis. Even if winds were not

7

8 Preface

always with me, I finally reached a few islands, and found there strange fruits I hope
you will find tasteful.

Acknowledgements
Without the help of many people, for fixing a torn sail or a broken helm, or simply to
share some thoughts about the best route between fringing reefs, I wouldn’t have been
able to travel as far as I did.

First, I would like to thank Claude Puech for accepting me in his lab when it was
obvious that my computer science background was scarce, and Marie-Paule Cani for
being my advisor during this thesis, letting me freely explore research areas of my own
choice, without loosing her patience when results were long to come.

I would also like to thank the people of the iMAGIS project for their joyfulness,
their helpfulness, and their ability to cope with my idiosyncratic tendencies to talk
too much at lunch time (and therefore eat slowly). Special thanks to Fabrice Neyret
for many OpenGL debugging tips and supercool demos, to François Faure for a few
months of common work on the AnimAL library, to Gilles Debunne for his guidance
in the validation of my deformable model using his animation software.

During the three years of my doctoral studies, many researchers generously shared
their expertise with me. I thank them all, by chronological order: Jacques Ohayon
(TIMC lab), for his collaboration in biomechanics; Isabelle Magnin and Denis Fri-
boulet (CREATIS lab), for their collaboration in the Beating Heart research project;
George Drettakis (REVES project), for his continuous support and collaboration; Pier-
re Bessière and Emmanuel Mazer (SHARP project), for discussions on Bayesian in-
ference; Dominique Attali (LIS lab), for discussions on computational geometry; Ma-
riette Yvinec (PRISME project) and Lutz Kettner (MPI – Saarbrücken), for exten-
sive coding of the CGAL library; Fred Cazals and Andreas Fabri (PRISME project),
for discussions on computational geometry; Jean-Paul Chirossel and Olivier Palombi
(Anatomy lab, Grenoble CHU), for their collaboration (and the recording of an entire
anatomy course on the blackboard).

Finally, I would like to thank members of my jury, James Crowley (PRIMA proj-
ect), George Drettakis (REVES project), and especially the reviewers Ronen Barzel
(Pixar Animation Studios), Christophe Chaillou (LIFL lab) and Jean-Daniel Fekete
(IN SITU project), for accepting this supplementary workload, in a very busy time of
the year!

Chapter 1

Introduction

1.1 User-centered Computer Graphics

Computer graphics is a burgeoning field that goes far beyond its sensu stricto defini-
tion as “the branch of science and technology concerned with methods and techniques
for converting data to or from visual presentation using computers” (Hapeman et al.,
2001). By its interdisciplinary nature, it tends to absorb nearly all the computer-related
fields under its broad paradigm of visual data processing. This enormous diversity of
subjects of interest is the common fortune and also the common fate of computer
graphics researchers: the creative bursts in every imaginable direction also have their
drawbacks when it comes to defining pertinent criteria to evaluate research or simply
finding structuring principles to teach what the field is about.

This thesis presents contributions ranging from animation to modeling, and in that
respect it is faithful to the eclectic tradition of computer graphics. However, we would
like to take a step back and think about one of its underlying motivations as a key to
understanding the choices that have been made. In fact, throughout our work, we have
been mostly interested in user-centered computer graphics, that is an approach of the
process of image synthesis where the point of view of the user prevails over all the
others. We will make the case for this position by starting with a few reminders on
computer graphics history.

1.1.1 A Brief History of Computer Graphics

Computer graphics is a young field. It takes its roots in computer-aided design (CAD),
which emerged in the 1960’s due to the increasing need for three-dimensional proto-
typing in the automotive and aerospace industries. Thus, computer graphics was built
upon the discoveries of engineers during a decade, for example in terms of surface rep-
resentations and object visibility calculations, but the goal was much more ambitious
than simply providing three-dimensional blueprints of mechanical parts: it was about
a new medium for creating mirror images of Nature.

9

10 Chapter 1. Introduction

Rapidly growing in possibilities and scope during the 1970’s and 1980’s, computer
graphics explored more and more complex problems in modeling, rendering and an-
imation. Therefore, computers invested domains where they were previously absent:
either traditional image industries, such as publishing, television and movies, or fields
demanding visualization such as medicine and engineering. Each time, this caused
profound changes in the ways the work was done because this was not a mere im-
provement over previous practice but a complete redesign of the pipeline. So much
that people could clearly distinguish before and after computers entered their profes-
sional lives.

Now, achievements speak for themselves: from highly detailed images rendered
at interactive rates on commodity graphics hardware, leading a booming computer
game industry, to special effects allowing movie directors to nearly forget limitations
of traditional film making, thanks to virtual sets and digital crowds, computer graphics
is as pervasive as computers in many aspects of our lives. Moreover, the historical goal
of physical realism has been met in some cases (Alias|wavefront, 2002a).

Nevertheless, the fully computer-generated movie Final Fantasy: The Spirits With-
in (Sakaguchi and Sakakibara, 2001), whose tag line was “fantasy becomes reality”,
and can be considered as state-of-the-art in physically realistic computer graphics im-
agery, was still carefully crafted by hand for more than 100 million USD. Actually, the
ever increasing complexity of scenes and the raw economic fact that silicon chips are
much cheaper than human brains call for innovative solutions to handle the workload.

This could be an explanation for the recent rise of the “capture” paradigm, or the
measurement of an augmenting number of real world properties in order to feed an
image synthesis process. Capture technologies have already been used for recording
human motion, for recovering objects surface geometry or light interaction behavior,
but we expect that many other possibilities are waiting at the corner. Moreover, the fact
that most of these measurements are image-based, may foretell the advent of a “super
camera” device, where everything could take place at the same time, from the same
viewpoint. In the long term, this approach could complement or replace proceduralism
as a solution for tackling the problem of creating complex scenes.

Thus, one possible answer to the expanding workload is to diminish the amount
of human intervention by using even more automatic systems; but another possible
answer, which we are interested in, is to present to users better ways for performing
their tasks, thereby making their work easier, faster, and more enjoyable. Of course,
these answers are not mutually exclusive, and in what follows, we will explore this
alternative as one among all the other computer graphics classifications.

1.1.2 A Simple Computer Graphics Taxonomy
Building a taxonomy of a problem is an interesting way to focus on the big picture
without getting lost in details, but also a powerful tool to discover fresh ideas (Ivan E.
Sutherland, cited by Sun microsystems, 2002). In order to do this, one must define a
few axes, each representing a separate dimension of the problem. The combinations

1.1. User-centered Computer Graphics 11

of the axes values provide the different classes, or taxons, of the taxonomy. A careful
inspection of these may lead to unexpected insight.

If we are considering the computer graphics input problem, we can define an axis
that focuses on the amount of human intervention, and goes from fully automated
systems, which do not need user input, to fully controllable systems which require
user input from the beginning to the end of the task. To sum up, this axis could also be
defined by the following opposing pairs:

with user ←→ without user
controllable ←→ automatic

human-centered ←→ machine-centered

Another interesting axis that can be defined around the input problem concerns how
much knowledge of the world1 is encoded into the system: does the system generate
new images because it has been given examples of expected results, or because it has
the knowledge of the laws of optics? As before, one can clarify this opposition using
a few word pairs:

with knowledge ←→ without knowledge
procedural ←→ statistical
rule-based ←→ data-based

From this simple two-axis taxonomy, it seems obvious that a system requiring user
input can be obtained by a wide diversity of computer programs because, theoretically,
axes of the taxonomy are orthogonal descriptions of the same problem, and thus all
combinations are possible. But it is not what is observed in practice. In fact, some
programs lend themselves easily to user interaction while others do not. If our primary
concern is the way the user interacts with the system, that is the system interface, we
will always face limitations, since points of interaction we can offer are constrained by
those offered by the program itself and its underlying model. Therefore, in designing a
system, we cannot consider the model and the interface separately, because somehow
the model is the interface.

This claim has a direct consequence on the problem solving process in computer
graphics. It involves devising the solution to a problem not only in terms of the strict
requirements of the end result (e.g., images of trees) but also in terms of the kind of
interaction that will be necessary for a user to actually accomplish the task (e.g., model
and render trees). This seems trivial but it is not: because the choices made during
the model definition phase have already reduced the set of possible interactions, it is
too late to change anything if in the end the interface proves wrong. In that respect,
computer graphics is a tool making activity, and the tools produced must obey general
usability principles, but also specific ones. We will discuss this point of view in the
next section.

1 We mean by knowledge the explicit, formalized knowledge, obtained by the scientific method.

12 Chapter 1. Introduction

1.2 Computer Graphics as Tool Making
Tool making has been a distinctive activity of the members of the genus Homo for at
least 2 million years.2 Amidst today’s profusion of tools invented by our industrious
species, recently developed information processing systems occupy a position apart,
because their “abstract nature [...] poses a particular challenge for the designer” (Nor-
man, 1988, p. 177). Compared to prehistoric tools still in use today (the knife, the
needle, etc.), the current usability of computer systems makes some people suggest
humorously that we are facing a regression in that matter (see Fig. 1.1).

Figure 1.1: A cartoonist’s view of evolution. Legend: “Somewhere, something went terribly
wrong.” (We do not know the author of this satirical drawing).

Computer graphics tools have evolved tremendously over the past thirty years.
In the early days, tools were limited to a programming language and its compiler,
and eventually a graphics application programming interface (API). The user was the
programmer. Then, software with remarkably well-thought graphical user interface
(GUI), such as Photoshop (Adobe Systems, 2002), appeared in the 1980’s, introducing
progressively non-programmer users, such as traditional artists, to computer graphics.
Now, tools usability have nearly reached a standstill, even if users tasks have never
been so complex and various. However, we believe there is still much room for im-
provement. In fact, computer graphics system design, as a tool making process, has a
lot to learn from ergonomics.

1.2.1 Classic Ergonomics

Ergonomics, from the Greek εργoν (work) and νoµoς (laws), is “the scientific disci-
pline concerned with the understanding of interactions among humans and other ele-
ments of a system [...]. Ergonomists contribute to the design and evaluation of tasks,
jobs, products, environments and systems in order to make them compatible with the
needs, abilities and limitations of people. [...] That is, ergonomics promotes a holistic
approach in which considerations of physical, cognitive, social, organizational, envi-

2 Famous stone tools discovered by Mary Leakey at Olduvai Gorge, in Tanzania, are dated at
1.7 My BP, but recent findings could be as old as 2.4 My BP.

1.2. Computer Graphics as Tool Making 13

ronmental and other relevant factors are taken into account” (International Ergonomics
Association, 2000).

The science of ergonomics provides the methods we need to design usable tools.
In the best possible world, this knowledge would be used on a large scale, resulting
in the best possible tools, up to what we know about user needs. Unfortunately, an
objective look at the situation in the computer industry reveals impressive failures. Of
course, there are always plenty of possible explanations for them, related to technical,
industrial, commercial, historical, etc., constraints. However, there is another possible
explanation that sums up the others: the user is too often the last factor to be taken into
account (see Fig. 1.2).

Figure 1.2: The need for user-centered tools. Off the leash by W. B. Park. Legend: “Darn
these hooves! I hit the wrong switch again! Who designs these instrument panels, raccoons?”
Cited by Norman (1988, p. 187).

Progress has occurred in computer systems since, for example, the first word pro-
cessors. They are no longer the primitive tools described by Norman (1988). Thanks to
cognitive ergonomics studies, they now have self-modifying menus, contextual help,
automatic spell checking, etc. But these beautiful pieces of software are using age-old
input devices that are one of the causes of an epidemy of repetitive strain injuries (RSI),
due to the neglect of basic ergonomic principles. We consider this as a prototypical
example of our previous assertions.

“The RSI, also known as cumulative trauma disorder or overuse syndrome, consists
of many different injuries: carpal tunnel syndrome, tendinitis, tynosynovitis, thoracic
outlet syndrome, lateral epicondilitis, etc.” (Luskin, 1993). They are mainly caused by
the excessive usage of the computer mouse and keyboard, two examples of ergonomic

14 Chapter 1. Introduction

disasters. “We couldn’t find a single mouse or trackball we felt was safe to use for ex-
tended periods of time” (Pascarelli, 1994). However, these injuries have other possible
causes that go beyond repetitive motions.3 Physical factors (screen position, etc.) and
organizational factors (intensified workload, etc.) are also responsible (Koehoorn et al.,
2001). The percentage of RSI among all occupational illnesses has regularly grown
since the release of the IBM PC, starting from less than 20% in 1981, passing 50%
in 1992, and reaching 70% by the year 2000, according to estimates (Putz-Anderson
et al., 1997). Pascarelli evaluates that RSI cost 20 billion USD a year: this is one of
the hidden costs of present computer systems.

Thus, it seems that, in many cases, computer system design is trapped in some
local optimum that satisfies many constraints, except the usability of the system. This
gloomy perspective applies also to computer graphics system design, the problem of
usable input devices being even more acute since tasks frequently involve manipulating
complex three-dimensional data.4 Changing this state of facts will imply much more
than a few good design ideas.5 Nevertheless, considering that the goal is still out of
reach does not forbid thinking ahead of it. We have emphasized the importance of
classic ergonomics factors in general system design, but we consider that they are not
sufficient to describe all the requirements for creation tools, such as computer graphics
systems. Therefore, we will risk the definition of a new domain of this discipline that
could be of great interest in creation tool design.

1.2.2 Creative Ergonomics

In The Ultimate Design Tool, Blinn (1990) defines creation as a two-phase process
that starts with ideation and finishes with implementation. He makes the point that
paper and pencil is the perfect tool for the ideation phase. “Computers help a lot with
implementation, but idea generation is still done with pencil and paper. Can computers
help here too? I don’t think so. Why try to cram something on a computer when there
is a cheap and effective alternative?” We entirely agree with this. Given the current
software, hardware, input, and output technology, there is no such thing as paper and

3 That is why ergonomists prefer to call RSI work-related musculoskeletal disorders of the upper
limb (WMSD).

4 “While the essence of artists are reflected in their work, it is rooted in skill — skill which is hard
earned, and therefore worthy of respect by the instrument builder, or ‘luthier’. But it is precisely these
same skills which are so poorly captured by most computer-based tools. I maintain that the skills (and
therefore needs) of the artist are different from those of, say, an accountant. Yet, based on the tools used,
when I walk through Disney Feature Animation, for example, I can hardly tell if I am in the accounting
or character animation department.” (Buxton, 1997).

5 “It will take extra effort to design systems that complement human processing needs. It will not
always be easy, but it can be done. If people insisted, it would be done. But people don’t insist:
Somehow, we have learned to accept the machine-dominated world. If a system is to accommodate
human needs, it has to be designed by people who are sensitive to and understand human needs. I
would have hoped such a statement was an unnecessary truism. Alas, it is not.” (Norman, 1993,
p. 227).

1.2. Computer Graphics as Tool Making 15

pencil available on computers: architects still sketch on paper for early design, but the
definite building plans are obtained using CAD tools.6 However, we do not agree with
the fact that the ideation phase is the only one to take advantage of creation-friendly
tools: after working out his sculpture on paper, a sculptor is not simply following his
previous studies as rigid blueprints when he handles the chisel. Implementation is as
creative as ideation.

As a result, it is necessary to evaluate tools used during the implementation phase
of the creative process, not only for their classic ergonomics properties, but also for
their creative potential, or in other terms their “creative ergonomics” properties. Before
giving a precise definition of what we mean by creative ergonomics, we will illustrate
this idea with an example in an unrelated domain: children’s toys.

For our demonstration, we classify toys in two categories. On the one hand, there
are toys that are multipurpose, such as a doll or a ball. They afford invention of many
different sorts of games because they offer a good support to children’s imagination.
On the other hand, there are “monopurpose”, single-game toys, such as a jigsaw puz-
zle. This toy obeys to a fixed set of rules and evolves from a defined initial state (all
pieces apart) to a defined final state (jigsaw puzzle completed). The game is over when
this state is attained. Of course, one could object that it is also possible to invent games
with such toys, that it is only a matter of individual creativity. This is absolutely true.
But the point is that some toys are on the average better at stimulating children’s fan-
tasy than others. Understanding this property is what creative ergonomics is about. In
the spirit of the definitions of physical, cognitive, and organizational ergonomics given
by the International Ergonomics Association (see Appendix A), here is a tentative def-
inition of the domain:

Creative ergonomics is concerned with mental processes, such as inspiration, and
association, as they affect production of original work through interactions among hu-
mans and other elements of a system. Relevant topics include input device expressive-
ness, output device stimulating quality, abstract/ambiguous/imprecise representation
handling (Goel, 1995; Gross and Do, 1996), and non-verbal interaction.

To begin with, the creative ergonomics properties of tools can be analyzed from
the point of view of objects affordances.7 In fact, we distinguish between two kinds
of affordance. Cognitive affordance is the kind of affordance considered by Norman
(1988), it is about the tool’s cognitive usage. Successful design makes the tool as
strictly defined as possible, so that there is no possibility of misunderstanding the use
intended by the designer. Creative affordance is a different kind of affordance, it is

6 We heard recently of a software design tool named SketchUp (@Last Software, 2002) that could
modify architects work habits, by filling the gap between sketching with paper and pencil, and modeling
with CAD tools. This tool seems inspired by the work of Zeleznik et al. (1996).

7 “There already exists the start of a psychology of materials and of things, the study of affordances
of objects. When used in this sense, the term affordance refers to the perceived and actual properties
of the thing, primarily those fundamental properties that determine just how the thing could possibly
be used [...]. A chair affords (‘is for’) support and, therefore, affords sitting. A chair can also be
carried.” (Norman, 1988, p. 9)

16 Chapter 1. Introduction

about the tool’s creative usage. Successful design makes the tool as loosely defined as
possible, so that there is a wide range of possibilities of inventing uses intended or not
by the designer. These two kinds of affordance have sometimes opposite goals and the
resulting tool design is in fact a trade-off between them.

Of course, this framework explores only a small part of the complexity of creative
ergonomics, and we are aware of the necessity of other approaches (Boden, 1992). In
the future, creative ergonomics could lead to a new success metric for computer graph-
ics systems, different from the technology-centered metric in use today. However, with
current difficulties for evaluating it (Eysenck, 1994), we cannot expect anything but
qualitative results for the moment.

After this discussion on the underlying motivations of this thesis, we will precise
how the previous considerations influenced our contributions. For this, we will de-
scribe briefly the application contexts, the problems posed, and the solutions chosen.

1.3 Interactive Animation and Modeling by Drawing
The possibilities offered by information technologies for teaching are enormous, and
they now define a new field of scholarly research, with a growing academic commu-
nity (e.g., the Stanford Center for Innovations in Learning was established in 2002).
Among the disciplines, biology has long been an obvious choice because of the com-
plexity of the field of study: living beings have a three-dimensional, dynamic structure
that poses difficult teaching challenges. Moreover, ethical problems, practical avail-
ability, etc., are also to be considered. To tackle these issues, various projects have
proposed virtual dissection kits, frogs being by far the most popular (SUMMIT, 2002b;
Hill, 2002).

Medicine is a discipline where visualization is an essential component of learn-
ing. Anatomy is a visual discipline in essence, but dissection of cadavers conveys
only a portion of the necessary information to understand spatial relationships be-
tween organs: the heart does not beat, the diaphragm does not move, etc. The time
dimension is missing. Moreover, when three-dimensional imaging data are at hand,
there are no editing tools available that are as easy to use as white chalk and black-
board. Thus, teacher and student are maintained in a passive observer attitude with
respect to these data. The existing teaching tools are either based on anatomical image
databases (Walsh et al., 2002), or multimedia documents (SUMMIT, 2002a). There
is a need for truly interactive teaching tools that will enable teacher and students to
create and manipulate computer models, not just watch them. With that goal in mind,
we have proposed different approaches, all having pedagogical applications in medical
education.

First, we were interested in interactive physically-based animation of anisotrop-
ic elastic materials. The envisioned application scenario is a physiological anatomy
course on the human cardiac muscle. Using our model, teacher and students can build
interactive samples of cardiac muscular tissue in order to demonstrate organ function,

1.3. Interactive Animation and Modeling by Drawing 17

and experiment effects of various pathologies. Possible exercises include: qualitative
influence of fibers orientation on the mechanical behavior of the cardiac pump, quanti-
tative influence of ischaemic necrosis8 in selected areas of the tissue on the mechanical
efficiency of the muscle, etc.

To achieve this, our model exhibits two key features. The first one is low compu-
tational cost that results in high frame rates, a sine qua non for interactivity. Thanks
to this, the user can play with the model, picking it with computer mouse-generated
forces, and tweaking it to understand its rich behavior, with instant visual feedback.
Besides, this also allows simulations to be rerun immediately after changing parame-
ters. The second feature is an intuitive system image9 that ensures easy control by the
user. Most of the time, physically-based models lead to crude system images that are
simple translations of the model parameters in terms of GUI. Depending on the target
user, e.g., a medical student, requiring expert knowledge to control the system, e.g.,
continuum mechanics, might not be a good design idea.

Next, we were interested in interaction in three dimensions using two-dimensional
input, either for annotating existing models, or for creating new models. The fact that
drawing practice is still considered a fundamental learning method by some anatomy
teachers in French medical school curriculum, presents a rare opportunity to take ad-
vantage of a previous know-how for reusing it in a computer-based tool. During a
typical course session, the teacher draws on the blackboard three-dimensional anatom-
ical structures with colored chalks, either as perspective projections, or as (sagittal,
transverse, or frontal) sections. At the same time, the students, following the examples
on the blackboard, draw the same structures in their sketchbooks. This process facili-
tates memorization of the shapes and spatial relationships, because a structure is better
“understood” once it has been implicitly analyzed by drawing.

Thus, a simple application scenario is a human anatomy course where the teacher
draws functional schemas using a computer tablet. The image on his computer screen
is projected on the wall behind him for the students to see. Using our system for illus-
tration and annotation in 3D, he can draw and visualize each schema under different
viewpoints, drawing new information when the inferred schema becomes obviously
wrong. If he is presenting an existing model, for example an isosurface of a femur
bone extracted from imaging data, he can still annotate this three-dimensional model
as he would have for a paper diagram. Finally, if he wants to complement the femur
model, as if by sculpting it, for example to indicate effects of partial bone fracture, he

8 Ischaemic necrosis is the death of cells as a result of diminished blood flow in a tissue or an organ.
9 “Three different aspects of mental models must be distinguished: the design model, the user’s

model, and the system image [...]. The design model is the conceptualization that the designer has in
mind. The user’s model is what the user develops to explain the operation of the system. Ideally, the
user’s model and the design model are equivalent. However, the user and designer communicate only
through the system itself: its physical appearance, its operation, the way it responds, and the manuals
and instructions that accompany it. Thus the system image is critical: the designer must ensure that
everything about the product is consistent with and exemplifies the operation of the proper conceptual
model.” (Norman, 1988, pp. 189–190)

18 Chapter 1. Introduction

can do it using our (nearly finished) modeling by drawing tool.
All this is possible because our 3D drawing system has a stroke representation that

enables drawing redisplay when the viewpoint changes. Moreover, this representation
can be mixed freely with existing polygonal surfaces for annotation purposes. Dif-
ferently, our modeling by drawing tool strives to offer a sketching interface using both
strokes geometry and drawing image information to allow three-dimensional modeling
without explicit depth specification.

We will present our contributions in the next three chapters: our model of aniso-
tropic elastic materials in chapter 2, our drawing system for illustration and annotation
in 3D in chapter 3, and our modeling by drawing tool in chapter 4. We will conclude
by presenting the current limitations and the future extensions of these approaches in
chapter 5.

Chapter 2

Animating Anisotropic Elastic
Materials

2.1 Introduction

Many natural objects are strongly anisotropic, due to their structure (crystalline, fi-
brous) or the composite materials they are made of (tree trunks, mammal organs). For
example, human heart motion simulation is a challenging problem since the heart is
a muscle of complex geometry, where anisotropy caused by the varying directions of
muscle fibers (see Fig. 2.1a) plays an important role (Hunter, 1995). The human liver
is also a good example of anisotropic material, although it has been previously ani-
mated using isotropic elastic models (Cotin et al., 1999; Debunne et al., 1999, 2001).
In fact, it can be seen as a composite material: the root-like structures of rather rigid
vessels are embedded in the liver tissue itself, which is a soft material (see Fig. 2.1b).

(a) (b)

Figure 2.1: Two examples of complex anisotropic materials. In (a), angular maps of mus-
cle fiber direction obtained on a human heart (Usson et al., 1994); left, map of the azimuth
angle; right, map of the elevation angle. In (b), a human liver with the main venous system
superimposed (courtesy of Épidaure project, INRIA).

19

20 Chapter 2. Animating Anisotropic Elastic Materials

We would like to offer a tool for easy creation and interactive animation of aniso-
tropic elastic materials. For example, we envision the use of digital biological samples
that could be edited and manipulated interactively during an anatomy course on human
liver structure or a physiology course on human heart muscle. After reviewing liter-
ature on deformable models, with special emphasis on interactive systems that could
allow simple anisotropy specification, we have found that mass-spring systems pre-
sented an interesting possibility because of their trade-off between model complexity
and expressiveness.

In fact, mass-spring systems have been extensively used in computer graphics over
the last fifteen years, and are still very popular. Easier to implement than finite ele-
ment methods, these systems allow animation of dynamic behaviors. They have been
applied to the animation of inanimate bodies such as cloth or soft material (Luciani
et al., 1991; Provot, 1995) and to the animation of organic active bodies such as mus-
cles in character animation (Miller, 1988; Chadwick et al., 1989).

However, modeling specific biological material is impossible using mass-spring
systems: as will be shown, neither isotropic materials nor anisotropic materials can
be generated easily. Another problem is that most of the living tissues, which are
essentially made of water, maintain quasi-constant volume during deformations (this
is well known for muscles, but also holds for other tissues). Mass-spring systems do
not have this property.

Overview

We present an alternative model to classical mass-spring systems that enables one to
specify isotropic or anisotropic properties of an elastic material, independently of the
3D mesh used for sampling the object. The approach we use is still related to mass-
spring systems in the sense that we animate point masses subject to applied forces.
However, the forces acting on each point mass are derived from the anisotropic behav-
ior specified for each of the volume elements that are adjacent to it.

Since there are no springs along the mesh edges, the geometry and topology of the
mesh do not restrict the simulated behavior. Moreover, quasi-constant volume defor-
mations can be obtained by adding extra forces acting as soft constraints. We illustrate
this on both tetrahedral and hexahedral meshes. Our results show that computation
time remains low, while more controllable behaviors are achieved. Finally, we vali-
date our model by testing its ability to simulate nonlinear stress-strain relationships,
and by comparing its behavior for different resolutions of the mesh.

Part of this work has been previously published in the Proceedings of the 11th
Eurographics Workshop on Animation and Simulation (Bourguignon and Cani, 2000).

2.2. Previous Work 21

2.2 Previous Work
Despite extensive computer graphics literature on deformable models, commented in
recent surveys (Gibson and Mirtich, 1997; Debunne, 2000), there are, to the best of our
knowledge, only a few papers mentioning the possibility of modeling anisotropic ma-
terials. Continuum mechanics has been modeling composite materials for a long time
and biomechanics is now facing the challenge of modeling living materials (Ohayon
et al., 2001), but the complexity of the phenomena involved induces highly detailed
mathematical models that are also very demanding in computation time. Interactive
deformable models of anisotropic materials thus remain elusive.

We will review the two main kinds of physically based deformable models de-
scribed in the literature, with an emphasis on interactive systems and volumetric ap-
proaches. We will then investigate the advantages and disadvantages they would
present for modeling anisotropic nonlinear materials with quasi-constant volume de-
formations.

2.2.1 Continuous Models
Continuum mechanics and elasticity theory offer a general framework for modeling
deformable materials. However, most of the continuous models in computer graph-
ics make assumptions concerning the simulated material: it must be homogeneous,
isotropic and follow a linear stress-strain relationship under the small deformations
hypothesis (geometrical linearity) in order to simplify equations. Because it is nec-
essary to understand these assumptions before discussing previous work, we present
below a very brief survey of the theory of linear elasticity (Hollister, 2002). For a
thorough introduction, we refer the reader to the classical work of Fung (1965).

Indicial Notation

In what follows we will use indicial notation. In a Cartesian orthonormed coordinate
system R (O, e1, e2, e3), a first order tensor (a.k.a. vector) a has components ai, i.e.,

a = ai ei = a1 e1 + a2 e2 + a3 e3

according to the rule of summation over the range of the repeated index (a.k.a. Ein-
stein summation convention). Similarly, a second order tensor (a.k.a. tensor) A has
components Ai j, i.e.,

A = Ai j ei ⊗ ej

and it is now possible to write equations in a basis-independent manner, e.g,

ai ei = Ai j b j ei is written ai = Ai j b j

22 Chapter 2. Animating Anisotropic Elastic Materials

reference

deformed

e2

e3 x′

e1

B
′

B

P
P

x

u

Figure 2.2: Elasticity definitions. A body initially in reference configuration B at time t = 0
undergoes deformation and is now in deformed configuration B′ at time t. Position x = xi ei
of material point P in reference configuration is expressed in a Lagrangian coordinate system;
position x′ = x′i ei of material point P in deformed configuration is expressed in an Eulerian
coordinate system. Displacement of material point P at time t is u = x′ − x

Small Deformation Elasticity

The strain tensor describes, given a point of the material, the deformation w.r.t. the rest
state, in every possible direction. It is represented by a 3 × 3 symmetric matrix with
six strain components: three principal strains (diagonal terms of the matrix) and three
shear strains. A classical strain metric is the Cauchy strain tensor εi j defined by

εi j =
1
2

(

∂ui

∂x j
+
∂u j

∂xi

)

with

∣

∣

∣

∣

∣

∣

∂ui

∂x j

∣

∣

∣

∣

∣

∣

� 1 ∀i,∀ j

where ∂ui
∂x j

is the derivative of the ith coordinate of the displacement ui w.r.t. the jth
coordinate of the reference configuration. The displacement ui is defined for every
point as the vector between reference and deformed positions.

The stress tensor describes, given a point of the material, the force acting on every
infinitesimal surface element (stress is thus equivalent to a pressure). It is represented
by a 3×3 symmetric matrix with six stress components: three normal stresses (diagonal
terms of the matrix) and three shear stresses. A classical stress metric is the Cauchy
stress tensor σi j defined by

ti = σi j n j

where ti is the traction vector, i.e., areal density of force and n j is the unit normal to
the surface.

The simplest stress-strain relationship is Hooke’s law, a linear constitutive law first
stated in the one-dimensional case of springs. In the general case of three-dimensional
bodies, it states that stress is proportional to strain, i.e.,

2.2. Previous Work 23

σi j = Ci jkl εkl

where Ci jkl is the tensor of elasticity, a rank four symmetric tensor, with thirty-six
different terms, since σi j and εkl are rank two symmetric tensors with six different
terms. It is the constitutive law for a linear, elastic, anisotropic and homogeneous
material.

When the material is assumed to be isotropic, i.e., the material behavior is the same
in every direction, only two elastic constants are necessary to represent the behavior
and the constitutive law becomes

σi j = λ εkk δi j + 2 µ εi j with δi j =

{

1 if i = j
0 if i , j

where λ and µ are the Lamé elastic constants (equivalent to pressures) and δi j is the
Kronecker delta. In practice, two other elastic constants are determined by rheological
experiments: Young’s modulus, that gives a measure of material rigidity, and Poisson’s
ratio, that gives a measure of its incompressibility. Lamé constants can be expressed
using these constants, thus

λ =
Eν

(1 + ν) (1 − 2ν)
and µ =

E
2 (1 + v)

where E is Young’s modulus (equivalent to a pressure) and ν is Poisson’s ratio (without
dimension). Since ν varies from 0 to 1

2 with the incompressibility of the material, λ is
infinite when the material is perfectly incompressible.

Volume conservation is achieved by introducing an extra variable called the La-
grangian term. In fact, for perfectly incompressible materials, we have

lim
ν→ 1

2

λ = +∞ and lim
ν→ 1

2

εkk = 0

then,

σi j = P δi j + 2 µ εi j

is the new formulation for the constitutive law given previously, where P = λ εkk is
an unknown finite quantity (the Lagrangian term). However, a material is generally
considered sufficiently incompressible when λ > 100 µ, and no Lagrangian term is
introduced. But increasing λ leads to stiff equations and numerical instability.

Anisotropy can be introduced straightforwardly using an approximate formulation,
e.g., for incompressible material with unidirectional fibrous reinforcement, the consti-
tutive law becomes

σi j = P δi j + 2 µ εi j + Tbib j

24 Chapter 2. Animating Anisotropic Elastic Materials

where T is the fiber constraint and bib j is the tensor product of the fiber direction vector
bi with itself. Of course, an exact formulation would use the tensor of elasticity with
as many elastic constants as necessary to represent the anisotropic behavior.

Newton’s second law is expressed as

∂σi j

∂x j
+ fi = ρ γi

where fi is the sum of external forces, ρ is the mass density of the material and γi is its
acceleration.

Rewriting Hookean isotropic constitutive law using displacement, we have

σi j = λ
∂uk

∂xk
δi j + µ

(

∂ui

∂x j
+
∂u j

∂xi

)

and using Newton’s second law, neglecting external forces, one obtains the Navier
equation

∂σi j

∂x j
= λ

∂2uk

∂x j ∂xk
δi j + µ

(

∂2ui

∂x j ∂x j
+
∂2u j

∂x j ∂xi

)

∂σi j

∂x j
= λ

∂2uk

∂xi ∂xk
+ µ

(

∂2ui

∂x j ∂x j
+
∂2u j

∂xi ∂x j

)

since a j δi j = ai

ρ γi = (λ + µ)
∂2u j

∂xi ∂x j
+ µ

∂2ui

∂x j ∂x j

that can be rewritten, for perfectly incompressible materials, as

ρ γi =
∂P
∂xi
+ µ

∂2ui

∂x j ∂x j
with

∂uk

∂xk
= 0

these two equations being solved for the two unknown variables P and ui.

Large Deformation Elasticity

We define the deformation gradient tensor Fi j as

Fi j =
∂x′i
∂x j
= δi j +

∂ui

∂x j

where ∂x
′
i

∂x j
is the derivative of the ith coordinate of position x′i in the deformed config-

uration w.r.t. the jth coordinate of the reference configuration. It has to be noted that
Fi j is not a symmetric tensor.

A classical strain metric is the Green-Lagrange strain tensor E i j defined by

2.2. Previous Work 25

Ei j =
1
2

(

Fki Fk j − δi j

)

Ei j =
1
2

(

∂ui

∂x j
+
∂u j

∂xi
+
∂uk

∂xi

∂uk

∂x j

)

This tensor is nonlinear because second order terms (geometrical nonlinearities)
are not neglected. We also note that Cauchy strain tensor is in fact a first order approx-
imation of the Green-Lagrange strain tensor.

A classical stress metric is the second Piola-Kirchoff stress tensor S jr defined by

S jr = F−1
i j σik J F−1

rk

where J = det Fi j is the determinant of the deformation gradient tensor and its third
invariant.

This tensor is used in the reference configuration and thus one avoids the problem
of using the Cauchy stress tensor for materials undergoing large deformation when the
area in the deformed configuration is unknown. Moreover, it is energetically consis-
tent with the Green-Lagrange strain tensor, i.e., the strain energy density calculated
with these tensors is equal to the one calculated with the Cauchy stress tensor and the
Cauchy strain tensor:

S i j Ei j = σi j εi j

The second Piola-Kirchoff stress tensor has very little physical meaning and is
mainly used to compute the Cauchy stress tensor. However, if straight Cauchy stresses
are used, incorrect results will be obtained, because they do not take into account the
effect of rigid body rotations.

Papers Overview

A classic way to solve elasticity equations is to use finite elements method (FEM) in
the static case, the simulation consisting of a series of equilibrium states, thus with no
dynamic behavior. Gourret et al. (1989) propose one of the first applications of FEM
to computer animation by simulating deformations of a hand grasping and pressing
a ball. The material is considered isotropic and obeying Hooke’s law. To take into
account geometrical nonlinearities, the second Piola-Kirchoff stress tensor and Green-
Lagrange strain tensor are used. Classical FEM is thus rigorously employed, but as a
result the method is very time consuming.

Chen and Zeltzer (1992) model human skeletal muscle using a classic biomechan-
ical model of muscle contraction to apply nonlinear forces to finite elements mesh
nodes. Active and passive muscle force generators and tendons force generators act

26 Chapter 2. Animating Anisotropic Elastic Materials

along the longitudinal direction of the muscle. The FE model then simulates the dy-
namic behavior of an isotropic linear elastic passive material submitted to external
forces. Even though this model is a rough approximation of the behavior of a living
muscle tissue, it gives good results when validated using classic muscle physiology
experiments.

Sagar et al. (1994) present a model of the eye and surrounding face for use in a
surgical simulator. Mechanical properties of the cornea are simulated in the static case
using a large deformation finite element model of an homogeneous, orthotropic and
nonlinear elastic material with a J-shaped uniaxial stress-strain behavior. Using a high-
end machine with multiple processors, the authors achieved update rates significantly
greater than 10 Hz, which is barely sufficient for interactive use, but is still impressive
considering this is a very complex biomechanical model.

Interactivity is achieved by precomputing matrix inverses, assuming they are con-
stant when the elements geometry does not change too much, but thus preventing any
change in mesh topology. Bro-Nielsen and Cotin (1996) simulate an isotropic material
obeying Hooke’s law. Under the small deformation hypothesis, three simplifications
are made to speed up computations. First, the stiffness matrix obtained with FEM is
rewritten: it takes only surface nodes into account, but still displays the volumetric
behavior of the object. Second, the matrix inverse is precomputed. Third, a selective
matrix vector multiplication is used to exploit the sparse structure of the force vec-
tor. However, it is impossible to impose displacements constraints and only a static
equilibrium position is obtained after application of forces.

James and Pai (1999) use the boundary elements method (BEM) to solve the Navier
equation for compressible materials in the static case. They propose a fast update
method of the stiffness matrix when few boundary conditions change, which corre-
sponds to the application scenario where a virtual tool is tickling an object, resulting
in only a few nodes being affected. By exploiting the coherence of the stiffness matrix
inverse, modification is achieved at the expense of precomputation and memory usage.

Zhuang and Canny (1999) propose a real-time simulation of isotropic linear elastic
material under the large deformation hypothesis. The use of a nonlinear strain ten-
sor prevents employing the preprocessing step previously used for achieving real-time
performance. Since internal force vector is no longer linear w.r.t. nodal displace-
ment vector, there is no constant stiffness matrix inverse to be precomputed. Instead
of a sequence of static equilibria, an explicit time integration scheme allows dynamic
behavior. To simplify the Lagrange equation of motion, global mass and damping ma-
trices are diagonalized. A graded mesh is used instead of a uniform mesh to speed up
computations, at the expense of limited object geometry due to hexahedral elements.

Explicit FEM avoids stiffness matrix inversion by considering only a superposition
of local solutions. O’Brien and Hodgins (1999) simulate initiation and propagation of
cracks in 3D objects. Linear elastic fracture mechanics is used, with homogeneous,
isotropic material, under the large deformation hypothesis. Following fracture devel-
opment requires local remeshing, and brittle materials involve stiff equations that are
solved using small time steps with an explicit integration scheme; thus, computation

2.2. Previous Work 27

is very slow. Debunne et al. (2001) reuse the previous approach to simulate soft mate-
rials but speed it up and reach interactivity with multiresolution techniques. However,
this requires precomputing a mesh hierarchy, and thus prevents any change in object
topology during simulation.

Related to explicit FEM, the “tensor-mass” model of Cotin et al. (1999) simulates
dynamic deformations of an isotropic material with a linear constitutive equation, un-
der the small deformation hypothesis. The main idea is to split, for each tetrahedron,
the force applied at a vertex in two parts: a force created by the vertex displacement
(w.r.t. rest position) and a force produced by the displacement of its neighbors, i.e.,
vertices that are linked to it by mesh edges. This is possible using local tensors that
relate force to displacement. Evaluation of these tensors requires evaluation of the
stiffness matrix associated to each tetrahedron adjacent to one of the edges linked to
the vertex. New positions of the vertices are obtained from forces using a dynamic
explicit integration scheme.

Picinbono et al. (2000, 2001) have improved this model to handle anisotropic be-
havior and nonlinear elasticity under the large deformation hypothesis. For this, strain
is measured using Green-Lagrange strain tensor (called Green-St Venant by the au-
thors) and elastic energy is rewritten from a quadratic function into a fourth order
polynomial of the displacement gradient (St Venant-Kirchoff elasticity). Transversally
isotropic materials are supported. This a special case of anisotropy where a material
has a different behavior in one given direction (see Fig. 2.3a). To optimize compu-
tation time, nonlinear elasticity is used only for nodes whose displacement is larger
than a given threshold, otherwise linear elasticity is considered as a sufficiently good
approximation (see Fig. 2.3b).

Finally, for the sake of completeness, we mention continuous models that simulate
only global deformation without using FEM for solving elasticity equations. Pentland
and Williams (1989) simulate global deformation by modal analysis. The Lagrange
equation of motion is rewritten by diagonalizing the global mass, damping and stiff-
ness matrices. Thus, the previous system is now composed of independent equations,
each describing a different vibration mode of the object. Linear superposition of these
modes determines how the object responds to a given force; thus, neglecting the high
frequency, low amplitude modes, it allows interactive simulation. Terzopoulos et al.
(1987) propose a model based on minimization of deformation energy that is more
concerned with differential geometry properties of objects (either curves, surfaces or
solids) and use only the analysis of deformations part of the linear elasticity frame-
work. Dynamic differential equations are solved using finite differences method and
implicit integration, thus limiting the model to regular meshes and non-interactive ap-
plications.

Discussion

In continuum mechanics, hyperelasticity theory is used for nonlinear elastic materi-
als under the large deformation hypothesis. Constitutive equations are written us-

28 Chapter 2. Animating Anisotropic Elastic Materials

(a) (b)

Figure 2.3: Continuous models. Results from Picinbono et al. (2000, 2001). In (a), deforma-
tion of tubular structures with top and bottom faces fixed, submitted to the same forces (from
left to right, isotropic model, anisotropic models along the height direction, with rightmost
being twice as stiff as the middle one in the anisotropic direction). In (b), a force is applied to
the right lobe of the liver with linear (wireframe, top) and nonlinear (solid) liver models. The
linear model displays an unrealistic volume increase due to the linear strain tensor. The rest
shape is indicated (wireframe, bottom).

ing Green-Lagrange strain tensor and the second Piola-Kirchoff stress tensor. This
framework could be used for non-interactive simulations of such materials in com-
puter graphics. O’Brien and Hodgins noted that there is nothing that would preclude
switching the linear isotropic formulation used in their paper to anisotropic formula-
tion or even to a nonlinear stress-strain relationship.

Among all the papers presented, only the work of Picinbono et al. focused specifi-
cally on anisotropic materials under large deformation hypothesis. However, this does
not imply that other previous interactive approaches could not be adapted to simu-
late these materials. Handling anisotropic Hookean elastic material is straightforward,
since anisotropy is encoded in the tensor of elasticity. However, it is not clear whether
or not the framerate would remain acceptable for interactive applications, because the
constitutive law would now contain matrix-matrix multiplication, that may slow com-
putations down in the case of explicit FEM. The approaches of Bro-Nielsen and Cotin
and James and Pai, based on processing of the global stiffness matrix could still be
valid, but only under the small deformation hypothesis. Concerning nonlinear ma-
terials, an entirely new constitutive law is needed, which might be computationally
intensive. FEM or BEM solutions of Bro-Nielsen and Cotin and James and Pai would
have to be completely rewritten. But a first approximation could use piecewise linear
formulations, as suggested by Debunne (2000).

The modal analysis approach of Pentland and Williams (1989) could handle an-
isotropic material, since anisotropy would be encoded in the global stiffness matrix.
According to the authors, nonlinear materials may be modeled by summing the modes
at the end of each time step to form the material stress state, which can then be used to
drive nonlinear material behavior.

Incompressible materials remains an unsolved problem for all the papers presented.
Exact solution using a Lagrangian term is never used and instead they increase the

2.2. Previous Work 29

Lamé constant λ, since a material is generally considered sufficiently incompressible
when λ > 100 µ (Debunne, 2000), but at the risk of an increased numerical instability.
Picinbono et al. address the problem by adding an incompressibility constraint using
a penalty method: volume variation is penalized by applying to each vertex of the
tetrahedron a force directed along the normal of the opposite face, the norm of the force
being the square of the relative volume variation. Their method is quite effective: they
obtain on their example 0.2 to 1% volume variation with incompressibility constraint,
as opposed to 0.3 to 2% without this constraint.

This last example emphasizes the complexity of recent interactive models based
on elasticity theory; however, parameter setting is simple when data are available in
continuum mechanics literature. When this is not the case, it is possible to conduct
experiments according to standardized protocols, but not always without encountering
difficulties. In fact, obtaining these measurements on biological materials is currently
an active research area.

Finally, continuous models are particularly adapted to multiresolution in anima-
tion. Debunne et al. proposed a space and time adaptive refinement method to simu-
late linear isotropic visco-elastic materials in real time, using a non nested multireso-
lution hierarchy of tetrahedral meshes. In such a model, regions simulated at different
resolutions must vibrate at the same frequency, with the same amplitude, otherwise
discrepancies at the interfaces between regions will cause numerical instability. A lin-
ear isotropic elasticity formulation using the Green-Lagrange strain tensor meets such
requirements.

2.2.2 Discreet Models
Discreet models approximate a continuous material by a set of primitives (point mass-
es) linked by constraints. Each primitive neighborhood is either limited to the nearest
nodes in the graph of primitives, as in mass-spring systems, or potentially extended to
all primitives, but generally function of distance, as in particle systems.

The animation algorithm consists in integrating w.r.t. time, for each point mass,
the Lagrange equation of motion, written as

m
∂2x
∂t2 + d

∂x
∂t
+ k x = f

where m is the mass of the primitive, d and k are respectively the damping and stiffness
constants and x is point position. Moreover, m ∂2x

∂t2 is the inertial force, d ∂x
∂t is the

damping force, k x is the internal elastic force and f is the sum of the external forces,
such as gravity and constraint forces.

Papers Overview

Mass-spring systems are intuitive, simple to implement, fast and easily amenable to
parallelization. They are less physically accurate than continuum mechanics models

30 Chapter 2. Animating Anisotropic Elastic Materials

but they do not introduce any geometric distortion due to linear strain metric. They
are generally built by discretizing the deformable object with a given 3D mesh and
setting point masses on the mesh nodes and damped springs on the mesh edges (for
a tetrahedral mesh). This simplicity explains why mass-spring systems proposed in
literature do not differ a lot from paper to paper except for the geometry of mesh
elements, the number of springs per element (due to a varying number of diagonal
springs for an hexahedral element) and slightly different force formulations. However,
there is a great diversity of applications of these systems and also of solutions given
to mass-spring systems drawbacks. The latter point will be analyzed in the discussion
section.

Cloth simulation has been one of the most popular applications of mass-spring
systems, with either quadrilateral or triangle meshes. Provot (1995) improves the clas-
sical cloth mass-spring model in order to take into account non-elastic properties of
woven fabrics. In fact, when linear springs are used, concentration of high stresses
in small regions of the surface produce unrealistic deformations. Increasing spring
stiffness is a straightforward but computationally expensive solution to this problem.
Provot’s method, inspired from inverse dynamic procedures, projects overstretched
springs back into the acceptable range of elongation and thus simulates nonlinear cloth
behavior without stiff equations.

Complex living materials, such as muscles, have also been simulated with mass-
spring systems, using nonlinear, active springs and volume conservation constraints.
Miller (1988) animates snakes and worms by simulating muscle contractions; direc-
tional friction is included and thus locomotion results. Each segment of the creature
is modeled as a cube of masses with springs along each edge and across the diagonal
of each face. Spring rest length is animated as a function of time to simulate muscle
contractions. Rest length for the springs around the circumference of the creature is
scaled to keep the total volume of the creature constant.

Chadwick et al. (1989) propose a complete system for creating and animating char-
acters defined with three layers: skeleton, muscle and fatty tissue, and skin. The skele-
ton layer is an articulated hierarchy which controls the motion of the character. The
muscle and fatty tissue layer is composed of free-form deformation (FFD) lattices and
is attached to the skeleton. These deformations act on the geometric skin. Deforma-
tions are based on either kinematic, dynamic or sculpted constraints. With kinematic
constraints, the kinematic joint angles of the skeleton control an abstract muscle be-
havior. Muscle deformation is thus caused by muscle contraction and tendon influence
on the shape of the joint. With dynamic constraints, FFD lattices are mapped to hex-
ahedral mass-spring systems of the same topology. Dynamic simulation of the point
masses is mapped back onto the FFD control points, thus resulting in damped oscilla-
tions of the fatty tissue layer caused by character motion (see Fig. 2.4a). With sculpted
constraints, the animator entirely controls the deformation by moving control points of
the FFD lattices.

The face animation system of Lee et al. (1995) gives a good idea of the simula-
tion complexity one can achieve using mass-spring systems. Functional models of

2.2. Previous Work 31

the heads of human subjects are built automatically from laser-scanned range and re-
flectance data. The skull is covered by deformable tissue which has five distinct layers.
Each layer has its own mechanical properties modeled by linear or piecewise linear
spring laws, some of them with time varying parameters, to simulate muscles. Incom-
pressibility of real human skin is enforced for each triangular prism element using a
volume constraint force based on the change of volume of the element and displace-
ments of its nodes (see Fig. 2.4b).

Finally, the muscle model of Ng-Thow-Hing and Fiume (1997) demonstrates that
nonhomogeneous anisotropic material can be simulated using mass-spring systems. It
uses a B-spline solid for muscle geometry and attaches to its sample points a lattice
of springs, partitioned into radial and longitudinal groups. Thus, a set of dependency
constraints exists between sample points and allows easy adjustment of many control
points simultaneously. Since sample points exist within the solid as well as on the
surface, the B-spline solid can model microstructures within the solid, such as fiber
bundles, using the mass-spring lattice.

(a) (b)

Figure 2.4: Discreet models. In (a), results from Chadwick et al. (1989). Dynamic constraints
for fatty tissue deformation: FFD lattices are mapped to hexahedral mass-spring systems of the
same topology to simulate the damped oscillations of the fatty tissue layer caused by character
motion. In (b), results from Lee et al. (1995). Skin tissue triangular prism element (top left)
with a close-up view of a face mesh (top right); volume conservation and skull nonpenetration
element (bottom left) and assembled layered tissue elements under multiple muscle forces
(bottom right).

Classical particle systems are well adapted for unstructured materials, because they
are not affected by topology changes. Terzopoulos et al. (1989) model melting mate-
rial by decreasing stiffness of a mass-spring system and then replacing it by a particle
system beyond melting point. Most of the time, interparticular forces are based on
long range attraction – short range repulsion laws, with an equilibrium distance where

32 Chapter 2. Animating Anisotropic Elastic Materials

force disappears; e.g., Miller and Pearce (1989) use a Lennard-Jones force formula-
tion that is used in physics to model interatomic forces. But arbitrarily complex force
formulations can be used; e.g., Szeliski and Tonnesen (1992) simulate particles that
model surface elements instead of volume elements and which undergo forces accord-
ing to the orientation of their neighbors. However, classical particle systems, with their
“soft” particle’s neighborhood definition has been mostly employed for unstructured
rather than deformable materials.

The smoothed particles hydrodynamics (SPH) method has been used to model
gaseous phenomena, such as smoke, or unstructured materials, such as mud (Desbrun
and Gascuel, 1996). But particles are rather considered as sample points of continuous
fields than point masses discretizing an object. They allow evaluation of the values
of these fields and their derivatives by local filtering. Thus, they enable simulation of
state equations that describe the physical behavior of various materials.

Discussion

We will not discuss particle systems and SPH models here because they are tailored for
unstructured materials. The difference between mass-spring and particle approaches
is in fact quite analogous to the difference between continuum mechanics and fluid
mechanics: each theory is grounded on the basic hypothesis concerning the material
simulated.

Simulating anisotropic materials with mass-spring systems is very difficult. Since
springs are positioned along the edges of a given mesh, the geometrical and topolog-
ical structure of this mesh strongly influences the material’s behavior. Whatever the
spring law used, the mesh geometry may generate uncontrolled anisotropy, as shown
in Fig. 2.5a for a tetrahedral mesh. However, the undesired behavior disappears when
hexahedral elements aligned with the forces directions are used, as shown in Fig. 2.5b.
Of course, if the tiling of the object volume was computed from the tetrahedrization of
random uniformly-distributed sample points, the unwanted anisotropy problem would
tend to disappear when the density of the mesh increases. However, using an extremely
dense mesh would reduce efficiency.

The most common approach to controlling the behavior of a mass-spring system, at
least along a few “directions of interest”, is to specifically design the mesh in order to
align springs on these specific directions. This was done for instance in Miller’s mod-
els of snakes and worms and in the muscle model of Ng-Thow-Hing and Fiume, where
some of the springs were aligned with the muscle fibers and the rest were set perpendic-
ular to them. Unfortunately, creating such meshes manually would be time consuming
in a general case, where fiber directions generating anisotropy vary in an arbitrary way
inside the object (see Fig. 2.1). We are rather looking for an approach that takes as
input a 3D volume mesh obtained with a volume meshing package, such as Simulog’s
TetMesh-GHS3D, fed with a 3D surface mesh, and outputs the deformable model be-
havior with specified properties in specific directions. As a result, this approach would
decouple the simulation model from the graphical model (Barzel, 1992).

2.2. Previous Work 33

������
���
������
���

����������
�����
������
���

shear spring
structural spring
point mass

(a) (b) (c) (d)

Figure 2.5: Mass-spring systems drawbacks. Left, comparison between two meshes, under
the action of gravity, undergoing a downward pull at their bottom end while their top end is
fixed. We observe uncontrolled anisotropy in the tetrahedral mesh (a), but not in the hexahedral
mesh with springs aligned in the gravity and pull force directions (b). Right, equilibrium state
of a cantilever beam, which left end is fixed, under the action of gravity (c). Obviously, the
mass-spring system considered (tetrahedral mesh) is unable to sustain flexion. The spring
configurations used for tetrahedral and hexahedral meshes are given in (d).

As opposed to what is observed for anisotropy, it is easy to design arbitrary non-
linear stress-strain relationship with springs, e.g., by designing a piecewise linear or a
nonlinear spring law or even by imposing a constraint on maximum spring length, as
Provot does. Concerning volume conservation, the solutions proposed are based on the
penalty method. These soft constraints are either very specific (the case of tube-like
shapes animated by hexahedral mass-spring systems for Miller) or more general (tri-
angular prism element for Lee et al.). In both cases, we cannot evaluate the efficiency
of the constraint since no indication of volume variation is given. Meseure and Chail-
lou (2000) give an intermediate solution to the problem of enforcing constant volume
deformation. They simulate human organs using a deformable and a rigid compo-
nent: a mass-spring system fixed on the surface of a virtual rigid body (virtual because
its only purpose is to provide rigid body behavior). Thus, the mass-spring system is
constrained to have only one rest position, and the volume variation of the object is
kept within boundaries, depending on the stiffness of the zero-length springs tying the
surface deformable component and the virtual rigid component.

Among the intrinsic limitations of mass-spring systems, one of the main problems
remains parameter setting. In the case of a tetrahedral mesh, computing the masses in
order to set up a homogeneous material can be done approximately by computing each
point mass according to the volume of the Voronoï region around it. However, there
is no easy solution for spring parameters. Approximating a desired behavior using a
given mesh can be achieved using optimization to tune individual spring stiffnesses.
Louchet et al. (1995) apply an evolutionary genetic technique to the identification of
internal parameters of a physical model of fabrics that uses a mass-spring mesh and
Provot’s method to model nonlinear elastic behavior. Identification of the internal pa-

34 Chapter 2. Animating Anisotropic Elastic Materials

rameters from geometric data is based on a cost function which measures the difference
in behavior between the reference and the model, and an evolutionary minimization al-
gorithm. On a 17×17 mesh, convergence is obtained after about 50 to 100 generations.

Deussen et al. (1995) use simulated annealing to obtain optimal mass-spring sys-
tems approximations of deformable bodies obeying to linear elasticity. It is a two-step
process: first, find positions and masses of the points that approximate the mass dis-
tribution, second, define the topology of the connections and optimize their spring
constants. Four test configurations were used for optimizing elasticity on a 2D de-
formable body: two with stretching loads and two with shearing loads. The quality
criterion used is the standard deviation between actual and reference displacements of
all points. This method allows approximation of homogeneous as well as inhomoge-
neous and anisotropic materials. Two-dimensional mass-spring systems containing up
to some hundred points are optimized successfully and an extension to 3D with nine
basic loads is suggested but not tested, due to the large computational cost.

These two optimization methods prove the possibility of approximating mechan-
ical behaviors with mass-spring systems but van Gelder (1998) demonstrates the im-
possibility of setting the stiffnesses of a mass-spring system to obtain an exact simu-
lation of the elastic material properties of a continuous model. However, this doesn’t
mean that global behavior, i.e., stress-strain relationships, cannot be reproduced with
a mass-spring system. In fact, Boux de Casson (2000) simulated linear and nonlin-
ear stress-strain relationships using linear and nonlinear spring laws, proving that the
behavior at the spring level is conserved at the object level.

Finally, since mass-spring system behavior changes when topology or geometry of
the mesh is modified, dynamic behavior at different resolutions is different. Thus, very
few papers address the issue of physical simulation at multiple levels of detail with
mass-spring systems. Hutchinson et al. (1996) propose a scheme for adaptively refin-
ing portions of mass-spring systems to a required accuracy, producing visually more
realistic results at a reduced computational cost. Detection of inaccuracy is performed
using an angle criterion between springs joining a mass from opposite directions. The
response is the addition of masses and springs around the area where the discontinuity
occurs: point masses keep the same value but spring stiffnesses double at each level
of refinement to prevent regions of increased mass from behaving differently. How-
ever, this approach is possible only for quadrilateral or hexahedral meshes (here, for
simulating a deformable sheet) because they lend themselves naturally to regular sub-
division. Debunne has submitted a mass-spring system to the same multiresolution
“aptitude test” that was used for continuous models. Results demonstrated without
ambiguity that the motion of an oscillating mass-spring system cannot have the same
frequency and amplitude at different mesh resolutions.

2.3. Modeling Anisotropy 35

2.3 Modeling Anisotropy

Our aim is to specify the mechanical properties of the material independently from
the mesh geometry and topology. In usual mass-spring systems, internal forces acting
inside the material are approximated exclusively by forces acting along the edges of
the mesh (i.e., along the springs). This is the reason for the uncontrolled anisotropy
problem described earlier, and for the difficulty in specifying desired anisotropic prop-
erties.

The basic idea of our method is to let the user define, everywhere in the object,
mechanical characteristics of the material along a given number of axes corresponding
to orientations of interest at each current location, such as fiber and cross-fiber direc-
tions in a muscular tissue. All internal forces will be acting along these axes instead
of acting along the mesh edges. For instance, in the case of organic materials such as
muscles, one of the axes of interest should always correspond to the local fiber ori-
entation. Since the object is tiled using a mesh, axes of interest and the associated
mechanical properties are specified at the barycenter of each volume element inside
the mesh. We currently use three orthogonal axes of interest.

General Scheme

During deformations of the material, the three axes of interest, of given initial orien-
tation, evolve with the volume element to which they belong. In order to be able to
know their position at each time step, we express the position of the intersection point
of one axis with one of the element faces as a linear combination of the positions of the
vertices defining the face. The corresponding interpolation coefficients are computed
for each face in the rest position (see Figures 2.7 and 2.8).

Given the position of the point masses of a volume element, we are thus able to
determine the coordinates of the six intersection points and consequently the three
axes that constitutes the local frame, up to the precision of our linear interpolation.
From the deformation of the local frame, we can deduce the resulting forces on each
intersection point. Then, for a given face, we can compute the force value on each
point mass belonging to this face by “inverse” interpolation of the force value at the
intersection point. The interpolation coefficients previously defined are therefore also
considered as weighting coefficients of the force on each point mass.

2.3.1 Forces Calculations

Damped springs with associated stiffness and damping coefficients are used to model
stretching characteristics along each axis of interest. In order to specify shearing prop-
erties, angular springs are added between each pair of axes. Rest lengths and rest an-
gles are pre-computed from the initial position of the object that defines its rest shape.
The equations we use for these springs are detailed below.

36 Chapter 2. Animating Anisotropic Elastic Materials

Axial damped spring

The spring forces f1 and f2 between a pair of intersection points P1 and P2 at positions
x1 and x2 with velocities v1 and v2 are

f1 = −

[

ks (‖l21‖ − r) + kd
l̇21 · l21

‖l21‖

]

l21

‖l21‖
f2 = −f1

where l21 = x1 − x2, r is the rest length, l̇21 = v1 − v2 is the time derivative of l21, ks

and kd are respectively the stiffness and damping constants (see Fig. 2.6a). This is the
classical formulation for a Hooke’s law spring (Witkin, 1999b), but we could easily
extend the approach to model nonlinear spring behavior, as we did in Section 2.6.1.

Angular spring

The spring forces (f1, f2) and (f3, f4) between two pairs of intersection points (P1, P2)
and (P3, P4) are

f1 = −

[

ks

(

l21 · l43

‖l21‖ ‖l43‖
− c

)]

l43

‖l43‖
f2 = −f1

f3 = −

[

ks

(

l21 · l43

‖l21‖ ‖l43‖
− c

)]

l21

‖l21‖
f4 = −f3

where l21 = x1 − x2 and l43 = x3 − x4, c is the cosine of the rest angle between l21 and
l43 (equal to zero for orthogonal axes) and ks is the stiffness constant (see Fig. 2.6b).
We have chosen this formulation because it is related to a classic distortion metric in
continuum mechanics: the “loss of right angle”. We consider two vectors u and v such
as the angle (u, v) = π2 . After distortion, let the angle (u, v) = π2 − θ. The “loss of right
angle” is equal to θ.

Here, two approximations are made since we assume a small variation of the angle
around π2 , i.e., θ small. First, we have sin (θ) = cos

(

π
2 − θ

)

≈ θ, and we take as metric
the variation of the (u, v) angle’s cosine. Second, we consider sufficient to use as unit
vector the other vector of the pair, instead of a vector normal to the one considered, in
the plane where the angle is measured. These two approximations gave good results
in practice. Furthermore, we found no necessity to use damped angular springs.

2.3.2 Application to Tetrahedral Meshes

Many objects in computer graphics are modeled using triangular surface meshes. Gen-
erating a 3D mesh from such a description, using tools like Simulog’s TetMesh, yields
tetrahedral volume meshes. This section details our method in this case.

2.3. Modeling Anisotropy 37

P2

f1 f2

l21

P1

P1

f1

f4

f3
f2

(l21, l43)
P2

P4

P3

(a) (b)

Figure 2.6: In (a), spring forces f1 and f2 between a pair of intersection points 1 and 2 for
our axial damped spring. In (b), spring forces (f1, f2) and (f3, f4) between two pairs of intersec-
tion points (P1, P2) and (P3, P4) for our angular spring (b). See corresponding paragraphs for
equations.

Figure 2.7 depicts a tetrahedral element, with the associated frame defining the
three axes of interest. We express the position xP of point P as a function of the
positions of vertices A, B and C of the given face, using barycentric coordinates:

xP = α xA + β xB + γ xC

for example, if α = 1 and β = γ = 0, we get xP = xA. Therefore, a force fP applied to
point P is split into forces α fP, β fP and γ fP, respectively applied on points A, B and C.
We can note that since the elementary volume has four faces, and since there are three
axes of interest defining six intersection points, two such points may lie on the same
face of the volume element. This was not a problem in practice, since forces applied
on mesh nodes are correctly weighted.

P

A

β

C C

A B B

α

γ

Figure 2.7: Tetrahedral element. A point mass is located at each vertex. A local frame is
defined at the barycenter of the element (left). Each axis is characterized by the barycentric
coordinates α, β and γ (with α + β + γ = 1) of its two intersection points (right, for a given
face). These coordinates are easily obtained using an area ratio.

38 Chapter 2. Animating Anisotropic Elastic Materials

2.3.3 Application to Hexahedral Meshes

The use of hexahedral meshes is not as common as tetrahedral ones, since the range
of geometries they can define is more limited. However, these meshes may be useful
for animating objects modeled using free form deformation lattices (Chadwick et al.,
1989) or voxels (Chen et al., 1998). This kind of data, with information about ma-
terial characteristics specified in each voxel (possibly including anisotropy), may be
provided by medical imaging applications.

Applying the general method presented in Section 2.3 to hexahedral meshes is
straightforward. Figure 2.8 depicts an hexahedral element, with the associated frame
defining the three axes of interest. We express the position xP of point P as a function
of the positions of vertices A, B, C and D of the given face, using bilinear interpolation
coordinates:

xP = ζ η xA + (1 − ζ) η xB + (1 − ζ) (1 − η) xC + ζ (1 − η) xD

for example, if ζ = 1 and η = 1, we get xP = xA. Therefore, a force fP applied to point P
is split into forces ζ η fP, (1−ζ) η fP, (1−ζ) (1−η) fP and ζ (1−η) fP, respectively applied
on points A, B, C and D. Here, there is only one intersection point per face of the
volume element. Since the element has eight vertices, the system is under-constrained
instead of being over-constrained, as in the tetrahedral case. As a consequence, each
elementary volume may have several equilibrium states, corresponding to the same
rest position of the three axes of interest but to different positions of the vertices, if
volume conservation forces are not applied.

�����
�����
�����

�����
�����
�����

D

A

C C

A

P
η

BζB

D

Figure 2.8: Hexahedral element. A point mass is located at each vertex. A local frame
is defined at the barycenter of the element (left). Each axis is characterized by the bilinear
interpolation coordinates ζ and η (with 0 ≤ ζ ≤ 1 and 0 ≤ η ≤ 1) of its two intersection points
(right, for a given face).

2.4. Volume Conservation 39

2.4 Volume Conservation
Living tissues such as muscles undergo quasi-constant volume deformations. Thus, it
is important to be able to simulate this property with our model. Classical mass-spring
systems have no constraint on volume, thus the amount of volume variation depends
largely on mesh geometry. Animating constant volume deformations with a classical
mass-spring system is not simple: forces are only applied along the edges of each
volume element, while maintaining a constant volume basically requires adding radial
forces. We have devised a solution for tetrahedral and hexahedral meshes that uses soft
constraints to ensure volume conservation on each element in order to simulate more
or less compressible materials.

2.4.1 Tetrahedral Meshes
To ensure volume conservation of a tetrahedral mesh, a straightforward solution would
be to set a constraint using a force proportional to the variation of volume of each
tetrahedron. After conducting experiments similar to the ones presented in Fig. 2.9,
we can conclude that this solution does not work as well as one could expect. In
fact, constraint forces applied on vertices of each tetrahedron are competing with other
forces to modify the position of each vertex in order to satisfy the constraint. If the
metric chosen for the constraint is a nonlinear function of the position of the vertices, as
the volume is, a nonconstant stiffness coefficient will be needed to compensate for the
variations of the stiffness of the constraint itself. If this is not the case, the constraint
becomes very sloppy for small displacements of the vertices, resulting in oscillations.

Even if it is not sensu stricto a constraint on volume, a linear function of the posi-
tion of the vertices would be a better choice for the metric. After several attempts, the
sum of the distances between each vertex and the barycenter was considered a good
compromise. Moreover, since in any case we need to compute barycenter-vertex vec-
tors for the directions of application of our radial constraint forces, it is much more
efficient to use these already computed vectors to evaluate our metric. This constraint
force formulation is loosely related to the soft volume conservation constraint of Lee
et al. (1995).

We define xB as the position of the barycenter of the tetrahedral element, with

xB =
1
4

3
∑

i=0

xi

where xi is the position of the ith vertex. We introduce our metric as the sum of the
distances between each vertex and barycenter, i.e.,

∑3
i=0 ‖xi − xB‖, then, we define the

force applied on the jth vertex as

fj = −

ks

3
∑

i=0

‖xi − xB‖ −

3
∑

i=0

‖xi − xB‖0

xj − xB
∥

∥

∥xj − xB
∥

∥

∥

40 Chapter 2. Animating Anisotropic Elastic Materials

where ks is the constraint stiffness and
∑3

i=0 ‖xi − xB‖0 is the rest length of this “volume
spring”. It was not necessary to add damping forces with this constraint.

This method gives satisfactory results in practice: we get less than 1.5% volume
variation in our experiment (see Fig. 2.9); however, results depend on the material
parameters chosen and the type of experiment conducted. Since our model is much
more mesh-independent than a mass-spring system, it displays larger volume varia-
tion than the corresponding mass-spring system when no volume conservation forces
are used. But our model displays five times less volume variation than mass-spring
systems when we enforce constant volume with a soft constraint.

-14

-12

-10

-8

-6

-4

-2

0

0 5 10 15 20 25

V
ol

um
e

re
la

tiv
e

va
ria

tio
n

(in
 %

)

Time (in s)

Figure 2.9: Volume conservation experiments using the same tetrahedral mesh lying on a
table under force of gravity. In our model, one axis of interest is set to the vertical direction
(the direction of application of gravity) and the two others in horizontal directions. Parameters
are chosen identical along the 3 axes. The same stiffness and damping values are used in
all experiments. Bottom graph (dashed line): our model without volume conservation forces.
Middle graph (solid line): mass-spring system (using the same mesh). Top graph (dotted line):
our model with volume conservation forces.

2.4.2 Hexahedral Meshes
Given the characteristics of hexahedron geometry, we can use the same expression
for volume conservation forces, acting in radial directions with respect to the volume
element.

We define xB as the position of the barycenter of the hexahedral element, with

xB =
1
8

7
∑

i=0

xi

2.4. Volume Conservation 41

where xi is the position of the ith vertex. Then, we define the force applied on the jth
vertex as

fj = −

ks

7
∑

i=0

‖xi − xB‖ −

7
∑

i=0

‖xi − xB‖0

xj − xB
∥

∥

∥xj − xB
∥

∥

∥

where ks is the constraint stiffness and
∑7

i=0 ‖xi − xB‖0 is the rest length of this “volume
spring”. As in the tetrahedral case, it was not necessary to add damping forces with
this constraint.

2.4.3 Alternative Formulations

The volume conservation constraints presented in Sections 2.4.2 and 2.4.1 are quite
coarse, to say the least. They were considered sufficient at the time this work was
published; however, we see two ways of improving them, perhaps at the cost of an
increase in computation time.

First, we could rewrite our constraints using Witkin’s method to design energy
functions, formulated as positive definite functions on the model parameter space
with zeroes at points satisfying the constraints, and to derive constraint forces from
them (Witkin et al., 1987; Witkin, 1999a). But this solution will still have the draw-
backs of penalty methods, i.e., constraints are not fulfilled precisely and lead to numer-
ical instability due to stiff equations. Second, volume conservation could be enforced
directly as a hard constraint, i.e., a constraint verified at any time during the simulation.
There is a rich body of literature on the subject.

Promayon et al. (1996) propose a method for constraining physically-based de-
formable objects described by a set of mass points on their surface. All constraints that
can be defined as a region in the position or velocity space, and that are differentiable,
can be used in this method: constant volume constraints, fixed or moving position
constraints, and velocity constraints. For each point, the computed position using all
applied forces is projected to the nearest position in the region of parameter space that
satisfies the constraint. However, this is a projection method that manipulates physical
state variables (position, velocity) directly and we would prefer force-based constraint
methods that are more appropriate for physically-based animation.

Platt and Barr (1988) present two methods that fulfill constraints exactly: reaction
constraints and augmented Lagrangian constraints. Reaction constraints are based on
projection method but manipulate forces only. A reaction constraint simply adds a
force to cancel parts of the applied forces that will not maintain the constraint, instead
of using displacements to trigger restoring forces that will fight with applied forces
to meet the constraint criterion, as in penalty methods. Augmented Lagrangian con-
straints are a differential version of the method of multipliers from optimization theory.
They require extra differential equations. Both approaches might be useful (see also
Witkin and Welch, 1990).

42 Chapter 2. Animating Anisotropic Elastic Materials

Of course, we face the problem of competing constraints if we enforce volume con-
servation on an element-by-element basis using either soft or hard constraints. Han-
dling this issue will require further research.

2.5 Results for Hexahedral and Tetrahedral Meshes
All the experiments presented in this section have been computed by setting point
masses to the same value. Thus, objects sampled using tetrahedral meshes are gen-
erally heavier than those sampled using hexahedral meshes. Moreover, objects are
slightly inhomogeneous in the former case, since mesh nodes are not evenly dis-
tributed. Better results would be obtained by computing the mass values according
to the density of the simulated material and to the volume of the Voronoï region as-
sociated with each point mass. However, we found the results quite demonstrative as
they are.

Numerical simulation of all experiments was achieved using Stoermer’s explicit
integration method (Press et al., 1992) with no adaptive time step, and therefore might
be improved. In some experiments, viscous drag was used to limit numerical drift. The
viscous drag force f for a point mass with velocity v is f = −kdrag v where kdrag is the
drag constant (Witkin, 1999b). We added gravity to simulate realistic load conditions
for the model. The gravitational force f for a point mass with mass m is f = m g where g
is a constant vector (presumably pointing down) whose magnitude is the gravitational
constant (Witkin, 1999b).

Each figure depicts outer mesh edges and one of the three axes of interest inside
each elementary volume. In Fig. 2.11 this axis represents the orientation along which
the material is the stiffest. Stiffness has been set to the same value in the two other
directions.

Comparison with Mass-Spring Systems

The same experiments as in Fig. 2.5 are performed using our model instead of a clas-
sic mass-spring system (see Fig. 2.10). Here, one axis of interest is set to the vertical
direction (the direction of application of gravity and pull forces) and the two others in
horizontal directions. The same stiffness and damping values are used in each direc-
tion. The equilibrium states observed are the consequence of the interplay of forces
opposing stretch and shear, and forces conserving volume of the material.

Controlling Anisotropy

A set of experiments with different anisotropic behaviors using the same tetrahedral
mesh is presented in Fig. 2.11. Anisotropy is tuned by changing the stiffest direction
in the material. All dynamic behaviors obtained correspond to what we intuitively
expected when we designed these materials. Moreover, it is interesting to note that an

2.5. Results for Hexahedral and Tetrahedral Meshes 43

(a) (b) (c)

Figure 2.10: Experiments similar to those of Fig. 2.5, but computed with our model. As
expected, we do not observe uncontrolled anisotropy in both the tetrahedral (a), and the hexa-
hedral (b) meshes. All things being equal, with the same mesh and material parameters as in
Fig. 2.5, our tetrahedral model is perfectly able to sustain flexion, as shown by its equilibrium
state (c).

isotropic material can be modeled using a random orientation for the stiffest axis in
each volume element.

Performance Issues

Our benchmarks are on an sgi O2 workstation with a MIPS R5000 CPU at 300 MHz
with 512 MB of main memory. Experiments use tetrahedral and hexahedral meshes
lying on a table under force of gravity. Other conditions are similar to those of volume
conservation experiments (see caption of Fig. 2.9). Note that material stiffness strongly
influences computation time since we use an explicit integration method.

The maximum number of springs per element varies between the different models.
Since it gives a rough indication of the number of operations performed at each simula-
tion step, it is also related to computational load. For a classical mass-spring system, a
tetrahedral element has 6 structural springs along its edges, and an hexahedral element
has 12 structural springs along its edges plus 4 shear springs along its main diagonals.
Bending springs between hexahedral elements (Chen et al., 1998) were not used. This
has to be compared with 3 axial springs, 3 angular springs and 4 volume springs (un-
damped), making approximately 10 springs for our tetrahedral element, and 3 axial
springs, 3 angular springs and 8 volume springs, making 14 springs for our hexahedral
element.

We can conclude from the results displayed in Table 2.1 that simulating anisotropic
behavior and ensuring volume conservation are not very expensive in our model.
These properties make it suitable for interactive applications. However, the cost of
our method is directly related to the number of elements. Thus, unlike mass-spring
systems, our benchmark experiment using the tetrahedral mesh is slower than the one
using the hexahedral mesh.

44 Chapter 2. Animating Anisotropic Elastic Materials

(a) (b) (c)

(d) (e) (f)

Figure 2.11: Different anisotropic behaviors were obtained using the same tetrahedral mesh
undergoing a downward pull at its bottom end while its top end is fixed. Anisotropy is tuned
by changing the stiffest direction in the material. This direction is: horizontal (a), as a result,
the material tends to get thinner and longer; diagonal (b), with angle of π4 , which constrains
the material to bend in this manner; semicircular (c), as a C shape, which causes a snake-
like undulation of the material; concentric helicoidal, side (d) and top view (e), the material
successively twists and untwists upon itself; random (f), the material exhibits an isotropic
behavior.

Masses Elements Springs Springs/Element Time (in s)
Mass-Spring Tetra 222 804 1175 1.461 0.129

Hexa 216 125 1040 8.320 0.117
Our model Tetra 222 804 ≈ 8040 ≈ 10 1.867

Hexa 216 125 1750 14 0.427

Table 2.1: Benchmarks results for classical mass-spring system and our model with tetrahe-
dral and hexahedral meshes. See explanations in the text concerning the estimated number of
springs per element in our model. Time: time spent to compute one second of animation, with
a time step of 0.01 s.

2.6. Validation for Tetrahedral Meshes 45

2.6 Validation for Tetrahedral Meshes
The results presented in Section 2.5 concerned the qualitative behavior of our model
with respect to a mass-spring system. Now, we would like to answer quantitatively two
questions in order to validate our model. First, are we able to simulate a wide range of
stress-strain relationships using our model? It is necessary to have a versatile model
for simulating nonlinear materials undergoing large deformations, i.e., more than 10%
strain. Second, what is the behavior of our model when we change the sampling of the
object simulated, i.e., the number of points and tetrahedra? It is important to maintain
a consistent behavior across levels of detail for managing multiresolution in anima-
tion. This way, the user will not notice sudden changes when simulation quality or
computation time constraints impose a transition from one level to another.

For the experiments in this Section, point masses were set in order to obtain a
homogeneous material, as opposed to what has been done for the experiments in Sec-
tion 2.5. In our model, one axis of interest is set to the vertical direction (the direction
of application of gravity) and the two others in horizontal directions. Parameters are
chosen identical along the 3 axes.

σ =
‖f‖
s0
ε =

`−`0
`0

`0

s0 f

`

e1

g

e2

x2(t) − x2(0)

(a) (b)

Figure 2.12: Validation experiments for stress-strain relationship (a), and multiresolution be-
havior (b). In (a), a force f is applied to one side of the cube (initial surface s0); lengths before
and after deformation (`0 and `) are measured; Lagrangian stress σ and Lagrangian strain ε
are computed in the direction of application of the force (see Section 2.6.1). In (b), a cube
sustains flexion under force of gravity g; the cube oscillates and the position of one of its free
corners is recorded (see Section 2.6.2). The cube drawn with solid lines represent the cube
before deformation; the cube drawn with dashed lines represent the cube after deformation.

2.6.1 Stress-Strain Relationship

Here we use variants of the experiments conducted previously for mass-spring sys-
tems (Boux de Casson, 2000). A cube of homogeneous material composed of 346
points and 1350 tetrahedra has one of its sides fixed; we apply a constant force to the
opposite side and then measure the strain of the cube at equilibrium in the direction of

46 Chapter 2. Animating Anisotropic Elastic Materials

application of the force. We repeat this measure by varying the intensity of the force
(see Fig. 2.12a). This is equivalent to an uniaxial traction experiment conducted in
continuum mechanics to determine stress-strain relationships of various materials.

We adopted Boux de Casson’s spring model, which is different from the one used
in Section 2.3.1. The spring forces f1 and f2 between a pair of intersection points P1

and P2 at positions x1 and x2 with velocities v1 and v2 are

f1 = −
[

ϕ (d21)
] l21

‖l21‖
f2 = −f1 with d21 =

(‖l21‖ − r)
r

where l21 = x1 − x2, r is the rest length and ϕ (d21) can be

linear: ϕ (d21) = ks1d21

quadratic: ϕ (d21) = ks2d
2
21

cubic: ϕ (d21) = ks3d
3
21 + ks2d

2
21 + ks1d21

where ksi is the stiffness constant of the ith order term in ϕ (d21).
In the first experiment, we used linear and quadratic spring models to simulate the

corresponding behavior. We fixed the stiffness parameters ks1 and ks2 to the same value.
In the second experiment, we used a cubic polynomial spring model to simulate the
nonlinear stress-strain relationship of a continuum mechanics model (Ohayon et al.,
2001). To obtain the value of the parameters ksi we fitted a cubic polynomial to refer-
ence data points obtained with the continuum mechanics model. The fit command,
from the gnuplot package (Williams et al., 2001), fits a user-defined function to a
set of data points using an implementation of the nonlinear least-squares Marquardt-
Levenberg algorithm.

Results for the first experiment are shown in Fig. 2.13a. As we expected, the
stress-strain relationship exhibits a linear or quadratic behavior. Moreover, fit results
displayed on Table 2.2 confirm that higher-order stiffness parameters are equivalent
for both the linear and quadratic case (a = 69.062 versus a = 72.752). This indicates
that properties at the spring level are conserved at the object level. Results for the
second experiment are shown in Fig. 2.13b. We obtain a stress-strain relationship very
similar to the one obtained with the continuum mechanics model, thus demonstrating
the versatility of our model.

All these results are comparable to those obtained previously by Boux de Casson
for mass-spring systems. However, it should be noted that we had to apply a scale
factor to the parameters to obtain quantitatively similar stress-strain relationships. This
is mainly due to the interplay of two phenomena. We know that equivalent stiffness ks

for two springs in parallel is such as ks = ks1 + ks2 and that for two springs in series is
such as 1

ks
= 1

ks1
+ 1

ks2
. Since the parallel case seems preponderant in our model, the more

elements you have, the stiffer the object becomes. But, because this has only a linear
effect on the stress-strain relationship, it is easy to correct by scaling parameters. We

2.6. Validation for Tetrahedral Meshes 47

consider this “tweaking” process more usable than brute force optimization techniques
previously used for mass-spring systems (Deussen et al., 1995; Louchet et al., 1995).

Fit Function Parameters Value (in kPa) Asymptotic Standard Error
f (x) = ax a = 69.062 ± 0.126 (0.183%)
f (x) = ax2 + bx a = 72.752 ± 0.199 (0.273%)

b = 2.645 ± 0.094 (3.555%)

Table 2.2: Fit results with linear and quadratic polynomials on the data sets from our first
experiment, displayed on Fig. 2.13a.

2.6.2 Multiresolution Behavior

We performed the experiments presented in this section using Debunne’s software
testbed, used for evaluating multiresolution behavior of various deformable models
(Debunne, 2000; Debunne et al., 2001). The example studied has been described in
detail elsewhere (Debunne, 2000) but we recall its main features here. A cube of elas-
tic material (10 cm edge length, 1 kg mass) is attached by one of its faces to a vertical
surface. At time zero the cube is released from its horizontal undeformed position,
with no initial velocity. Then, we measure position of one of its free corners when
the cube oscillates under the action of gravity (see Fig. 2.12b). Neither internal nor
external dissipative forces are used, in order to easily compare the vibration modes
obtained with the different resolutions.

Numerical simulation was achieved using the Desbrun et al. (1999) integration
method, which allows to double the integration time step, thus dividing by two the
time needed to compute one second of animation. This method introduces an addi-
tional “numerical drag” effect but this was not considered an issue. Experiments are
conducted for three resolution levels of the cube, with 27, 57 and 135 points (corre-
sponding to 48, 122 and 448 tetrahedra, respectively). We used spring formulation
from Section 2.3.1, but without damping term.

Results obtained with the mass-spring system are displayed on Fig. 2.14a. It clearly
demonstrates that mass-spring systems fail to ensure the same frequency and ampli-
tude of oscillations at different resolutions. This is comparable to Debunne’s observa-
tions. Results obtained with our model are displayed on Fig. 2.14b. Oscillation curves
are smooth and have nearly the same frequency for all resolutions (5.882, 5.769 and
6.122 Hz for 27, 57 and 135 points, respectively). For the first level, the variation in
amplitude is comparable to the one observed for the mass-spring system: a main oscil-
lation modulated by a lower frequency oscillation (only a half period of this “carrier”
oscillation is shown here).

The decrease of amplitude between levels in our model is due to the increased
damping effect of the integration method. It is purposely more pronounced than for

48 Chapter 2. Animating Anisotropic Elastic Materials

0

5

10

15

20

25

0 10 20 30 40 50 60

La
gr

an
gi

an
 s

tre
ss

 (i
n

kP
a)

Lagrangian strain (in %)

(a)

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

La
gr

an
gi

an
 s

tre
ss

 (i
n

kP
a)

Lagrangian strain (in %)

(b)

Figure 2.13: Stress-strain relationships obtained with our model: linear and quadratic behav-
iors are simulated (a); cubic behavior has been obtained using a cubic polynomial interpolation
of reference data points obtained with a continuum mechanics model (b). In abscissa, La-
grangian strain (in %); in ordinate, Lagrangian stress (in kPa). Lagrangian strain is the relative
extension in the considered direction; Lagrangian stress is the force per unit of undeformed
surface. Circles (©) are data points obtained with our experiments; crosses (+) are reference
data points obtained with the continuum mechanics model; dashed lines are polynomials fitted
to the experimental data sets.

2.7. Conclusion and Future Work 49

the mass-spring system to avoid numerical instability problems, because our model has
been set much stiffer than the mass-spring system in order to obtain the same amplitude
of oscillations. However, results for our model show multiresolution behavior that
compares favorably with Debunne’s approaches, since the frequency of oscillations is
similar at different resolutions.

2.7 Conclusion and Future Work
We have presented an alternative formulation for mass-spring systems, where anisotro-
py of a deformable volume is specified independently from the geometry of the un-
derlying mesh. There is no special requirement for the mesh, which may be built
from either tetrahedral or hexahedral elements. Moreover, a method for generating
quasi-constant volume deformations is provided. The new model stays very close to
mass-springs systems, since it is as easy to implement and still efficient in computation
time. It also benefits from the ability of mass-spring systems to animate deformations
without a priori hypothesis of geometrical or physical linearity.

Future work includes possible generalization to surface materials, such as cloth,
which exhibits interesting anisotropic behavior in garments, e.g, the wrists of a sweat
shirt. To do so, extra parameters controlling bending will have to be added to the
current volume model. Otherwise, interesting possibilities could arise by combining
different volume element types to obtain an hybrid mesh which better approximates the
shape of the object; or by using elements of different orders (linear versus quadratic
interpolation, etc.), in the same mesh.

Finally, we envision that our model would lend itself easily for creating “animated
sketches” or “interactive illustrations” (Beall et al., 1997), exploring a new way of
specifying animation parameters. In this application, the user could define by drawing
both the shape of the object and its anisotropy, described for example by fiber direc-
tions. The shape and anisotropy information would be processed separately, then used
to animate the sketch and manipulate it at user’s will.

50 Chapter 2. Animating Anisotropic Elastic Materials

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1

V
er

tic
al

 d
is

pl
ac

em
en

t (
in

 c
m

)

Time (in s)

(a)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1

V
er

tic
al

 d
is

pl
ac

em
en

t (
in

 c
m

)

Time (in s)

(b)

Figure 2.14: Multiresolution experiments: a cube, fixed on one side to a vertical surface,
oscillates under force of gravity, with a mass-spring system (a) or our model (b). In abscissa,
time (in s); in ordinate, vertical displacement relative to initial position of one of the free
corners of the cube (in cm). The cube is sampled at different resolutions, with 27, 57 or 135
points (solid line, dashed line, dotted line, respectively).

Chapter 3

Drawing for Illustration and
Annotation in 3D

3.1 Introduction

Drawing has long been an intuitive way to communicate complexity in a comprehensi-
ble and effective manner, due to visual abstraction. Compared to a photograph of a real
object, extraneous details can be omitted, and thus attention can be focused on relevant
features. The impression a drawing produces on a viewer is very different from the one
a solid model produces: strokes mark the presence of a surface or a contour, but they
can be “heavier” or “lighter”, giving an indication of uncertainty where needed. The
viewer’s imagination is immediately engaged.

This kind of communication is useful in educational applications such as teaching,
but also in the early stages of design, because drawing a sketch is much faster than
creating a 3D model, and definitely more convenient to express ideas. However, the
obvious drawback of 2D sketches is their limitation to a single viewpoint. The user
cannot move around the object drawn, nor view it from different angles. Adding the
ability to render a single sketch from multiple viewpoints has evident advantages, since
the work of the artist is significantly reduced. As an example, consider Figure 3.1,
which shows two views of a single rough landscaping sketch, generated by our system.
It is imperative that such a system be interactive, since a slow, non-interactive system
would interfere with the natural artistic creation process.

The aim of this work is to provide a system that enhances classical sketching with
3D capabilities. Here, as in traditional 2D drawing systems, the user draws strokes
that may represent either surface silhouettes or 1D features. These strokes may either
belong to a single object or to several different ones, embedded in a complex scene.
Both open and closed strokes may be used. As in 2D drawing, the user can draw
several neighboring strokes to accentuate a given contour. The main difference is that
the viewpoint can be changed while drawing, thus creating a 3D sketch.

51

52 Chapter 3. Drawing for Illustration and Annotation in 3D

Figure 3.1: A single landscaping sketch, which can also be seen as an annotation of an existing
3D model; the two different views are automatically generated by our system.

Overview

The central idea of our approach is to represent strokes in 3D space, thus promoting
the idea of a stroke to a full-fledged 3D entity. Even in 3D, we think that strokes are
an excellent way to indicate the presence of a surface silhouette: several neighbor-
ing strokes reinforce the presence of a surface in the viewer’s mind, while attenuated
strokes may indicate imprecise contours or even hidden parts.

Finding surface properties of objects from their silhouette is a classic hard problem
in computer vision. The algorithms presented here do not address this issue, since our
goal is to develop a drawing system rather than to perform geometric reconstruction.
As a consequence, we develop approximate solutions that are appropriate in the context
of interactive drawing and sketching.

To enable the user to view stroke-based sketches from multiple viewpoints, we in-
terpret 2D silhouette strokes as curves, and use a curvature estimation scheme to infer a
local surface around the original stroke. This mechanism permits efficient stroke-based
rendering of the silhouette from multiple viewpoints. In addition to stroke deforma-
tions, this includes variation of intensity according to the viewing angle, since the
precision of the inferred local surface decreases when we move away from the initial
viewpoint. It also includes relative stroke occlusion, and additive blending of neigh-
boring strokes in the image. Apart from silhouette strokes, our system also provides
line strokes that represent 1D elements. These have the ability to remain at a fixed po-
sition in space while still being occluded by surfaces inferred using silhouette strokes.
They can be used to add 1D details to the sketches, such as the arrow symbols in the
example of annotation (see Fig. 3.21).

Because strokes have to be positioned in space, we present an interface for 3D
stroke input. The user always draws on a 2D plane which is embedded in space.
This plane is most often the screen plane, selected by changing the viewpoint. The
depth location of this plane can be controlled either explicitly via the user interface

3.2. Previous Work 53

or implicitly by drawing onto an existing object. The user may also draw strokes that
are not in the screen plane, but that join two separate objects. The combination of fast
local surface reconstruction and graphics hardware rendering with OpenGL results in
truly interactive updates when using our system.

Finally, we show that our method can be applied to artistic illustration as well as
annotation of existing 3D scenes, e.g., for rough landscaping or educational purposes.
An existing 3D object can also be used as a guide to allow the design of more involved
objects, e.g., using a model mannequin to create 3D sketches for clothing design.

Part of this work has been previously published in the journal Computer Graphics
Forum, Eurographics conference issue (Bourguignon et al., 2001).

3.2 Previous Work

Our work is a natural continuation of 3D drawing or sketching tools which have been
developed in computer graphics over the last few years. Before giving an overview of
the related papers, we would like to recall the pioneering work of Sutherland in this
area, forty years ago (Sun microsystems, 2002). They shaped the two main trends in
3D drawing interfaces we still see today.

In 1963, using the high-end TX-2 computer, Sutherland invented the first interac-
tive computer graphics application, which he dubbed Sketchpad (see Fig. 3.2a). The
TX-2 computer, at the Lincoln laboratory of Massachusetts Institute of Technology
(MIT), was one of the few computers of the day that could run on line instead of only
crunching batch jobs. It had huge memory capacity, magnetic tape storage and various
input and output devices; among them, two extremely important pieces of equipment:
a lightpen and a nine-inch cathode-ray tube (CRT) display. Using this simple but pow-
erful interface and the Sketchpad program, precise engineering drawings could be cre-
ated and manipulated. Many concepts that are now common in GUI were defined by
this revolutionary software, e.g., rubber-banding of lines, zoom in and out, automatic
beautification of lines, corners and joints, etc.

A few years later, in 1968, Sutherland presented the first computer head-mounted
display (see Fig. 3.2b). This work was inspired by early experiments, such as a remote
perception project at Bell Helicopter Company, where HMDs were used to control dis-
tant cameras. Replacing the real world images by computer-generated images let the
user enter the first virtual reality (VR) environment, composed of a single wireframe
room with one door and three windows in each of the cardinal directions.

Nowadays researchers have realized the importance of providing usable tools for
the initial phase of design, beyond traditional 3D modeling. These tools have taken
the form of 3D drawing or sketching systems, using direct 3D input, where the user
draws in 3D and the computer gives him the necessary visual feedback, or 2D stroke
interfaces, where the user draws in 2D and the computer infers 3D strokes or a 3D
object.

54 Chapter 3. Drawing for Illustration and Annotation in 3D

(a) (b)

Figure 3.2: Ivan Sutherland’s pioneering work. In (a), Ivan Sutherland at the console of the
TX-2 using Sketchpad, MIT, 1963 (Sutherland, 1963). In (b), Quint Foster wearing the HMD,
Harvard University, circa 1967 (Sutherland, 1968).

3.2.1 3D-to-3D Drawing Systems

A straightforward way of drawing in 3D is to use 3D input devices to draw 3D strokes.
Pablo Picasso’s light drawings, made with a bright light source and a camera set for
long exposure could be seen as drawings in three dimensions (see Fig. 3.3a). With
computers, HMDs and six-degrees-of-freedom (6-dof) sensors, full capture of user
gestures is possible with immediate and persistent visual feedback (in the case of Pi-
casso, as for most artists, the drawing was in his head even before he started to draw,
visual feedback was thus superfluous).

Papers Overview

The systems presented can be classified in two categories according to their use of 3D
strokes. Some systems take them as their base primitives to build shapes, and others,
generalizing the vector drawing metaphor to three dimensions, use them as gestural
commands to create higher level shapes.

Sachs et al. (1991) describe 3-Draw, a CAD system for the initial stages of con-
ceptual design. Three-dimensional freeform shapes are designed directly in 3D using
a pair of hand-held, 6-dof sensors. The authors consider that the limitations of the tra-
ditional CAD interface come from the way the user communicates information using
2D input devices: more time is spent on deciding how to draw and where to draw a
primitive rather than on drawing it. As opposed to this, they propose a natural way of
creating and manipulating objects. One hand is in charge of the position of the object
in the virtual world; the other hand handles a pen to input precise editing commands;
the body position is similar to the one of a painter holding a palette and a brush. This
interface takes advantage of the kinesthetic feedback from the hands: the user knows
precisely the relative position of his hands without much effort. Designing a shape is
done in four steps: first, curves are sketched directly in 3D, they represent either sil-
houette, reflection lines or “skeletal” features of the 3D model; second, these curves are
edited using deformations, i.e., stretching, cutting, bending and erasing; third, surfaces

3.2. Previous Work 55

are fitted to groups of linked curves; fourth, surfaces are edited using deformations to
add details. The authors report implementation of the first and second steps only.

With 3DM, Butterworth et al. (1992) propose a 3D surface modeling program that
uses a HMD and 3D tracking devices. Manipulation techniques from CAD and 2D
vector drawing programs are adapted to a 3D setting. Surface creation is done using
a triangle tool for single triangle and triangle strip generation, and an extrusion tool
for complex surfaces: a 3D polyline is dragged by the user along an arbitrary extru-
sion path, undergoing rotations and translations. Standard surface shapes such as box,
sphere, or cylinder can be obtained with the appropriate tool and interactively resized.
Finally, classical editing tools in 2D programs are available here in 3D: mark-move
tool, undo-redo stack, etc.

HoloSketch (Deering, 1995) is a highly accurate 3D object creation and manip-
ulation tool that uses head-tracked stereo shutter glasses and a desktop CRT display.
A 3D “wand” manipulator allows the creation of 3D drawings in front of the user,
edit them, and even animate them. The system is controlled through the use of a 3D
multilevel “fade-up” pie menu that allows switching from one mode to another. Sev-
eral types of drawing primitives are supported: rectangular solids, spheres, ellipsoids,
cylinders, cones, rings, 3D text, lines, polylines, etc. To use them, the user selects the
desired primitive as the current drawing mode (through the menu), then depresses the
left wand button to create an instance of the primitive. Common 2D drawing opera-
tions are translated to 3D: selection, primitive editing operations (movement, grouping,
scaling, modifying objects attributes), and other general operations (cut, copy, undo,
etc.). Finally, simple animating operations (rotation about an axis, looping by temporal
grouping, color oscillation, flight path, etc.) extend even more the possibilities offered
by HoloSketch. It should be noted that an informal user study gives precious infor-
mation concerning ergonomics of the system, details that most of the time are absent
in papers. The author mentions that maintaining the body position for long periods of
time was not a problem: the user is seated, holding his hands in the air with his elbows
resting on the desk. However, it appeared quite difficult to make fine adjustments in
this position, thus hindering the user performance.

The 3D Sketch system of Han and Medioni (1997) is not exactly a 3D drawing
system but it uses the drawing metaphor for casually digitizing an existing object. The
system consists of three distinct modules. In the Prototyper module, the user sketches
a few strokes on the surface of the object using the digitizing stylus as a 3D pen. A
rough model is generated, as if made of lumps of clay. In the Refiner module, the
model surface adapts to the new strokes added by the user, matching the object distinct
features, e.g., edges and corners. In the Autotracer module, the system infers smooth
surfaces from the user inaccurate and discontinuous stroke input.

Finally, Keefe et al. (2001) have built a fully immersive Cave environment dedi-
cated to 3D painting, i.e., the creation of 3D scenes by layering 3D brush strokes in
space (see Fig. 3.3b). The user wears shutter glasses that allow him to see both the real
and virtual worlds and has the choice of a large set of stroke types such as line, ribbon,
tube, dripping, splat, extrusion, etc. Strokes are created by moving a paint brush prop

56 Chapter 3. Drawing for Illustration and Annotation in 3D

around in the Cave, tracked in position and orientation while the single button on the
brush is depressed; sampled 3D points are used to define the stroke geometry. Several
stroke types interact with Cave walls as if the walls were part of the virtual world. The
user assigns a stroke type to the brush by literally dipping the physical brush into a
cup that “contains” the desired stroke. Colors are picked using a 3D color picker using
hue, lightness and saturation (HLS) color space. Two-handed interaction is possible
by wearing a tracked pinch glove on the non-dominant hand to gain access to the color
picker, etc. Navigation in the 3D scene is performed using a tracked pinch glove for
small translations or a foot pedal for large ones; rotation and scaling widgets are also
available. Interestingly, the authors note that programming expressive effects into a
stroke was a mistake since users naturally produce expressive strokes when given a
simple stroke with sufficient control and visual feedback. Even if the interface was
found easy to understand and use, users complained about the lack of accuracy when
painting details. Moreover, the painting metaphor was considered poorer than real
paint since it doesn’t allow to move, mix or scrape off strokes.

(a) (b)

Figure 3.3: 3D-to-3D drawing systems. In (a), Pablo Picasso’s light drawing, made with a
bright light source and a camera set for long exposure. In (b), Florentine Vineyard by Daniel
Keefe, a 3D drawing obtained with the system of Keefe et al. (2001).

Discussion

We see three main concerns with the direct 3D input approach: the first and foremost
is system ergonomics, the second is modeling limitation, the third is equipment avail-
ability.

Sachs et al. claim that the use of both hands makes the modeling task more intuitive
and efficient. However, even without performing detailed ergonomics studies, it seems
obvious that user body position will be tiring since he is seated, holding a stylus and a
palette in the air, with the elbow resting on the desk. Even worse, performing precise
movements without any physical feedback from real world objects, e.g., a sheet of

3.2. Previous Work 57

paper on a drawing board or a sculpting material, is very difficult and requires full-
body gestural skills closer to those of a dancer than those of a designer or a painter, as
Keefe et al. emphasized. The precision problems reported by Deering and Keefe et al.
are in fact not due to the hardware-limited resolution of their system but to human
intrinsic capabilities.

Are VR techniques adapted to design in the long run? Headache is common for
people working with VR glasses when the framerate is too low; and muscular fatigue
awaits anybody standing with arms extended, trying to perform precise gestures. How-
ever, detailed studies exist on these problems (Pausch and Crea, 1992; Bolas, 1994;
Felger, 1995; Stanney and Kennedy, 1997) and may help prevent some of them.

Three-dimensional drawing, in the exact definition, is the production of lines in
three dimensions. This is confusing because these strokes are not equivalent to strokes
in traditional drawing. In the 3D case, it is a space curve, with absolutely no relation-
ship to a 3D object; thus the stroke is view-independent. In the 2D case, it is most of
the time the projection on the image plane of the silhouette, or another 3D curve at-
tached to a 3D object; thus the stroke is view-dependent. Therefore, the representation
of 3D shapes using lines is much more simple in 2D (only their projection is depicted)
than in 3D. Imagine the number of lines you will need to describe approximatively
the surface of a 3D object, as Han and Medioni do! To work around this modeling
problem, the authors allow creation of higher-level primitives with a line flavor, such
as strips, tubes, etc., or consider lines as support for defining surfaces. In fact, the best
solution is to input surfaces directly (Schkolne et al., 2001), but this is more sculpting
than drawing.

Finally, all these systems require special equipment (VR glasses, tracking sensors,
etc.) and often cannot be used on traditional workstations. The cost varies a lot from
a simple system using only a pair of 6-dof trackers to an entire Cave environment
with glasses, trackers and gloves; but in any case it will be higher than the price of
a personal computer with a graphics board. Poor man’s VR systems (Guckenberger
and Stanney, 1995) might be an alternative, but we will instead focus on approaches
which do not require specific additional equipment and which are more practical than
drawing directly in 3D.

3.2.2 2D-to-3D Drawing Systems

A large body of literature is devoted to 3D drawing systems that use traditional 2D
strokes as input. As opposed to direct 3D approaches, these systems don’t require any
special computer equipment beyond classical 2D input devices: a mouse or better, a
tablet. We will classify the systems in two categories according to the final output:
either 3D strokes or a 3D object (typically, a closed manifold surface).

58 Chapter 3. Drawing for Illustration and Annotation in 3D

Papers Overview

Some systems use direct 2D drawing, i.e., 2D strokes are transformed into space curves
using additional information or simply assuming a common projection surface. Most
of the time, the resulting curves behave as 1D objects in the 3D world (limited parallax
effects and light reflection properties).

Cohen et al. (1999) present a system to create non planar 3D curves with 2D input.
Instead of editing the curve from several viewpoints, as in CAD systems, the user can
specify the curve shape from a single viewpoint by successively drawing its screen
plane projection (first stroke) and its approximate shadow on the floor plane (second
stroke). The definition of the desired space curve is done in four steps. First, the
second stroke is projected on the floor plane. The resulting shadow space curve is in
fact the projection of the desired space curve along a projection vector, onto the floor
plane. Second, this shadow curve is extruded along the projection vector, to obtain a
shadow surface. The desired space curve is the projection of the first stroke on this
possibly layered surface. Third, each point of the first stroke is assigned a projection
layer on the shadow surface. It is not always possible to project the first curve on
the shadow surface and to obtain a continuous space curve. Fourth, the first stroke is
extruded along the camera’s view vector and each part of this surface is intersected
with the corresponding layer of the shadow surface. The curve obtained can be refined
by overdrawing both input strokes; two drawing modes, projection or shadow, allow to
distinguish between editing operations. This approach takes advantage of traditional
artists’ drawing skills. It can be useful, for example, for describing camera paths (see
Fig. 3.4a), but seems potentially unintuitive for drawing shapes.

Tolba et al. (1999) propose a new drawing paradigm based on projective points.
Each stroke drawn by the user in the image plane is a collection of image points.
These points are projected on the surface of a unit sphere centered at the viewpoint,
to get projective points. Rotation and zooming around the viewpoint are obtained by
generating new reprojections of the projective points on the image plane. The user has
the impression of being immersed in a three-dimensional space described by the draw-
ing, but without parallax effects due to changes in viewing position (see Fig. 3.4b).
Vanishing lines and projective grids are provided to help the user in creating accurate
drawings in perspective and scale. The user interface also has tools for camera control.
Importing a traditional sketch drawn on paper, or even a photograph, is possible using
its perspective (vanishing points, etc.) and scale information. The layering of several
drawings, or of drawings and photographs, allows easy comparison of different de-
signs. This system seems naturally directed towards architectural applications where
the use of perspective drawings is a common practice for representing buildings and
their environment. The authors have now extended their system to enable modeling
of extrusion surfaces, and to handle shading and projected shadows from infinite light
sources (Tolba et al., 2001).

Disney’s Deep Canvas (Daniels, 1999) is a painterly renderer that proceeds in three
steps. First, 3D models of the objects of the scene are created using a traditional

3.2. Previous Work 59

(a) (b)

Figure 3.4: Direct 2D drawing. In (a), results from Cohen et al. (1999). The user has sketched
a camera path through the virtual environment. The curve was created from the current view-
point. In (b), results from Tolba et al. (1999). Two of the four drawings used to create the
library interior panorama (top); this panorama shown as an unrolled cylinder (bottom).

modeling package. Second, an artist “paints” these models, the computer recording
the sequence and position of the strokes in 3D space (this position is obtained by
projecting strokes on the objects of the scene). Third, from a different viewpoint,
strokes are redrawn by the computer, the artist filling in holes with additional strokes
as needed (see Fig. 3.5).

Paint Effects (Alias|wavefront, 2002c) is a toolbox of the Maya software for paint-
ing in 2D and 3D (see Fig. 3.6a). On canvas, it offers a full range of simulated tra-
ditional tools, ranging from airbrushes to watercolors, but also brushes that automat-
ically create pictures of objects, such as trees or flowers. Thus, complex images can
be obtained with only a few brush strokes. In a three-dimensional scene, strokes are
curves positioned on planes or surfaces, and full three-dimensional entities, such as
trees or flowers, are instantiated along stroke paths. These entities can be animated,
e.g., to give the impression of wind blowing in tree foliage, and are rendered after 3D
geometry. Strokes can be painted either on the grid plane (Maya’s “floor” plane), on
the view plane (parallel to image plane), or directly on other objects (see Fig. 3.6b,
top). When painting on objects, two modes are available for setting stroke depth: ei-
ther depth value of the stroke is equal to the depth value of the object surface (mode
Paint At Depth off, the default), or depth value of the stroke is fixed at the first depth
value determined when the brush is clicked (mode Paint At Depth on) (see Fig. 3.6b,
bottom). In fact, Maya’s Paint Effects can be considered as a painting interface for
positioning three-dimensional objects. The objects themselves are not created by the
painting process and must be defined previously.

Another family of systems infers 3D models from 2D drawings and a set of con-
straints. These constraints come from the interpretation of perspective and axonomet-
ric drawings or the definition of gestural interfaces. Probably the first constraint-based
modeling system was Sutherland’s Sketchpad, and it can be considered as the inspi-
ration for the numerous research efforts made in the past forty years. In fact, the
problem of reconstructing a 3D object from its 2D projections, and the related 3D ob-

60 Chapter 3. Drawing for Illustration and Annotation in 3D

(a) (b)

(c) (d)

Figure 3.5: Disney’s Deep Canvas (Daniels, 1999). A pencil sketch of a background scene
from the Tarzan animated film (a); a simple 3D model of the main objects in the scene (b); the
scene painterly rendered by an artist (c); the scene painterly rendered by the computer from a
different viewpoint (d).

(a) (b)

Figure 3.6: Alias|wavefront’s Maya Paint Effects. In (a), picture of a 3D scene by Duncan
Brinsmead. In (b), interface examples. From left to right and top to bottom: painting with a
“dandelion brush” on the grid plane; painting with the same brush on 3D geometry (a sphere);
two possible modes (Paint At Depth on and off) for defining stroke depth relatively to an object.

3.2. Previous Work 61

ject recognition problem, have implications far beyond 3D modeling systems: they
are important research areas in computer vision and artificial intelligence. We will
focus on computer graphics papers but Wang and Grinstein (1993) present a complete
taxonomy of 3D object reconstruction from 2D projection line drawings algorithms,
classified according to the number of input views, the degree of automatism and the
data structures employed.

The Viking system (Pugh, 1992) is based on interactive interpretation of polyhedral
object drawing. Each time the user draws a new edge, a new three-dimensional object
description is generated by the system, consistent with both the drawing and a set of
geometric constraints. These constraints are either implicitly derived from the drawing
or explicitly specified by the user (see Fig. 3.7). To draw in 3D, i.e., to define the
position of each vertex in three dimensions, three mechanisms are provided. First,
two-views geometry: straightforwardly, the user positions the vertex in two different
views, as in traditional CAD systems. Second, “preferred directions”, i.e., 3D vectors,
either user-defined or automatically generated according to the context: they help the
user in drawing a new edge endpoint by projecting it onto the closest line supported
by a preferred direction and passing through the edge origin. Third, cutting planes,
i.e., planes defined in object space, also useful for visualizing the three-dimensional
structure of the object: the user positions the vertex by moving it parallel to the cutting
plane or to the cutting plane normal. Once a new edge has been added to the drawing,
the sketch interpretation algorithm generates a new object description by finding a new
surface topology (using an extension of Huffman-Clowes line labeling scheme) and by
solving for a new geometry that satisfies the constraints.

Figure 3.7: Results from Pugh (1992). From left to right: a three-dimensional object is
inferred by the Viking system using geometric constraints, either implicitly derived from the
drawing or explicitly specified by the user, e.g., hidden edge or redundant edge identification.

Akeo et al. (1994) describe a system that uses cross-section lines on a designer’s
drawing to generate automatically a three-dimensional model of the object (see Fig. 3.8).
The input sketch is analyzed as follows. First, the lines are extracted from the drawing
using image processing techniques. Then, three-points perspective information asso-
ciated with shape cross-sections is used to infer relative position of the lines in three
dimensions. Finally, closed loops are detected to create B-spline surfaces. The au-
thors description is not very detailed but they stress the problem of system sensitivity
to sketch inaccuracies, e.g., inconsistent vanishing points and varying line widths. The
user provides missing data when automatic sketch processing fails.

62 Chapter 3. Drawing for Illustration and Annotation in 3D

Figure 3.8: Results from Akeo et al. (1994). From left to right: idea sketch, sketch augmented
with shape cross-section lines, 3D model editing interface.

The IDeS (intuitive design) system (Branco et al., 1994) combines sketch input
with common features of solid modelers, such as constructive solid geometry (CSG)
operators. The user can perform four different tasks with the system. First, sketching a
3D model, as in a classic 2D drawing program: the object must be drawn without hid-
den lines and in “general position”, i.e., a position avoiding alignment between edges
and vertices. Each time the user draws a line, junctions are analyzed and classified. A
junction dictionary stores information on each junction type that will be used by the
reconstruction. When the user has finished, the system attempts a reconstruction in
two steps: compute the fully and partially visible faces; infer the hidden faces of the
model. Second, using a modeling tool: basic shapes such as extruded solids can be
constructed directly with the appropriate tool. If information is missing to apply the
modeling operation, the system will wait for the user to provide it by drawing. Third,
editing a 3D model: various editing operations are available, e.g., direct drawing over
the surface of the model (“gluing”). Fourth, “explaining” a sketch to the system: the
“is a” operator allows to distinguish between 2D and 3D models, such as a circle and
a sphere, or to identify regular shape from imprecise input, such as a straight line
segment from a freehand line.

Eggli et al. (1995, 1997) present a 2D and 3D modeling tool that takes simple
pen strokes as input. A graph-based constraint solver is used to establish geometrical
relationships and to maintain them when objects are manipulated. Two-dimensional
shapes, such as line, circle, arc or B-spline curve, and geometrical relationships, such
as right angle, tangency, symmetry and parallelism are interpreted automatically from
the strokes. This information is used to beautify the drawing and establish constraints
(see Fig. 3.9a, top). Since inferring a 3D object from an arbitrary 2D input is im-
possible in the general case, specific drawing techniques that have an unambiguous
interpretation in 3D are used. Extrusion surfaces are generated by sweeping a 2D
profile along a straight line; ruled surfaces are defined between two curves; sweep sur-
faces are created by sweeping a cross-section along a curve; revolution surfaces are
determined using two approximately symmetric silhouette lines (see Fig. 3.9a, bot-
tom). The user can also draw lines on faces of existing objects. Tolerance in strokes
interpretation is necessary to cope with inexact input. However, if interpretation does

3.2. Previous Work 63

not correspond to user intent, he can easily edit the model with gestures, e.g., to move
control points. Soft constraints are introduced to achieve more predictable behavior
when underconstrained drawings are manipulated.

Lipson and Shpitalni (1996) describe an optimization-based algorithm for recon-
structing a 3D model from a freehand drawing of a 3D object (see Fig. 3.9b). The
line drawing is assumed to represent the parallel projection of a general wireframe ob-
ject (not necessarily manifold, containing flat or cylindrical faces), from an arbitrary
viewpoint. Since an infinite number of possible objects can correspond to this projec-
tion, implicit information must be extracted from the drawing in order to reconstruct
the most probable object. As a preprocessing stage, the 2D sketch is transformed into
a 2D line-and-junction graph that assumes a one-to-one relationship between lines
and projected edges of the object, and equivalently, junctions and projected vertices
of the object. The reconstruction process progressively extracts the spatial informa-
tion present in the edge-and-vertex graph from three sources: image regularities, i.e.,
geometrical relationships between entities or groups of entities, face topology, and
statistical configuration of entities. Once spatial information is identified and formu-
lated, associated 3D configurations are explored. This process is tolerant to inaccurate
vertex positioning and missing entities because it does not rely on exact solution of
equations, as previous approaches. In addition, the reconstruction is invariant with
respect to small variations in the initial drawing. In fact, it is this fault tolerance that
allows to reconstruct the probable object. The authors report reconstruction times be-
tween one second and half an hour, according to the complexity of the input drawing.
Distorted 3D models are generated when the system fails to distinguish between more
or less important sketch inaccuracies. Moreover, objects with curved faces are more
difficult to reconstruct correctly since the majority of image regularities concerns only
straight line segments.

The SKETCH system (Zeleznik et al., 1996) is a solid modeling tool for initial de-
sign, with a purely gestural interface and non-photorealistic rendering (see Fig. 3.10a).
A three-button mouse input device is used for specifying operations directly in the 3D
scene rather than for menu selection. The desired command is inferred by recognizing
two types of gestural elements: strokes and “interactors”. Strokes are sets of sample
points on the image plane, made by pressing the first mouse button. They are most of
the time axis-aligned with the projection of one of the three main axes. There exists
five classes of strokes: dot, axis-aligned line, non-axis aligned line, freehand curve, and
freehand curve drawn on object surface. Interactors are made by pressing the second
mouse button. There exists two classes of interactors: “click” and “click-and-drag”.
Direct manipulation of camera parameters is possible with the third mouse button: pan,
zoom, rotate, focus, and “select rendering” are available modes. Sequences of gestural
elements result in four main classes of actions: creating geometry, placing geometry,
editing, and grouping.

Creating geometry is made using strokes that instantiate primitives such as cuboid,
cone, cylinder, sphere, revolution surface, prism, extrusion surface, sweep surface and
superquadrics. Primitives are described with an “ideographic language” using visual

64 Chapter 3. Drawing for Illustration and Annotation in 3D

(a) (b)

Figure 3.9: Results from Eggli et al. (1995) and Lipson and Shpitalni (1996). In (a), results
from Eggli et al. (1995). From top to bottom: 2D input strokes; resulting interpretation of 2D
shapes; extrusion surface (at left, the two unambiguous 2D strokes in bold, at right, resulting
3D surface); sweep surface (see previous explanation). In (b), results from Lipson and Shpitalni
(1996). A 2D drawing (top left) inflated into a 3D wireframe object (bottom left), with three
steps of the optimization process.

3.2. Previous Work 65

features, e.g., a cube is represented by three segments (a corner), or generative proper-
ties, e.g., a revolution surface is represented by a profile and an axis (see Fig. 3.10b).
Placing geometry is based on four rules: first, geometry features project onto their
corresponding creation strokes in the image plane; second, new geometry is in contact
with objects of the scene; third, classic line junction invariants provide information on
placement and dimensions; fourth, strokes drawn inside an object imply a CSG “sub-
tract” operation. Editing geometry use either strokes or interactors. Resizing an object
is performed by “oversketching” over its boundaries to define a new size; moving an
object position is made by sketching its shadow on the floor plane; transforming an
object (translation or rotation) is obtained by defining a constraint, such as an axis or
a plane, with stroke gestures (the rest plane is taken by default), and then select (click)
and displace (drag) the object; removing an object is done by clicking on it. Grouping
applies a transformation to multiple objects at the same time. By default, objects are
grouped with the surface on which they are instantiated. Otherwise, a “lasso” stroke
can be used to define groups explicitly. Most of the grouping is unidirectional and thus
allows hierarchical manipulation of objects. Finally, orthographic views of 3D scenes
are rendered with a “sketchy” appearance that helps preserve the ambiguity and impre-
cision of traditional drawing, which is important in engaging user imagination beyond
approximate models generated by SKETCH.

(a) (b)

Figure 3.10: Results from Zeleznik et al. (1996). In (a), an example of a model created and
rendered with SKETCH. In (b), a sample set of gestures available for creating and manipulating
shapes. From left to right and top to bottom: cube, cylinder, cone, sphere, revolution surface,
and sweep surface, are created with a few strokes following simple rules; scaling, and a CSG
“subtract” operation, manipulate existing shapes.

The Teddy system (Igarashi et al., 1999) is an intuitive sketching interface for mod-
eling 3D polygonal surfaces using 2D input devices such as a mouse or a tablet (see
Fig. 3.11a). Modeling operations are executed by drawing freeform strokes in the im-
age plane; some actions require only one stroke while, for others, a sequence of strokes
is necessary. Three kinds of strokes are recognized by the system: open or closed non
self-intersecting strokes, and “scribbling” strokes. The system cannot handle (create,

66 Chapter 3. Drawing for Illustration and Annotation in 3D

edit or combine) multiple objects at the same time. More importantly, only closed
manifold surfaces with a spherical topology can be generated. Four general modes
of interaction exist: creation, painting, extrusion, and bending (see Fig. 3.11b). The
first and the last modes are not fully stroke-based since they are entered by pressing a
button on the GUI. A mouse click allows escape from the extrusion mode.

Creation requires a single closed stroke on a blank screen. This stroke represents
the external silhouette of the object. A 3D shape is inferred from this silhouette in four
steps: first, the stroke vertices define a planar closed polygon; second, a constrained
Delaunay triangulation of the polygon provides its “chordal axis”1, and this axis is
pruned to obtain the “spine” of the polygon; third, spine vertices are given a height
value proportional to their distance to the polygon edges; fourth, a closed surface with
oval section is wrapped around the spine and polygon vertices. This “inflates” the
external silhouette while preserving the relative size of its different parts. Painting
requires a single stroke drawn across the external silhouette of the object created pre-
viously. If the stroke is open and stays inside the silhouette, it is transformed into
a 3D polyline by projection onto the object surface. This polyline can be erased by
scribbling over it. If the stroke is open and simply passes through the silhouette, it de-
fines a cutting surface, extruded along the view vector. The object is cut in two pieces
and remeshed (only the right part remains). After a cutting stroke, the system is in
extrusion mode. The polyline composed of the sharp edges resulting from the cut is
considered as the first extruding stroke. If the stroke is closed and inside the silhou-
ette, it is the first extruding stroke and the system enters extrusion mode. Extrusion
requires two strokes: a closed stroke drawn on the object surface (extrusion profile)
and an open stroke (extrusion “path”, i.e., external silhouette of the extruded surface).
The first stroke is swept along the axis of the projection of the second stroke on a plane
perpendicular to the object surface. By drawing the second stroke inside the projection
of the external silhouette of the object, one obtains an “intrusion”, i.e., a cavity. If
the user scribbles on the first stroke, a smoothing operation occurs: polygons enclosed
by the first stroke are removed and the resulting hole is filled with a smooth surface.
Finally, bending requires two strokes: a “reference” stroke and a “target” stroke. Mesh
vertices are displaced in directions parallel to the image plane so that their final relative
position w.r.t. the second stroke is equal to their initial relative position w.r.t. the first
stroke. In this operation the mesh topology remains the same.

Harold (Cohen et al., 2000) is an interactive system for creating three-dimensional
worlds by drawing. The entire interface is based on drawing: apart from tools selection
(modifying drawing parameters, e.g., pen style and pen width), all objects of the world
are edited by clicking on them or drawing strokes, with a 2D input device. The most
important 3D primitive is a collection of 2D strokes lying on a 3D plane which changes
its orientation to stay as front-facing as possible to the camera, by rotating around a
point or an axis. This primitive is also known as a “billboard”, and is adapted for
objects whose appearance does not change a lot when walking around them, i.e., ob-

1 The chordal axis is not equivalent to the medial axis.

3.2. Previous Work 67

(a) (b)

Figure 3.11: Results from Igarashi et al. (1999). In (a), Teddy on a display-integrated tablet,
allowing the user to draw directly on the screen, as on an electronic paper sheet. In (b), demon-
stration of some of the modeling operations. From top to bottom: creation (stroke, result, ro-
tated view); extrusion (painting strokes previously applied and now first stroke, second stroke,
result); cutting (stroke, result and enter extrusion mode, click to quit extrusion mode); smooth-
ing (first stroke, second stroke, result).

jects that exhibit a strong radial symmetry (typically trees), but this primitive does not
work well for asymmetric objects. Moreover, since billboards have a view-dependent
position, billboard intersections may occur when they are close to one another. Three
main modes are available through a three-button mouse: drawing mode, camera con-
trol mode, and eraser mode. When in drawing mode, three specific submodes are
explicitly chosen: ground, billboard, and terrain mode.

In drawing mode, the user draws a stroke on the image plane by moving the cursor,
first mouse button pressed. The starting point of a stroke determines whether it is a
“stroke on the sky” (the sky is a triangulated sphere) or a “stroke on the ground” (the
ground is a triangulated plane located inside the sphere). The stroke on the sky is sim-
ply projected onto the sphere while the stroke on the ground is interpreted according to
the current drawing submode. In ground mode, the stroke is projected onto the ground
to represent roads, etc. If the stroke crosses the projection of a ground silhouette on
the image plane (e.g., a hill), parts of the projected stroke are joined by straight line
segments on the ground to make it continuous. In billboard mode, the stroke creates
a new billboard at the world position corresponding to the projection of the starting
point of the stroke on the ground. The rectangular area defined by the new billboard is
highlighted, and any stroke whose starting point projects on this area (and ending point
does not project onto another billboard) is projected onto the billboard plane (in fact,
this is true whatever the current submode). If the ending point is on another billboard,
the stroke is projected onto a new “billboard bridge”, created between the positions
of the projection of the starting and ending points. This primitive allows to define an
object which has a view-independent relationship with two other objects, because it is

68 Chapter 3. Drawing for Illustration and Annotation in 3D

tied to them. In terrain mode, the stroke, starting and ending on the ground, creates
an extrusion of the ground plane so that the projection of the extrusion silhouette on
the image plane matches the stroke path. As a result, the height position of all world
objects is modified to stay at ground level. Terrain features generated this way are
always equivalent to heightfields.

Other gestures are possible in drawing mode: switch off highlighted billboard by
clicking anywhere, switch on billboard by clicking on it, paint object by drag-and-
dropping a color from the toolbar to the object. In camera control mode, a stroke on
the ground defines a camera path and a click anywhere defines the camera point-of-
interest (POI). The camera walks along the path, at human height and jogging speed,
progressively aiming the POI, and finishes its move looking at the POI. In eraser mode,
strokes can be erased with a simple click on them, billboards can be removed with a
“scribbling” stroke.

(a) (b)

Figure 3.12: Results from Cohen et al. (2000). In (a), an example scene: background strokes
are drawn on the sky, middleground strokes are drawn on billboard bridges, and foreground
strokes are drawn on a billboard. In (b), ground and terrain modes. Top row: a ground stroke
crossing the projection of several silhouettes is made continuous using line segments. Bottom
row: a terrain stroke creates an extrusion of the ground plane whose silhouette projection
matches the stroke.

Discussion

The diversity of the existing systems makes comparison difficult because their relative
merits are sometimes incompatible, e.g., some automatically reconstruct 3D objects
from a single line drawing while others offer a rich interface for interactive modeling
under many viewpoints. However, it is possible to focus on the difficulties encountered
in order to discern the problems that remain to be solved.

The direct 2D drawing approach is limited by the incomplete information given by
2D input to position strokes in space. Cohen et al. solve this ambiguity by drawing two
strokes for each 3D stroke, but at the expense of slowing down user work. However,

3.2. Previous Work 69

as the authors mention, their approach is more appropriate to drawing camera paths
or motion curves than to drawing objects in 3D. Tolba et al. avoid this problem by
projecting all the strokes on the unit sphere, obtaining panoramas where objects have
fixed locations, but without parallax effect since they are supposed to be infinitely far
away from the viewer: in fact, it is quite disturbing for close objects and cannot be
considered as 3D modeling. Daniels focuses on painterly rendering of 3D models,
and stroke positions are obtained by projection on the models. This allows rendering
strokes from a different viewpoint, but requires to input a full 3D scene, in addition to
the strokes themselves. Maya’s Paint Effects elegantly avoids the previous pitfalls by
projecting strokes either on fixed planes or on existing objects. We have been inspired
by these solutions for our system.

Among the systems that use sophisticated constraint solving mechanisms, some
offer interactive modeling possibilities (the systems of Pugh, Eggli et al., and to some
extent, Branco et al.) and others are fully automatic (the systems of Akeo et al., and
Lipson and Shpitalni). But apart from the system created by Akeo et al. that uses real
design drawings as input, all the others require drawings of 3D polyhedral surfaces in
wireframe, and without hidden lines. This is a CAD atavism that keeps these solutions
out of reach of common drawing practice, but sounds familiar for people accustomed
with 2D vector drawing systems. However, Eggli et al. and Lipson and Shpitalni
alleviate this burden of unintuitive input by using constraints that tolerate imprecise
drawings (line approximations, perspective errors, etc.). In fact, since it is the rough
nature of a sketch that makes it a convenient mean for communicating ideas, fault
tolerance algorithms are required to preserve this property.

The recent achievements of Zeleznik et al. and Igarashi et al. demonstrated that
gesture-based interfaces are powerful and intuitive tools for 3D model design. They
trade their simplicity against limitations on the type of models generated. The Zeleznik
et al. system offers a restricted set of geometric primitives, compared to most CAD
systems. Even if more complex shapes can be obtained by combining simple primi-
tives, models end up looking very similar. Igarashi et al. try to avoid this drawback by
using a restricted set of freeform strokes: the inferred shapes are more diverse but still
must have plane symmetry at creation (w.r.t. the image plane) and spherical topology.
Nevertheless, these works are milestones on the road towards easy-to-use modeling
systems that go beyond CAD paradigm: for some researchers, Teddy deserves without
hesitation the title of “favorite graphics paper of the last five years”.

Harold by Cohen et al. is probably the previous work the most closely related
to our system. Its 3D stroke representation and positioning technique have inspired
our own. However, it does not handle strokes that correspond to silhouettes of 3D
objects, and thus should deform when the viewpoint changes. As we shall see, this is
an essential feature of our approach, and the ability to draw silhouettes is much needed
in both annotation and initial design applications.

Finally, we would like to raise some questions. In some of the systems presented,
the designed model or scene is rendered in a non-photorealistic manner in order to ob-
tain a result that does not inhibit designer imagination. In fact, Strothotte et al. (1994)

70 Chapter 3. Drawing for Illustration and Annotation in 3D

have described the effect on the viewer of adjusting the degree of precision in the ren-
dering of a scene, to produce images ranging from rough charcoal sketches to detailed
pen-and-ink illustrations. The former are more suitable to convey a “work in progress”
feeling than the latter, since information transmitted is less precise. Nonetheless, both
are rendered using the same geometric data. Why is it necessary to build a complete
model to render a rough sketch? Aren’t there weaker forms of knowledge about the
geometry that would suffice? We see this as an open problem, involving human cogni-
tion issues: how much information about an object is really needed to produce a draft
of it? And one of its subproblems concerns mapping from geometry space to drawing
space: can all drawings be generated from geometrical information only?

3.3 Drawing and Rendering 3D Strokes
In order to render a sketch from multiple viewpoints, we consider strokes as three-
dimensional entities. Two kinds of strokes are used in our system: line strokes that
represent 1D detail, and silhouette strokes that represent the contour of a surface. This
is the case for both open and closed strokes.

For line strokes, we use a Bézier space curve for compact representation. These
strokes are rendered using hardware, and behave consistently with respect to occlusion.
Silhouette strokes in 3D are more involved: a silhouette smoothly deforms when the
view-point changes. Contrary to line strokes, a silhouette stroke is not located at a fixed
space position. It may rather be seen as a 3D curve that “slides” across the surface that
generates it. Our system infers the simplest surface, i.e. the same local curvature in 3D
as that observed in 2D. For this we rely on the differential geometry properties of the
user-drawn stroke, generating a local surface around it. But the degree of validity of
this surface decreases when the camera moves. Therefore, we decrease the intensity of
the silhouette as the point of view gets farther from the initial viewpoint. This allows
the user to either correct or reinforce the attenuated stroke by drawing the silhouette
again from the current viewpoint.

3.3.1 Local Surface Estimation from 2D Input
Since the inferred local surface will be based on the initial stroke curvature, the first
step of our method is to compute the variations of this curvature along each 2D silhou-
ette stroke drawn by the user.

We start by fitting each 2D silhouette stroke segment to a piecewise cubic Bézier
curve. This representation is more compact than a raw polyline for moderately com-
plex curve shapes. The fitting process is based on the algorithm of Schneider (1990a);
we briefly review it next. First, we compute approximate tangents at the endpoints of
the digitized curve. Second, we assign an initial parameter value to each point using
chord-length parameterization. Third, we compute the position of the second and third
control points of a Bézier curve by minimizing the sum of the squared distance from

3.3. Drawing and Rendering 3D Strokes 71

each digitized point to its corresponding point on the Bézier curve. Fourth, we com-
pute the fit error as the maximum distance between the digitized and fitted curves; we
note the digitized point of maximum error. Fifth, if this error is above threshold, we
try to improve the initial parameterization by a nearest-point-on-curve search using a
Newton-Raphson method (see below) and search a new Bézier curve; if this fails, we
break the digitized points into two subsets and recursively apply the fit algorithm to
the subsets.

Then, each control point Vi of the piecewise cubic Bézier curve Q3 is associated
with a given value of the parameter u along the curve. From the definition of a cubic
Bézier curve (see Appendix B), we obtain immediately uV0 = 0 and uV3 = 1, but uV1

and uV2 are not defined because Bézier curves are approximation splines. However, we
can determine a parameter value corresponding to the point on the curve nearest to the
control point. For this, we apply the method of Schneider (1990b): we look for the
values of u that are roots of the equations

[Q3 (u) − V1] · Q̇3 (u) = 0 and [Q3 (u) − V2] · Q̇3 (u) = 0

since they define the parameter’s value for points on the curve nearest to each control
point. These roots can be approximated using the Newton-Raphson method, a clas-
sic one-dimensional root-finding iterative routine. The initial estimates for roots are
obtained with simple trigonometry (see Fig. 3.13)

u0
V1
=

(V3 − V0) · (V1 − V0)
‖V3 − V0‖

2 and u0
V2
= 1 −

(V0 − V3) · (V2 − V3)
‖V0 − V3‖

2

V0

V1

V2

V3

PV1

V0V1

V2

V3

PV2

PV1
PV2

Figure 3.13: Solving the nearest-point-on-curve problem (Schneider, 1990b). Parameter val-
ues for points on cubic Bézier curve nearest to control points V1 and V2 are obtained using
the Newton-Raphson method. Initial estimates for the parameters are u0

V1
=

∥

∥

∥PV1 − V0
∥

∥

∥ and
u0

V2
=

∥

∥

∥PV2 − V0
∥

∥

∥.

For each parameter value u associated with a control point V , we find the center of
curvature C =

[

ξ η
]T by first computing the derivatives of the position coordinates and

then solving the following equations (Bronshtein and Semendyayev, 1998):

72 Chapter 3. Drawing for Illustration and Annotation in 3D

ξ = x −
ẏ
(

ẋ2 + ẏ2
)

ẋ ÿ − ẏ ẍ
η = y +

ẋ
(

ẋ2 + ẏ2
)

ẋ ÿ − ẏ ẍ

where ẋ and ẍ are first and second derivatives of x with respect to u. Therefore, we
obtain a curvature vector between a point on the curve at parameter u and its associated
center of curvature C (see Fig. 3.14a). We will be using these curvature vectors to
reconstruct local 3D surface properties. However, if the stroke is completely flat, the
norm of the curvature vector, i.e., the radius of curvature, becomes infinite; the method
we present next solves this problem.

In order to infer a plausible surface in all cases, we use a heuristic based on the
curve’s length to limit the radius of curvature. One way of looking at this process is
that of attempting to fit circles along the stroke curve. Thus, if we encounter many
inflection points, the circles fitted should be smaller, and the local surface should be
narrower; in contrast, if the curve has few inflection points, the local surface generated
should be broader.

To achieve this, we construct axis-aligned bounding boxes of the control polygon
of the curve between each pair of inflection points. Inflection points can be found
easily since we are dealing with a well-defined piecewise cubic Bézier curve (see Ap-
pendix B). They are either the common control point of two “head-to-foot” cubic
Bézier curves of type I (see Fig. 3.13, left) or are located on a cubic Bézier curve of
type II (see Fig. 3.13, right). We discard bounding boxes which are either too small or
too close to the curve extremities. If the norm of the curvature vector is larger than a
certain fraction of the largest dimension of the bounding box computed previously, it
is clamped to this value (see Fig. 3.14b). We use a fraction value at most equal to 1

2 ,
which gives a length equal to the radius of a perfect circle stroke. We also impose a
consistent in-out orientation of the curve based on the orientation of the curvature vec-
tors in the first bounding box computed, thus implicitly considering initial user input
as giving correct orientation (see Fig. 3.14c). This intuitive choice corresponds to the
intent of the user most of the time. If not, a button in the GUI can be used to invert all
the curvature vectors along the stroke.

From these 2D strokes, we infer local surface properties, which are then used to
create a 3D stroke representation. Each center of curvature embedded in the drawing
plane is considered as the center of a circle in a plane perpendicular to the drawing
plane and passing by the corresponding control point (see Fig. 3.15a). We consider
an arc of 2π

3 radians for each circle, thus defining a piecewise tensor product surface
by moving each control point on its circle arc (see Fig. 3.15b). This piecewise Bézier
surface is quadratic in one dimension, corresponding to a good approximation of a
circle arc, and cubic in the other, which corresponds to the stroke curve. To define
the quadratic Bézier curve easily, we express the position of its middle control point
as a ratio of the height of the equilateral triangle whose base is defined by the two
other control points, of known positions (see Fig. 3.15c). We found the optimal ratio
iteratively by measuring the maximum distance between points on the Bézier and on

3.3. Drawing and Rendering 3D Strokes 73

(a) (b) (c)

Figure 3.14: Processing vectors of curvature. In (a), curvature vectors before clamping. In (b),
curvature vectors after being clamped relative to solid bounding box length (dotted bounding
boxes were considered too small to be selected). In (c), curvature vectors after correcting
orientation.

the circle arc.
In practice, the inferred radius of curvature may of course be inaccurate, but as

stated earlier, the inferred surface will only be used for generating a probable silhouette
when the viewing angle changes slightly. If more information is needed about the 3D
surface geometry, the contour will have to be redrawn by the user at another viewpoint.
However, this simply add a new stroke and doesn’t modify the old stroke and its local
surface. For a complete overview of the behavior of our method in a simple “textbook
example”, see Fig. 3.16.

3.3.2 Rendering in 3D

Given a local surface estimation, our goal is to display the initial stroke from a new
viewpoint. When the viewpoint changes, we expect the stroke to change its shape, as
a true silhouette curve would do. We also expect its color to change, blending progres-
sively into the background color to indicate the degree of confidence we have in this
silhouette estimation. Recall that we want our system to be interactive, which imposes
an additional computational constraint. In what follows, the term “local surface” refers
to the polygonal approximation of the local surface estimation of the stroke.

The solution we adopt is to generate a fast but approximate silhouette based on
the local surface generated as described above. We simply render a “slice” of the
local surface that lies between two additional clipping planes, parallel to the camera
plane and situated in front of and behind the barycenter of the centers of curvature
(see Fig. 3.17a). The distance between clipping planes depends on the stroke width
value we have chosen. This ensures silhouette-like shape modification, with minimal

74 Chapter 3. Drawing for Illustration and Annotation in 3D

V0

C0

V1

V2

V3

C1

C2

C3

V0

V1

V2

V3

V01

V02V00

C0

V0

(a) (b) (c)

Figure 3.15: Construction of a 3D stroke from a 2D stroke composed of one cubic Bézier
curve with control points Vi. In (a), the 2D centers of curvature Ci computed with our method,
and the corresponding 3D circles (the dotted lines are hidden by the drawing plane). In (b),
the Bézier surface obtained (same remark as above for the meaning of dotted lines). In (c),
definition of the quadratic Bézier curve that approximates the circle arc. The position of the
control point V01 is determined using the positions of the two other control points V00 and V02
and the ratio of the height of the equilateral triangle.

(a) (b) (c) (d)

Figure 3.16: “Textbook example”: a simple circular stroke. In (a), front view; in (b), side
view rotated by 30 degrees; in (c), side view rotated by 90 degrees; in (d), top view.

3.3. Drawing and Rendering 3D Strokes 75

computational overhead.
It is important to note that our approach to silhouette rendering is very approxi-

mate: its behavior will be somewhat unpredictable for wide camera angles and very
long strokes. A good accurate solution for computing a new silhouette from the esti-
mated surface would be to use one of the existing algorithms (Markosian et al., 1997;
Raskar and Cohen, 1999; Hertzmann and Zorin, 2000). However, we have seen that
our surface is only a coarse inference of the local surface to which the silhouette be-
longs, so computing an accurate silhouette would probably be unnecessary in our case.

Initially, we render all geometry other than the silhouette strokes (for example the
house in Fig. 3.1). Therefore, the depth and color buffers are correctly filled with
respect to this geometry. In the next step, we use different elements to display the sil-
houette strokes and to perform stroke occlusion. Because of this, we need a multipass
algorithm, summarized in Algorithm 3.1.

Rendering Silhouette Strokes

In the first pass, we render the strokes as clipped local surfaces, with the depth test and
color blending enabled, but with depth buffer writing disabled. Thus correct occlusion
is performed with respect to other (non-stroke) geometry. To represent the confidence
in the surface around the initial stroke we apply a “stroke texture” (see Fig. 3.17b, left)
as an alpha texture to the local surface. This confidence is maximum at the initial stroke
position and minimum at left and right extremities of local surface. We use a Gaussian
distribution that progressively blends the stroke color into the background color for
modeling this confidence function. As a result, the stroke becomes less intense as
we move away from the initial viewpoint. This blending also allows two different
strokes to reinforce each other by superposition, which corresponds to the behavior of
traditional ink brush drawings.

Occlusion by Local Surfaces

In addition to occlusion by other geometry, we also need to handle occlusion by
strokes. This required a slightly more sophisticated process, since we do not want
local surfaces to produce hard occlusion (such as that created by a depth buffer) but
rather to softly occlude using the background color, in a visually pleasing way. To meet
these requirements, stroke occlusion is achieved in an additional two passes. Recall
that we start with a depth buffer which already contains depth information for other
objects in the scene.

In the second pass, we render the local surfaces into the depth buffer with the depth
test and depth buffer writing enabled. Local surfaces are textured with a different
alpha texture called the “occluder texture” (see Fig. 3.17b, right) and rendered with
the alpha test enabled. As a result, occluder shape will be a rounded version of local
surface shape.

76 Chapter 3. Drawing for Illustration and Annotation in 3D

In the third to fifth passes, we render the local surfaces into the color buffer with
the depth test and color blending enabled, but with depth buffer writing disabled. Lo-
cal surfaces are textured with the same “occluder texture” and colored with the back-
ground color. The occluder color thus blends with what is already present in the color
buffer: we obtain progressive occlusion from the edge of local surface to the center of
initial stroke. Moreover, we use the stencil buffer to mask the stroke rendered during
first pass, and this way the occluder does not overwrite it in the color buffer.

V0

V1

V2

V3

CB

P1

P2

(a) (b) (c)

Figure 3.17: Stroke rendering. In (a), the final stroke is a slice of Bézier surface obtained using
two clipping planes P1 and P2 facing the camera; CB is the barycenter of the Ci (see Fig. 3.15).
In (b), two texture samples, one of “stroke texture” (left) and one of “occluder texture” (right).
White corresponds to an alpha value of 1, black to an alpha value of 0. In (c), image obtained
from rendering a black stroke against a white background, with the slice position corresponding
roughly to (a).

Drawing Style

We can have a different color for the background and the stroke occluder, such as what
is shown in the artistic illustration of Fig. 3.20. This gives a subtle indication of local
surface around a stroke: it can be seen as equivalent to hatching or pencil pressure
variation in traditional drawing. Finally, since “stroke texture” and “occluder texture”
are procedurally generated, their parameters can vary freely. This allows the creation
of different tools according to specific needs.

3.4 Interface for Drawing
A drawing session using our system is in many ways similar to traditional drawing. A
designer starts with an empty space, or, in the case of annotation, he can add in a pre-
existing 3D model, such as the house in Fig. 3.1. For strokes drawn in empty space, we

3.4. Interface for Drawing 77

MR()
// Pass 0
// Render non-silhouette strokes geometry, i.e., scene and line strokes
// ...
// Pass 1
// Draw clipped local surfaces with stroke texture, stroke color
Enable Depth test
Enable Blend
Disable Depth buffer write
Draw silhouette strokes in Color buffer
// Pass 2
// Draw local surfaces with occluder texture
Enable Alpha test
Enable Depth buffer write
Disable Color buffer write
Draw occluders in Depth buffer
// Passes 3, 4, 5
// Draw local surfaces with occluder texture, occluder color
Enable Stencil test
Enable Stencil buffer write
Disable Depth buffer write
Disable Color buffer write
For each silhouette stroke:

Draw clipped local surface in Stencil buffer
Disable Stencil buffer write
Enable Color buffer write
Draw occluder in Color buffer
Enable Stencil buffer write
Disable Color buffer write
Erase clipped local surface in Stencil buffer

Algorithm 3.1: Multipass stroke rendering algorithm.

78 Chapter 3. Drawing for Illustration and Annotation in 3D

project onto a reference plane, parallel to the camera plane and containing the world
origin (it is possible to choose a fixed offset relative to this position). Typically, the
user will place the drawing plane in space using the trackball. An example is shown
in Fig. 3.18, where we start drawing the grounds of the house. We want to draw in
the plane of the ground corresponding to the house, so we position ourselves in a “top
view”. We then verify that the position of the plane is as intended (a) and draw the
strokes for the grounds in the plane (b). Similarly, tree trunks are drawn in planes
parallel to the walls of the house (c).

(a) (b) (c) (d)

Figure 3.18: Plane positioning. First, position ourselves in a “top view”. Then, we verify
the plane position colored in semi-transparent grey (a), and we draw the grounds in this plane
(b). We next draw trees trunks in planes parallel to the walls of the house (c), and examine the
result from another viewpoint (d).

Once such parts of the drawing have been created, we can use the existing entities
to position the curves in space. More precisely, if at the beginning or at the end of a
2D stroke the pointer is on an existing object, we use this object to determine a new
projection plane. We obtain the depth of the point selected by a simple picking. The
picked object can correspond to a geometric object or to (the local surface of) a stroke.
There are three possibilities:

• If only the beginning of the stroke is on an object, we project the stroke on a
plane parallel to camera plane, which contains the selected point. An example
can be seen in Fig. 3.19, where we draw the leaves of a tree in one plane (a) and
in another (b).

• If the beginning and the end of the stroke are on an object, we interpolate depth
values found at the two extremities by using the parameter u of the piecewise
cubic Bézier curve. Each control point is projected on a plane parallel to the
camera plane and located at the corresponding depth. See Fig. 3.19c, where this
“bridge” mechanism is used to join two parts of a tree.

• If it happens that the stroke extremities are in empty space, it is projected on the
same plane as the previous stroke, except if the trackball has been moved. In this
case, the reference plane is used.

3.5. Applications 79

(a) (b) (c)

Figure 3.19: Different projections using objects of the scene. In (a) and (b), we draw on
planes automatically positioned in space with the help of the tree trunk, i.e., planes passing
through the trunk. This produces convincing tree foliage. In (c), we use a “bridge” to draw a
new branch. It fits correctly in place because of the automatic positioning of the start and the
end of the stroke.

Classic 2D computer drawing operations extended to 3D are also very useful.
Among them, we have implemented erasing strokes and moving strokes (in a plane
parallel to camera plane).

3.5 Applications
We present results for three different application scenarios. The first one is artistic
illustration, the second one is annotation of a pre-existing 3D scene, and the third one is
“guided design”. In our current implementation, drawings can be saved in a custom file
format, in world coordinates, but without reference to an annotated object. The initial
learning curve for our system is relatively significant, requiring a few hours to get used
to the idea of positioning planes and drawing on them. Once this is understood, typical
drawings take between ten minutes to one hour to complete.

Illustration in 3D

Figure 3.20 shows an illustration designed with our system. Most strokes are silhouette
strokes. They have been rendered on a textured background so that the local surface
occluder appears as a “fill” effect. The illustration is displayed from different points of
view, showing the effects of occlusion, varying stroke lightness, and silhouette defor-
mation.

Annotation of a 3D Scene

Another application of 3D drawing is to use our system for annotating an existing 3D
model. While 2D annotation is widespread, few systems provide a straightforward
manner to do this in 3D. In a typical user session, we initially load the 3D model. It
is subsequently integrated with the drawing in the same way as for local surfaces: if a

80 Chapter 3. Drawing for Illustration and Annotation in 3D

Figure 3.20: An example of artistic illustration. Three views of the same 3D sketch area are
shown.

3.6. Conclusion and Future Work 81

stroke is drawn on the model, it is set to lie on it. Line strokes can be used for adding
annotation symbols, e.g., arrows, text, etc.

Figure 3.1 is a simple example of annotation: adding a coarse landscaping sketch
around an architectural model. Figure 3.21 shows annotation used for educational pur-
poses: a heart model is annotated during an anatomy course. The use of a well-chosen
clipping plane gives an inside view of the model and allows drawing anatomical details
inside it. We could also imagine using our system in collaborative design sessions. An-
notation would then be employed to coarsely indicate which parts of the model should
be changed, and to exchange ideas in a brainstorming context.

Figure 3.21: An example of annotation in 3D: annotating a heart model during an anatomy
course. Anatomic structures have been drawn both inside and outside the heart surface.
The text displayed has also been drawn with our system, using line strokes, thus it is view-
dependent. A possible improvement would consist of drawing text on billboards, or imple-
menting more sophisticated schemes (Preim et al., 1996; Fekete and Plaisant, 1999).

“Guided Design”

The idea of this third application is to load a 3D model and use it as a guide for
designing new objects. When the drawing is complete, the model is removed. A good
example of this kind of application is clothes design. A 3D model is used to obtain
body proportions (see Figure 3.22).

3.6 Conclusion and Future Work
We have presented a system which enhances the traditional 2D drawing process with
3D capabilities, notably by permitting multiple viewpoints for a single drawing. In-
stead of attempting a complete 3D reconstruction from 2D strokes, we infer a local

82 Chapter 3. Drawing for Illustration and Annotation in 3D

Figure 3.22: Using a 3D model as a guide can be useful in clothes design.

surface around the stroke. This is achieved by assuming that strokes represent planar
silhouettes of objects, and by using differential geometry properties of the curve.

The resulting local surfaces are then drawn efficiently using hardware-accelerated
rendering of a clipped part of the local surface, corresponding approximately to a sil-
houette. Color blending is used to gracefully diminish the intensity of the strokes as
we move away from the initial viewpoint, and to allow reinforcement of intensity due
to multiple strokes. We have also introduced a multipass algorithm for stroke inter-
occlusion, which results in a visually pleasing gradual occlusion. Our system provides
an interface which retains many of the characteristics of traditional drawing. We help
the user in positioning the drawing plane in empty space, and placing it relatively to
other objects (strokes or geometry) in the sketch.

Future Work

We have chosen a Bézier surface representation for storing silhouette stroke informa-
tion. This approach is convenient but it can result in a large number of hardware-
rendered polygons. Other representations could be used instead. For instance, a volu-
metric data structure would allow us to combine information about the local surface:
the more strokes are drawn at a given location in space, the more we are certain that it
corresponds to a true surface point. To render strokes from a new viewpoint, we would
have used a variant of the marching cubes algorithm (Lorensen and Cline, 1987) to
produce a surface estimation, associated with a silhouette detection algorithm to gen-
erate new silhouette strokes. The obvious drawbacks of this approach are memory
usage and data loss due to volumetric sampling of user input. A particle-based ap-
proach, i.e., strokes composed of particles that try to satisfy a set of constraints such as
“stay on silhouette”, etc., would produce interesting stroke transformations. However,
numerical stability would undoubtedly be an issue as well as computational overhead,
which would impede interactivity.

Our user interface is clearly far from perfect. Plane positioning is not completely
intuitive, and alternatives should be considered. For example, a computer vision ap-
proach in which the user defines two viewpoints for each stroke and implicitly recon-
structs positions in space (within an error tolerance) could potentially prove feasible.

3.6. Conclusion and Future Work 83

But it is questionable whether such an approach would truly be more intuitive. We
are investigating various alternatives in order to find an appropriate combination that
will improve our current solution, both in terms of stroke rendering quality and user
interface.

84 Chapter 3. Drawing for Illustration and Annotation in 3D

Chapter 4

Relief: A Modeling by Drawing Tool

4.1 Introduction

Most people draw. We sketch, doodle, and scribble effortlessly, to keep a trace of our
thoughts or communicate ideas to others. We consider drawing as a writing alternative,
because it is faster and more precise to describe three-dimensional shapes and spatial
relationships with two-dimensional lines than with words. The tool set is minimal: a
thin, short stick held in hand (pen), and a flat rough surface (paper). The tool princi-
ple is simple: rubbing the stick against the surface produces a mark made of the stick
material. And that is all one needs to know. The dextrous use of the tool constitutes
a wealth of common knowledge most people have acquired since kindergarten. How-
ever, this common knowledge is seldom used in computer graphics for anything but
two-dimensional vector or pixel-based drawing applications.

Few people sculpt. Creating forms in three dimensions involves modeling clay,
chiseling wood or marble, etc. These materials are difficult to manage, and shaping
them generally requires highly specialized tools and skills.1 Using computers does
not make the sculpting process simpler: three-dimensional data are obtained either
by scanning an existing sculpture, or by modeling directly with the computer, using
2D or 3D input devices. In practice, designers turn to computers when they need to
be definite and precise, while advantages of the digital medium could be used in the
initial idea stage.

The aim of this work is to promote drawing as an effective modeling tool for de-

1 In his posthumous Treatise on Painting, Leonardo da Vinci describes the labor of the sculptor.
“For his face is smeared and dusted all over with marble powder so that he looks like a baker, and he
is completely covered with little chips of marble, so that it seems as if his back had been snowed on;
and his house is full of splinters of stone and dust. In the case of the painter it is quite different [...]
for the painter sits in front of his work in perfect comfort. He is well-dressed and handles the lightest
of brushes which he dips in pleasant colors. He wears the clothes he likes; and his house is full of
delightful paintings, and is spotlessly clean. He is often accompanied by music or by men who read
from a variety of beautiful works, and he can listen to these with great pleasure and without the din of
hammers and other noises.” (cited in Freud, 1964, pp. 64–65). See also da Vinci (1956).

85

86 Chapter 4. Relief: A Modeling by Drawing Tool

signers. By focusing on a 2D-to-3D approach, we will avoid problems inherent to
3D-to-3D solutions that use haptic feedback manipulation devices and other VR props,
as we explained in Section 3.2.1. Above all, we want to take advantage of drawing’s
natural expressiveness to enrich the modeling process. This implies that our system
input must consist of “just plain strokes”, to stay as close as possible to the traditional
drawing experience. Thus, the user draws strokes freely without being disturbed by
mode: strokes belong either to silhouettes or sharp features, they convey either texture
or shading information; by topology: strokes are either open or closed, they are either
self-intersecting or not; by depth: strokes are positioned implicitly in 3D space.

Our 3D drawing system presented in Chapter 3 produces no model at all, but a
drawing representation allowing the generation of new drawings when the viewpoint
changes. Compared to it, our modeling by drawing tool outputs manifold polyhedral
surfaces, i.e., complete models, as a traditional CAD system, and thus can fit in the
classic computer graphics images production pipeline.

Overview

Our approach is based on the simple idea that relief sculpting is an appropriate meta-
phor for the process of modeling by drawing, which is really about making 3D output
progressively emerge from 2D input. In fact, a relief is a “sculpture that projects
from a background surface rather than standing freely. According to the degree of
projection, reliefs are usually classified as high (alto rilievo), medium (mezzo rilievo),
or low (basso rilievo or bas-relief)”; rilievo schiacciato being “a form of very low
relief” (Chilvers et al., 1997). Thus, there is a continuum in three-dimensional object
representation that goes from drawing or painting, to sculpture in the round, relief
being a transitional art2 that encompasses all intermediate levels (see Fig. 4.1).

Considering this fact, our system allows the user to create a three-dimensional
shape from two-dimensional input, by iteratively modeling by drawing, and changing
the viewpoint to examine the resulting model, repeating these two stages until the end
of the modeling session. In the modeling by drawing stage, the system proceeds in two
steps: first, from 2D stroke input in image space, a 2.5D polyhedral surface is inferred,
also in image space; then, this 2.5D surface is used to create (resp. modify) a new
(resp. existing) 3D polyhedral surface in world space.

In the first step, strokes are discretized into a point set, and a triangulation of a
possible “non-convex hull” of this set is obtained. Independently, the drawn image
is processed to infer a height field. Then, starting from the previous triangulation, a
polygonal approximation of the height field is computed. Therefore, a relative depth
value is associated to each vertex of the triangulation. Consistent results suppose that
the drawing follows a few conventions, that have their counterpart in traditional art. To

2 Leonardo da Vinci compared relief to painting because both pay attention to perspective, and the
play of light and shadow. “The sculptor may claim that basso relievo is a kind of painting; this may be
conceded as far as drawing is concerned because relief partakes of perspective [...] this art is a mixture
of painting and sculpture.” (cited in Williams, 1990). See also da Vinci (1956).

4.1. Introduction 87

(a) (b) (c)

Figure 4.1: From low relief to high relief. In (a), relief of Cleopatra as Hathor, temple of
Haroeris at Kom Ombo, 1st century B.C., Egypt. This is an example of Egyptian sunken or
coelanaglyphic relief, where carved figures are not projecting beyond block surface. In (b),
dedicatory relief to Asklepios, 4th century B.C., Piraeus archaeological museum, Athens.
In (c), Tullio Lombardo, Saint Mark baptizes Ammianus, circa 1481, marble, 107 × 154 cm,
basilica dei Santi Giovanni e Paolo, Venice.

better understand them, we would like to point out a distinction between two classic
shading styles: one style is interested in the effect of light and shadow as a way of
depicting the illumination of a scene, we will call it “painter shading” (see Fig. 4.2a);
the other style is interested in the effect of light and shadow as a way of bringing
out the modeling of surfaces, we will call it “sculptor shading” (see Fig. 4.2b). In
this last style, light is used in a non-realistic but expressive way, as if each modeling
detail of the surfaces was illuminated by a different light source, in order to be as
“understandable” as possible by the viewer. Only the second style is meaningful in our
system. This way, relative depth is indicated by the user with varying shades of gray,
for example the darkest shade corresponding to the maximum relative depth value.

(a) (b)

Figure 4.2: Painter versus sculptor shading. In (a), Rembrandt van Rijn, seated female nude,
circa 1631, etching, 177 × 160 mm, British museum, London. In (b), Michelangelo Buonarroti,
study for a nude (studies for The battle of Cascina), 1504, pen and ink over black chalk, 408 ×
284 mm, Casa Buonarroti, Florence.

88 Chapter 4. Relief: A Modeling by Drawing Tool

In the second step, the previous 2.5D surface is “unprojected” in 3D space. There
are two possibilities, depending on whether or not the drawing was completed on a
“blank page”, or on the projection of an existing model. In the first case, the surface is
unprojected using an arbitrary depth offset value, added to the relative depth values of
the vertices. In the second case, projections of the vertices of the existing model (that
are part of the 2.5D surface in the same way strokes vertices are) are used to compute
the absolute depth of strokes vertices by propagation. That is, knowing the absolute
depth of the vertices of the existing model and the value of relative depth (height field),
one can obtain the absolute depth of strokes vertices.

4.2 Previous Work
We have already presented an overview of systems taking two-dimensional strokes as
input for modeling three-dimensional objects, using explicit or implicit constraints (see
Section 3.2.2). Among them, very few were actually interested in sculpting the surface
of objects, their use of strokes being limited to drawing one-dimensional features:
three-dimensional paths, edges of wireframe models, silhouettes of objects, commands
of gestural interfaces, etc. The Teddy system (Igarashi et al., 1999), with the “polygon
inflation” method for the extrusion of arbitrary polygon meshes (van Overveld and
Wyvill, 1997), is one of these exceptions, and we refer the reader to our previous
description.

We will shortly summarize and discuss works related to surface modeling by two-
dimensional input, either academic papers or commercial software. Beforehand, let’s
cite as a curiosity the paper of Cignoni et al. (1997) which studies the inverse of the
process we are interested in. Their system automatically generates low and high relief
from arbitrary 3D models, and it can be useful as a computer formalization of the
traditional rules of this art.

Papers Overview

To the best of our knowledge, Williams (1990) is the first to present 3D painting as a
surface sculpting tool. The system takes advantage of an unusual hardware technique
for displaying video rasters, as a set of section lines which defines a surface. This
way, an image is displayed as a height field, with the luminance value corresponding
to the elevation. Thus, classic 2D graphics and image processing techniques can now
be used to create three-dimensional surfaces (see Fig. 4.3a to Fig. 4.3d). However, the
painting convention that maps luminance to elevation is not very intuitive since humans
naturally interpret shading as indication of local surface orientation or color, not height.
After 2D editing is over, 3D paint raster data can be transformed into geometrical
surface representation in multiple ways, among them Coons patches offer a useful
parameterization for subsequent texturing (see Fig. 4.3e to Fig. 4.3g). The author
mentions applications such as retouching depth maps of scanned faces and building

4.2. Previous Work 89

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.3: Results from Williams (1990). Working class dinosaur by Bill Maher: standard
video display, front (a) and back (b); raster surface display, front (c) and back (d); texture
painting, front (e) and back (f); full 3D model made of the front and back halves (g).

complete models, either from scratch or with the help of an existing image. But he
insists on the fact that building models this way remains difficult.

One year later, Williams (1991) reviews techniques for shading in two dimensions.
Shading conveys information about three-dimensional shape but is also useful for visu-
ally emphasizing regions of an image; it is therefore a tool of choice for incorporating
animated characters in live action sequences. One solution to the 2D shading problem
is to infer a 3D surface from two-dimensional information and use it to compute shad-
ing: in this respect, it is related to the shape from silhouette problem, an active research
area in computer vision. However, techniques that do not attempt to infer a 3D shape
are still very popular. The most simple 2D shading techniques are shape-independent
and thus do not convey any 3D information. More sophisticated, shape-dependent al-
gorithms exist and are available in many paint systems. The “skeleton” fill algorithm
fills a region by varying intensities across the levels created with a region thinning
algorithm, such as the medial axis transform. However, the resulting shading is not
smooth due to derivative discontinuities along skeleton axes. The “2D sweep” algo-
rithm uses two user-specified curves of different colors to define a smoothly shaded
region by sweeping, i.e., by interpolating between the curves. Filters can be applied to
the object matte3 in order to approximate shading, but also highlighting from a “local”
light source, and even color bleeding from the background. For example, a highlight-
ing matte is built by scaling the blurred matte up depending on the position of the light,

3 A matte is an “image or signal that represents or carries only transparent information that is in-
tended to overlay or control another image or signal” (Hapeman et al., 2001). An acceptable synonym
for a binary matte is a mask.

90 Chapter 4. Relief: A Modeling by Drawing Tool

negating the result, and masking it with the original matte. As opposed to low pass fil-
tering, pyramidal filtering adapts the shading to the scale of the silhouette, so that
shading is correct for large regions as well as small ones (“pyramidal airbrushing”).

Techniques that infer a 3D model from outlines (“silhouette inflation”), allow 3D
shading algorithms to be applied in 2D animation. Using a classic reference image (see
Fig. 4.4a), a possible solution to infer a 3D surface is the shape from shading method
from computer vision (see Fig. 4.4b). The author suggests several other methods:
automatic segmentation into superquadrics (by correlating the image with a family of
superquadrics silhouettes), manual segmentation into “symmetry seeking” generalized
cylinders (user-defined cylinders are then automatically fit to image segments), and
automatic inflation by masked pyramidal convolution. This last technique applies a
series of Gaussian filters of decreasing radii to each region considered separately from
the others. After each pass, the blurred image is masked with the original image to
limit inflation to the inside of silhouette (see Fig. 4.4c and Fig. 4.4d).

(a) (b)

(c) (d)

Figure 4.4: Results from Williams (1991). Various inflations of Pablo Picasso’s Rite of
Spring (a), a classic reference image: using the shape from shading algorithm (b); using a
masked pyramidal convolution, inflation displayed as an image (c), or as a relief (d), with
non-standard video hardware (Williams, 1990).

GRADED (van Overveld, 1996) is an interactive system for designing freeform
surfaces using shading information. Interestingly, the author notes that current com-
puter design tools have direct manipulation techniques at the antipodes of those of
non-computer tools. In fact, with CAD systems, techniques for designing surfaces are

4.2. Previous Work 91

more frequently 0D (control points) than 1D (boundary curves of Coons and Gordon
patches), and are exceptionally 2D (such as Williams’s 3D paint), as opposed to what
is observed with traditional design tools. In GRADED, surfaces are represented as
heightfields and manipulated by editing a depth buffer or a gradient buffer. To com-
pute local illumination, color in each point is considered as a function of the normal
vector, obtained using the gradient value. Editing the depth buffer automatically up-
dates the gradient buffer and thus has a visible effect on surface shading. Classic paint
system tools and image processing operations are available: direct color editing (tint-
ing), opaque painting, smoothing, etc. But they must be interpreted in a depth image
context, e.g., tinting (adding color) corresponds to rising (adding material). Brushes
are fully configurable in shape, orientation, size, and profile. Conversely, editing the
gradient buffer allows the surface to be modified by modifying its shaded image. Since
there is a one-to-one relation between shade color, normal vector and gradient, a shape
from shading algorithm is not necessary. The user simply selects a shade color (corre-
sponding to a unique orientation) on an illuminated sphere, and paints it in the gradi-
ent buffer. To enforce that the current gradient distribution corresponds to a consistent
depth distribution, the conservation constraint (stating that the accumulated depth vari-
ation over any closed loop must be equal to zero) is propagated over the surface by an
iterative algorithm (see Fig. 4.5a). Surfaces created with GRADED can be converted
into gradient maps, for bump mapping, or into triangular meshes. However, the author
notes that this system is more adapted to refining existing polygonal surfaces (previ-
ously scan converted to depth maps), than to sculpting entire shapes from scratch (see
Fig. 4.5b and Fig. 4.5c).

(a) (b) (c)

Figure 4.5: Results from van Overveld (1996). In (a), a gradient distribution painted into
the gradient buffer (top), the result of enforcing the conservation constraint (bottom). In (b),
a bas-relief of a hand, painted from scratch in 2 hours (in the top left corner, the shade color
selection sphere). In (c), a face, obtained in less than 20 minutes by editing in GRADED a
simple polygonal face mask.

Williams (1998) proposes a simple shape from silhouette algorithm that infers 3D
models from silhouette information only. A 2D matte (a “silhouette”) is defined with
an image (see Fig. 4.6a), then is converted into implicit form as a signed pseudometric
function: the original matte shape is a level set of this function (see Fig. 4.6b). This
process is called the “inflation” of the matte. Interpreting the inflated matte as depth
information, a geometric model is created, and textured with the original image (see

92 Chapter 4. Relief: A Modeling by Drawing Tool

Fig. 4.6c). For objects exhibiting planar symmetry, such as human faces, a single
silhouette can produce a reasonable approximation of the entire object. This technique
is very useful for creating approximate shading from two-dimensional input, such as
traditional animation where only matte information is available, in the spirit of the
toolbox presented previously (Williams, 1991).

(a) (b) (c) (d) (e)

Figure 4.6: Results from Williams (1998). The image of an antique coin with the profile of
Alexander the Great (a) is used to define a matte, an inflation of the matte (b), the corresponding
textured 3D model (c), an inflation of the matte blended with 5% of the original image (d), and
the corresponding textured 3D model (e).

Johnston (2002) presents a method for computing approximate lighting on cel an-
imation drawings. As opposed to other methods (Williams, 1991, 1998), surface nor-
mals are inferred without attempting to reconstruct 3D geometry. Given a line drawing
(see Fig. 4.7a), the most simple normal approximation scheme is the “simple blob-
bing”. It uses the drawing matte to determine exterior silhouette edges, whose asso-
ciated normals are known to be perpendicular to the eye vector. Interpolating these
normals across the matte gives a complete normal vector field (see Fig. 4.7b). The
previous scheme can be refined in “compound blobbing” if the matte is subdivided
into different layered regions, and blobbing is applied on each of these regions, before
compositing the results (see Fig. 4.7c). Instead of evaluating normals on matte edge,
the “quilting” scheme considers ink lines as silhouette edges. Associated normals on
each side of the lines are interpolated across the matte (see Fig. 4.7d). However, this
is obviously wrong since relative depth information is not taken into account (e.g.,
the right hand of the character is in front of his body). The final scheme involves
the tagging of each side of the ink lines to determine if it is “over” or “under”, i.e.,
front facing or back facing. This step requires human intervention, but it is possible
to provide an initial estimate using relative depth of paint regions and line dominant
curvature information. Interpolating these tags (encoded as black and white colors)
gives a grayscale “confidence” matte. Blending quilted and blobby normals, obtained
previously, with the confidence matte as a key, produces a normal vector field that can
be used for approximate lighting (see Fig. 4.7e).

Artisan (Alias|wavefront, 2002b) is a set of tools of the Maya software with a com-
mon painting-based interface. Among these tools, the Sculpt Polygons Tool for polyg-
onal surfaces offers an intuitive interface for editing vertices. An equivalent tool exists
for non uniform rational B-spline (NURBS) surfaces, the Sculpt Surfaces Tool. Edit-
ing is achieved by simply “painting” the surface, using one of four different sculpting

4.2. Previous Work 93

(a) (b) (c) (d) (e)

Figure 4.7: Results from Johnston (2002). Normals approximation: original drawing (a),
region-based or “simple blobby” normals (b), compound region-based or “compound blobby”
normals (c), line-based or “quilted” normals (d), and blended normals (e).

operations: push, pull, smooth, and erase. Pushing translates vertices in the direction
of the tool reference vector, of an amount dependent on their current displacement
w.r.t. reference surface, and in a way dependent on the brush stamp profile (radius,
opacity, shape); while pulling does the same thing, but in the opposite direction (see
Fig. 4.8a). The surface subdivision density has an influence over the precision of the
result (see Fig. 4.8b). The reference vector is defined in the tool settings, and possible
values are: surface normal, surface normal at the beginning of the stroke, camera view
vector, x, y or z axis (see Fig. 4.8c). The reference surface is defined as the surface
at the beginning of the sculpting session. Its vertices cannot be translated any further
than the maximum displacement value in the tool settings. However, a larger displace-
ment is possible if the user updates the reference surface during the session. It can be
done automatically after each stroke so that strokes displacements become additive.
Smoothing reduces bumps in the surface. It can be set to be applied automatically
after each stroke. Erasing resets vertex displacements to their values in the erasing
surface (see Fig. 4.8d and Fig. 4.8e). This surface is equivalent to the reference surface
of push-pull operations. Initially, they are identical, thereafter, the erasing surface is
updated independently. Other operations include: creating masks, to prevent areas of
the surface from being affected by sculpting; flooding the surface, to apply the current
brush operation to the entire surface.

ZBrush (Pixologic, 2002) is a modeling software with a painting metaphor. The
polygon sculpting capabilities of ZBrush are very similar to Maya’s Artisan Sculpt
Polygons Tool (Alias|wavefront, 2002b), presented previously. Starting with any 3D
polyhedron (over a dozen primitives are already proposed, such as spheres, cylinders,
cubes, etc., with variable mesh density) the user can sculpt the shape by pushing and
pulling vertices, i.e., by painting onto the object with push and pull brushes. Higher
level deformation tools are also provided to twist, bend, or inflate the shape, and even
simulate gravity (see examples on Fig. 4.9). The polygonal surface can be smoothed,
refined or simplified. These modifications can be constrained using axial or radial
symmetries, or restricted to a region by masking. Masks can be defined directly by
painting on the object. However powerful these sculpting tools are, the real innovation

94 Chapter 4. Relief: A Modeling by Drawing Tool

(a) (b)

(c) (d) (e)

Figure 4.8: Alias|wavefront’s Maya Artisan Sculpt Polygons Tool. Various sculpting oper-
ations: pushing or pulling the polygonal surface (a); at left (resp. right), result of pulling
with low (resp. high) subdivision density (b); result of pulling with the reference vector set to
surface normal (c); erasing, updated erase surface (d), sculpted surface, and resulting erased
surface (e).

of ZBrush comes from its set of 2.5D painting tools, that allows anyone familiar with
2D paint programs to create 3D models easily. To achieve this, “pixols” in the ZBrush
canvas represent not only position and color, but also depth, material, and orientation.
Brush strokes can be fully controlled in type (color, depth, or material), dimensions,
depth of embedding into the canvas, load (how much color or depth is applied), shape
(set by a grayscale alpha texture), etc. They are either constrained to planes or lines, or
drawn on other objects and positioned on their surface. Some high-level brushes create
complete 3D shapes directly, in the spirit of Maya’s Paint Effects (Alias|wavefront,
2002c). For example, the Fiber Brush can paint hairs or blades of grass in a single
stroke.

Figure 4.9: Pixologic’s ZBrush. Several steps in the creation of a character’s head, starting
from a sphere with a 128 by 128 horizontal and vertical division count. The general shape of
the head is obtained with “gravity” and global deformation tools. The features (eye sockets,
nose, etc.) are created by pulling and pushing the sphere vertices with the edit tools.

Discussion

On the small number of works presented, nearly one third are in fact commercial
softwares that are not mere implementations of academic papers. This emphasizes

4.2. Previous Work 95

the practical interest of the computer graphics industry for modeling tools using two-
dimensional input. Besides, even if we have considered all these approaches together,
they do not correspond to the same needs.

Some of these tools are meant to be used as interactive systems while others are
automatic processing methods, and this is related to differences in input. In the first
case, the user iteratively builds a model by drawing, deciding after each stroke if the
result is satisfying, undoing his actions if needed (Williams, 1990; van Overveld, 1996;
Alias|wavefront, 2002b; Pixologic, 2002). In the second case, the user has been given
finished drawings (and their associated mattes), and wants to obtain rough depth infor-
mation from them, e.g., for shading traditionally animated characters (Williams, 1991,
1998; Johnston, 2002).

The difference in output echoes the previous distinction on interactivity. A few sys-
tems allow creation of full 3D models, and thus fit well in the 3D computer graphics
pipeline (Alias|wavefront, 2002b; Pixologic, 2002); they are interactive. The majority
of the systems are handling 2.5D slabs (terrains or bas-reliefs), which can be useful
for detailing 3D surfaces or 2D cartoon shading (Williams, 1990, 1991, 1998; van
Overveld, 1996; Pixologic, 2002); half of them are interactive. Only one system gen-
erates 2D bump maps for automatic shading of line drawings (Johnston, 2002); it is
not interactive.

Nevertheless, the most important difference between systems lies in the mapping
of two-dimensional input to three-dimensional depth. Systems closest to sculpting
(Alias|wavefront, 2002b; Pixologic, 2002) use solutions derived from direct manipula-
tion texturing interfaces (Hanrahan and Haeberli, 1990; Daily and Kiss, 1995), but here
surfaces are painted with depth variations instead of being painted with colors or nor-
mals values. Systems for cartoon shading mainly rely on drawing mattes, i.e, external
silhouettes, to infer 3D information (Williams, 1991, 1998), sometimes adding internal
lines to refine this approximation (Johnston, 2002). The “creation” phase of the Teddy
system (Igarashi et al., 1999) could be classified in this category. Systems that use
other image information are either associating depth values with luminance (Williams,
1990), or manipulating depth through shading (van Overveld, 1996). It is difficult to
say what is the most effective solution: even if it is true that shading is a way we per-
ceive relative depth in the real world, it is also true that most sculptors think rather in
terms of depth (positions and volumes) than in terms of shading.

Like Maya’s Artisan (Alias|wavefront, 2002b), our system is interactive: the user
alternatively sculpts and “steps back” to examine the result by changing the viewpoint.
Our system also outputs full 3D geometry, but it is not limited to modifying a given ref-
erence surface with a fixed resolution: the user creates pieces of geometry by drawing,
without being constrained by the underlying polygonal surface representation. Just
as 3D paint (Williams, 1990), our system maps image luminance to depth, but in an
indirect way: the user draws according to sculptor shading conventions, and a 2.5D
surface is inferred using both stroke geometry and drawing image information. We
expect that these key differences will make our system a more effective modeling tool
for the initial stage of design.

96 Chapter 4. Relief: A Modeling by Drawing Tool

4.3 From 2D to 2.5D
From a simple 2D drawing made with a computer input device, and without the help
of any information other than user strokes, we infer a corresponding 2.5D polygonal
surface (a relief). This surface is obtained in a two-step process: first, strokes are
digitized into points, and a non-convex hull of the union of the strokes point sets is
determined; second, a height field is inferred using strokes and hull information, and
approximated with a polygonal surface.

User drawn strokes are captured using a computer mouse, or using a computer
tablet with a stylus. The first device records only a two-dimensional position, while
the second measures also pressure on the stylus tip and two-dimensional tilt of the sty-
lus body, thus giving on the whole five-dimensional information about user gesture. To
limit the digitization rate, we impose an arbitrary minimum distance between two po-
sitions of the device. In practice, this threshold is equivalent to the size of a few screen
pixels. We call drawing a collection of such strokes, each stroke being discretized into
n-dimensional points, n ∈ {2, 5}.

4.3.1 Finding a Non-Convex Hull
Finding the convex hull of a 2D point set is a classic problem in computational geome-
try, and the subject of a large number of papers. Still, in many cases, the determination
of a non-convex hull would be very useful to obtain something like the “shape” de-
scribed by the point set. Since this is not a well-defined concept, there are many pos-
sible solutions to this problem. We will discuss two previously proposed algorithms.

Edelsbrunner and Mücke (1994) have defined the α-shape of a dense unorganized
set of data points as the frontier between a reachable and an unreachable region of
space. The definition of this frontier depends on the size parameter α (related to the
size of the carving spoon in the famous “vanilla ice cream with chocolate chips” anal-
ogy). The α-shape is thus equal to the point set for α → 0, and to the convex hull of
the set for α → ∞. More recently, Amenta et al. (2001) proposed the “power crust”
algorithm for shape reconstruction, based on the medial axis transform. It performs
well even in places where point sampling is not sufficiently dense, and it guarantees
the “watertight” property of the output mesh.

Although these algorithms give good results, they are not suited to our particular
problem of determining a non-convex hull from a drawing, and this, for two reasons.
First, shape reconstruction makes the hypothesis that data points are sampled from the
boundary of an object. This is not true in our case since points are sampled on strokes,
and these strokes can describe either geometry, texture, or shading information. This
is particularly obvious in the case of the power crust algorithm: the medial axis trans-
form of our drawing is meaningless because it can be easily perturbed by any stroke
that does not lie on shape boundary. Second, and this is a consequence of the first
observation, we do not meet point sampling density requirements to produce geomet-
rically and topologically correct approximation to the true shape. Since a drawing is

4.3. From 2D to 2.5D 97

fundamentally ambiguous,4 strokes describe very loosely the true surface of an object,
sometimes leaving wide open regions between them. Under such circumstances, how
does one correctly deal with this erratic sampling using the definition of the parameter
α, or the computation of the “local feature size” function?

Definition of the Non-convex Hull of a Drawing

To construct a non-convex hull from a set of 2D points, we have been inspired by the
method of Watson (1997): starting from an initial Delaunay triangulation of the points,
it applies a “short-leg” criterion to determine which edges to remove, guaranteeing a
non-convex hull with a maximal sum of inverse lengths of contiguous edges. Never-
theless, Watson’s definition of his criterion (“any edge whose end points are connected
by a contiguous sequence of shorter edges” is deleted) does not seem practical, and
he has not published a description of an algorithm implementing it. But this method
better suits our needs since it does not make the hypothesis of boundary point sam-
pling, and gives an output even for poorly sampled data sets. Furthermore, since our
points belong to ordered subsets (strokes) that give explicitly the connectivity relation-
ships between points, we do have more information than a rough unorganized point
set. Thus, we will take advantage of this topological criterion, in addition to Watson’s
geometrical criterion, in our definition of the non-convex hull of a drawing.

Using the Computational Geometry Algorithms Library (CGAL, 2002), a con-
strained Delaunay triangulation is easily obtained from the strokes, considered as sets
of vertices connected by constraints (see Fig. 4.10a and Fig. 4.10b). Triangles of this
triangulation fulfill a weaker constrained empty circle property. The CGAL data struc-
ture also introduces new vertices and subconstraints at input constraint intersection
points. Then, the non-convex hull algorithm processes the previous triangulation by
examining successively each non-constrained convex hull edge and inquiring if it sat-
isfies a simpler version of Watson’s criterion, based on the lengths of the two edges of
the underlying face. If the convex hull edge does not satisfy the criterion, its underly-
ing face is tagged as “outside”, and the two aforementioned edges are then examined
recursively, in a depth first manner (see Algorithm 4.1). As a result of the process,
triangulation faces are classified in two categories: either inside or outside the object,
and the non-convex hull is the chain of edges belonging to one inside face and one
outside face. Finally, in a postprocessing step, non-convex hull edges that do not be-
long to the original strokes are set as new constraints; vertices that do not belong to the
non-convex hull are removed (see Fig. 4.10c).

Our algorithm produces only non-convex hulls with spherical topology, and this
is an important limitation compared to α-shape (Edelsbrunner and Mücke, 1994) and
power crust (Amenta et al., 2001) algorithms. However, this limitation was also present
in “Teddy” (Igarashi et al., 1999), which trivially defined the non-convex hull of the

4 As opposed to sculpting, which defines presence or absence of matter in every point in space,
drawing can play with the in-between: the white of the paper can as well signify filled, or empty.

98 Chapter 4. Relief: A Modeling by Drawing Tool

(a) (b) (c)

Figure 4.10: Finding a non-convex hull. In (a), the original drawing. In (b), the constrained
Delaunay triangulation of the strokes (constrained edges are colored in red). In (c), the con-
strained Delaunay triangulation after non-convex hull processing (faces tagged as outside are
colored in blue, non-convex hull edges are colored in red).

Input: A constrained Delaunay triangulation
Output: A constrained Delaunay triangulation with tagged faces
FNCH(Triangulation t)
foreach ConvexHullEdge e

if e not constrained
Stack s
s.P(e)
while s not empty

Edge e1 ← s.T()
Initialize two other edges e2 and e3 of the underlying face f1

Initialize the underlying faces f2 and f3 of edges e2 and e3

Initialize edges square lengths l1, l2, l3

if l2 < l1 and l3 < l1

if not ((e2 constrained and f2 outside)
or (e3 constrained and f3 outside))

Tag underlying face f1 as outside
s.P()
if e2 not constrained

s.P(e2)
if e3 not constrained

s.P(e2)
else

s.P()
else

s.P()
return t

Algorithm 4.1: Non-convex hull algorithm, inspired from Watson (1997).

4.3. From 2D to 2.5D 99

drawing by allowing the user to draw only one closed stroke. Thus, to define non-
spherical topology, we allow the user to indicate hole marks, as is commonly done
in comic book production (see Fig. 4.11a and Fig. 4.11b). These marks are taken
into account before the non-convex hull postprocessing step: first, CGAL is used to
determine triangulation faces intersected by each segment of a mark stroke; second,
the marked faces are tagged as “outside”, and their edges are used as starting edges for
a tagging algorithm, very similar to the one used for the definition of the non-convex
hull (see Algorithm 4.1 and results on Fig. 4.11c and Fig. 4.11d).

(a) (b) (c) (d)

Figure 4.11: Hole marks to define non-spherical topology. In (a) and (b), hole marks in
comic book production: artwork from Stone #3, Avalon Studios. In (a), pencils by Whilce
Portacio. In (b), inks by Gerry Alanguilan. Note the small crosses drawn by the penciler to
give information on the positions of holes to the inker. In (c) and (d), hole marks in our system
(same color conventions as in Fig. 4.10). Mark strokes are currently selected by pressing a
modifier key on the keyboard. Future extensions could include a stroke recognition algorithm
that would automatically detect small scale cross patterns.

4.3.2 Inferring a Height Field
In the previous section, we obtained an approximation of the shape of the drawing by
determining a non-convex hull of it. Since our goal is three-dimensional modeling,
we need now to “inflate” the shape into the third dimension. This inflation process
has been the subject of many papers (see Section 4.2) and can be classified as either
object-based (Igarashi et al., 1999) or image-based (Williams, 1991, 1998). The former
approach considers only geometrical and topological informations, ignoring the other
half of the drawing data, constituted by textural information. On the contrary, the
latter approach takes into account all these elements, and therefore allows more subtle
results.

An image-based inflation algorithm must meet two requirements for a good “blob-
bing” effect: first, it must be independent of image size, i.e., the sampling of the
drawing should not influence the inflation; second, it must be dependent on the two-
dimensional feature size, i.e., it should confirm the minimal hypothesis that large fea-
tures have large inflations. Our algorithm for inferring a height field from a drawing

100 Chapter 4. Relief: A Modeling by Drawing Tool

satisfies these properties. It is composed of three steps, taking into account succes-
sively drawing geometry and topology, drawing texture, and then combining all this
information to produce the final result.

In the first step, a drawing mask is obtained by rendering only triangles inside the
non-convex hull of the triangulation obtained previously (see Fig. 4.12a). To analyze
this shape, the Euclidean distance transform of the mask is performed and gives the
distance field d (x, y) (see Fig. 4.12b). This distance operator produces much smoother
results than an erosion morphological image processing operator. To give the shape a
bulgy appearance, we use the idea of Oh et al. (2001), and map the distance field to a
unit sphere height field z (x, y), i.e.,

z (x, y) =

√

1 −
(

1 −
d (x, y)

dmax

)2

where dmax is the maximum value of the scalar field d (see Fig. 4.12c). However
smooth our height field is, small discontinuities remain around local maxima (cor-
responding to skeleton axes of the medial axis transform). To get rid of these, the
sphere-based height field is filtered using a two-dimensional Gaussian low pass filter,
whose support size s and standard deviation σ are proportional to dmax, i.e., s = 1

2 dmax

and σ = 1
2 s (see Fig. 4.12d). The idea of adapting the filter to the characteristic scale

of the mask was inspired by the “pyramidal filtering” scheme of Williams (1991). It
ensures the feature size dependence of our algorithm.

In the second step, the drawing image is rendered with full stroke information, re-
sulting in a gray level image if a tablet is used (see Fig. 4.12e). This image is filtered
using the previously defined filter, taking advantage of previous geometrical and topo-
logical information (see Fig. 4.12f). In the third step, the filtered height field f is used
as a matte for the filtered drawing image to give the final height field (see Fig. 4.12g).
Thus, influence of the drawing texture is maximum only for the maximum values of
the height field, allowing texture-based shape information to modulate geometry and
topology-based information but not to distort it.

Three aspects of the inflation process have to be stressed. First, since each low pass
filtering dissipates image “energy” (by lowering the maximum grayscale pixel value),
the resulting height field is not normalized, even if the source images are. We decided
to keep it that way. Second, the value of dmax gives us a distance (in pixel units) that
can be used in a heuristic to estimate the mapping of the height field to a depth field (in
the next section). Third, computation time is dependent of both image size and filter
size. We optimize the former by processing only the image of the bounding box of the
drawing.

The source code of the height field algorithm is given in MATLAB script lan-
guage (see Algorithm 4.2). In order to define the key functions used, we give a
short description of them below, modified from the MATLAB software documenta-
tion (The MathWorks, 2002). bwdist(bw) computes the Euclidean distance trans-
form of the binary image bw. For each pixel in bw, the distance transform assigns

4.3. From 2D to 2.5D 101

a number that is the distance between that pixel and the nearest nonzero pixel of
bw. fspecial(’gaussian’, hsize, sigma) returns a rotationally symmetric Gaus-
sian low pass filter of size hsize with positive standard deviation sigma. If hsize is a
scalar, the filter is a square matrix. imfilter(a, h, ’replicate’) filters the multi-
dimensional array a with the multidimensional filter h. With the ’replicate’ option
enabled, input array values outside the bounds of the array are assumed to equal the
nearest array border value.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.12: Inferring a height field. This is done in three steps. First, from the drawing
mask (a), one obtains its Euclidean distance transform (b), which is mapped to a unit sphere
height field (c), and then adaptively low pass filtered (d). Second, the drawing image (e) is
filtered (f) with the same filter that was used in (d). Third, the previous height field (d) is used
as a matte of the filtered image (f) to give the final height field (g).

Height Field Polygonal Approximation

Finally, using an algorithm inspired from Garland and Heckbert (1995), a polygonal
surface approximating the previous height field is computed, minimizing both the error
and the number of triangles. Starting from the previous constrained Delaunay triangu-
lation (see Section 4.3.2) as an initial approximation, the algorithm, at each iteration,
finds the input point with the highest error in the current approximation and insert it
as a new vertex in the triangulation (see Algorithm 4.3 and results on Fig. 4.13). The
error metric used is the L∞ error, also called the maximum error. For two vectors of

102 Chapter 4. Relief: A Modeling by Drawing Tool

% input: two image files (drawing image and drawing mask)

% output: a two-dimensional array of real values (height field)

image = im2double(imread("image.png"));

mask = im2double(imread("mask.png"));

% Euclidean distance transform

dist = bwdist(˜mask);

dmax = max(dist(:));

% mapping to unit sphere height field

sphere = sqrt(1 - (1 - dist/dmax).ˆ2);

hsize = round(dmax/2);

sigma = hsize/2;

% two-dimensional Gaussian filter

h = fspecial(’gaussian’, hsize, sigma);

spheref = imfilter(sphere, h, ’replicate’);

imagef = imfilter(image, h, ’replicate’);

field = imagef.*spheref;

Algorithm 4.2: MATLAB code for computing height field. Most of the functions come from
the Image Processing Toolbox (The MathWorks, 2002).

size n, u and v, representing respectively the discrete height field and its polygonal
approximation, it is defined as ‖u − v‖∞ = maxn

i=1 |ui − vi|.
This greedy insertion algorithm has been accelerated using commodity graphics

hardware and the OpenGL API. We decided to speed up the search for the maximum
error point per face using the following approach. First, the approximated height field
is simply obtained by rendering the triangulation with a grayscale value at each vertex
corresponding to its height (unfortunately, the grayscale dynamic range is currently
limited to 8 bits only on the average graphics board). Second, in order to assign a
triangulation face to each pixel, an identification (ID) buffer is rendered with a unique
color identifier for each triangulation face. Third, the maximum error point per face
is obtained by evaluating the error for each pixel belonging to the face. To prevent
selecting a pixel previously selected or selecting pixels belonging to face edges, we
mask them during the ID buffer phase using a null color identifier.

4.4 Conclusion and Future Work

We have presented a system that allows relief modeling, taking plain strokes as input
and producing a three-dimensional manifold polyhedral surface as output. We proceed
in two steps, from 2D discontinuous strokes information, to 2.5D continuous height
field information. First, we infer the shape described by the drawing by determining
the non-convex hull of the strokes set. Second, we infer the height field using both

4.4. Conclusion and Future Work 103

Input: A constrained Delaunay triangulation and a height field
Output: A constrained Delaunay triangulation with height value at
each vertex, approximating the height field
AHF(Triangulation t, HeightField h)
ErrorOrderedSet s
foreach TriangulationFace f

Candidate c← f .MEP(h)
s.I(c)
f .SCA(c)

nPointsInserted← 0
while not GM(s.HE(), nPointsInserted)

t.GCF(s.HEP())
foreach ConflictFace f

s.E(f .GCA())
t.I(s.HEP())
foreach NewFace f

Candidate c← f .MEP(h)
s.I(c)
f .SCA(c)

nPointsInserted← nPointsInserted + 1
return t

Algorithm 4.3: Fast polygonal approximation of height field, inspired from Garland and
Heckbert (1995).

(a) (b) (c)

Figure 4.13: Height field polygonal approximation. In (a), the resulting approximation, ob-
tained with the Algorithm 4.3. In (b), the three-dimensional mesh obtained after unprojecting
each vertex of (a) in world space, on an arbitrary depth plane. In (c), the Gouraud shading
rendering of (b).

104 Chapter 4. Relief: A Modeling by Drawing Tool

geometry and topology information given by the non-convex hull, and drawn image
information.

The interface of our system is still unfinished, e.g., the eraser is missing, but was
found easy to master by first-time users. However, we noticed that it is necessary to
provide an explicit control by the user of the relationship between gray level value
and relative depth offset. Furthermore, implementation of the second part of the three-
dimensional modeling system we described in the introductory overview is underway.
The results currently obtained with the relief modeling system lead us to expect ex-
citing outcomes when multiple relief surfaces will be modeled and combined from
different viewpoints.

Chapter 5

Conclusion and Future Work

Looking back at the contributions presented in this thesis, some of them more than
two years old, we have mixed feelings of achievement and dissatisfaction. We will
talk about them, trying to be as objective in our judgments as a father can be on his
own children when he sees them leaving the family home definitively. We will also
present some of our would-be contributions, still written on our urgent accomplish-
ments checklist. As a conclusion of the conclusion, we will give our views on the
future of pedagogical applications of computer tools, or in other words what could
possibly be the classroom of tomorrow.

Our model of anisotropic elastic material has proven very cost-effective, implemen-
tation time and computation time being low, and also very intuitive to use, obtained
behaviors being always close to what we expected. However, this model seems mainly
adapted to locally orthotropic material. We are afraid that it will be considered ob-
solete in a short time by the soft tissue modeling community, even though the most
physically accurate models seldom meet the intuitive system image requirement, so
important in situations where the user has no background at all in physics (medical
student, artist, etc.).

Our 3D drawing system has been significantly successful as a proof-of-concept
of an alternative 3D stroke representation, useful when true geometry can be traded
against modeling speed and simplicity, as in initial phase of design. Nevertheless, the
two obvious flaws of our system, that is limited expressiveness of 3D strokes (only
planar silhouettes, with rough inference for local surface), and awkward user interface
(stroke modes, frequent explicit depth settings), makes it much more tedious to use
than 2D drawing – but not more than the average three-dimensional modeling soft-
ware! In starting this project, we had such high expectations (invent a 3D equivalent
of drawing) that we were disappointed by the result, obtained after a series of trials
and errors with different approaches. But we are convinced that this concept is not a
dead end and deserves other attempts.

In theory, our brand new modeling by drawing system is very promising. In prac-
tice, since we do not have, at the time this sentence is written, a complete working
implementation, we cannot have many opinions on it. We expect to have a demonstra-

105

106 Chapter 5. Conclusion and Future Work

ble system for this thesis’ defense.
As a first future work, the two aspects of our thesis, animation and modeling, could

be integrated in a system of animated schemas, that would be very helpful in the teach-
ing of dynamical phenomena such as the cardiac beat. This system would close the
loop between the other systems we have proposed: a teacher could first draw a 3D
illustration, then specify parameters by drawing, and finally animate it, thus creating
an animated functional schema that can be observed from several viewpoints. Our
second future work is more involved. In order to evaluate pedagogical applications of
these techniques in medical school curriculum, and in particular for anatomy courses,
we would like to test our software tools in a real-life setting with a group of volunteer
students. This testing would have to be performed according to rigorous ergonomics
methodologies, as we advocated in Section 1.2.

Finally, we wonder about the possible future of these technologies in the class-
room. Before risking this perilous exercise, examining the present situation will give
us a good start. Today, the computer has entered the classroom. Long ago, the old
blackboard, and dusty, inexpensive chalk, were replaced by the new whiteboard, and
the solvent-free, expensive marker. Cleanliness replaced expressiveness (try to obtain
with a marker the subtle stroke effects you can achieve with chalk). But the whiteboard
triumph was short. Now, the poor whiteboard is often used as a projection screen that
reflects digital slides projected from a computer. Thus, in a way, students are now
subject to conditions quite equivalent to those of a movie theater: a bright screen dis-
playing nice pictures, a voice commenting what is on the screen, darkness for a good
contrast, and, unfortunately, either passivity (watching the show), or discouragement
(too much information, too fast, therefore impossible to take notes). Indirectly, this
also has consequences on teachers: the pedagogical drawing know-how slowly disap-
pears with the retiring faculty members.

Reintroducing writing and drawing as fundamental learning tools is one solution
for reversing the trend. In the classroom of tomorrow, the motto could be “drawing
as a front-end to everything” (Gross and Do, 1996), either as traditional paper and
pencil, as computer-assisted two-dimensional input, or even as something we cannot
imagine yet. There are so many possibilities. Drawing: not only because it is one of
the few thought supporting activities;1 not only because it is one of the few elementary
interfaces;2 but also simply because it is part of our human nature.3

1 See, for example, Verstijnen et al. (1996), Suwa and Tversky (1996), Edmonds and Moran (1997).
2 “Paper and pencil is a direct manipulation interface par excellence — you draw what you want,

where you want it, and how you want it to look. Structured mouse-menu interactions force designers
into premature commitment, demand inappropriate precision, and are tedious to use compared with
pencil and paper.” (Gross and Do, 1996).

3 In the Chauvet–Pont-d’Arc cave (Ardèche, France), charcoal drawings have been dated between
30,340 and 32,410 years BP.

Appendix A

What is Ergonomics?

This is the full transcription of the text presented on the web site of the International
Ergonomics Association (IEA).

“In August 2000, the IEA Council adopted an official definition of ergonomics as
shown below:

The Discipline of Ergonomics

Ergonomics (or human factors) is the scientific discipline concerned with the under-
standing of interactions among humans and other elements of a system, and the pro-
fession that applies theory, principles, data and methods to design in order to optimize
human well-being and overall system performance.

Ergonomists contribute to the design and evaluation of tasks, jobs, products, envi-
ronments and systems in order to make them compatible with the needs, abilities and
limitations of people.

Domains of Specialization

Derived from the Greek εργoν (work) and νoµoς (laws) to denote the science of work,
ergonomics is a systems-oriented discipline which now extends across all aspects of
human activity. Practicing ergonomists must have a broad understanding of the full
scope of the discipline. That is, ergonomics promotes a holistic approach in which
considerations of physical, cognitive, social, organizational, environmental and other
relevant factors are taken into account. Ergonomists often work in particular economic
sectors or application domains. Application domains are not mutually exclusive and
they evolve constantly; new ones are created and old ones take on new perspectives.

There exist domains of specialization within the discipline, which represent deeper
competencies in specific human attributes or characteristics of human interaction. Do-
mains of specialization within the discipline of ergonomics are broadly the following:

107

108 Appendix A. What is Ergonomics?

Physical ergonomics is concerned with human anatomical, anthropometric, physi-
ological and biomechanical characteristics as they relate to physical activity. (Relevant
topics include working postures, materials handling, repetitive movements, work re-
lated musculoskeletal disorders, workplace layout, safety and health.)

Cognitive ergonomics is concerned with mental processes, such as perception,
memory, reasoning, and motor response, as they affect interactions among humans
and other elements of a system. (Relevant topics include mental workload, decision-
making, skilled performance, human-computer interaction, human reliability, work
stress and training as these may relate to human-system design.)

Organizational ergonomics is concerned with the optimization of sociotechnical
systems, including their organizational structures, policies, and processes. (Rele-
vant topics include communication, crew resource management, work design, design
of working times, teamwork, participatory design, community ergonomics, coopera-
tive work, new work paradigms, virtual organizations, telework, and quality manage-
ment.)”

Appendix B

Bézier Curves and Surfaces

We present below a reminder of the mathematics of Bézier curves and surfaces. For
an in-depth treatment of the subject, we refer the reader to the latest edition of the
classic book by Farin (2001). The NURBS curves and surfaces could be an alternative
representation: the interested reader will find sufficient details in another book by Farin
(1999).

The Bernstein polynomials Bi, n of degree n (order n + 1), are given by

Bi, n (u) =
(

n
i

)

ui (1 − u)n−i with
(

n
i

)

=
n!

(n − i)! i!
i ∈ {0, . . . , n}

where
(

n
i

)

is a binomial coefficient.
The Bézier curve Qn of degree n, of a set of n + 1 control points V0,V1, . . . ,Vn, is

written

Qn (u) =
n

∑

i=0

Bi, n (u) Vi u ∈ [0, 1]

and its kth derivative dkQn

duk can be written

dk Qn (u)
duk =

n!
(n − k)!

n−k
∑

i=0

Bi, n−k (u) ∆kVi with ∆kVi = ∆
k−1Vi+1 − ∆

k−1Vi

thus, for a cubic Bézier curve (n = 3), we have the following equations:

Q3 (u) = (1 − u)3 V0 + 3u (1 − u)2 V1 + 3 (1 − u) u2 V2 + u3 V3

Q̇3 (u) = 3
[

(1 − u)2 (V1 − V0) + 2u (1 − u) (V2 − V1) + u2 (V3 − V2)
]

Q̈3 (u) = 6 [(1 − u) (V2 − 2V1 + V0) + u (V3 − 2V2 + V1)]

109

110 Appendix B. Bézier Curves and Surfaces

where Q̇3 and Q̈3 are first and second derivatives of Q3 w.r.t. u. The cubic Bézier curve
has at most one inflection point I, it can be easily determined with the value of the
parameter u on that point, i.e.,

I = Q3 (uI) ⇐⇒ Q̈3 (uI) = O ⇐⇒ [uI uI]T =
−V2 + 2V1 − V0

V3 − 3V2 + 3V1 − V0

where O is the origin of the two-dimensional Cartesian orthonormed coordinate sys-
tem. If I exists, the last equation is verified for all coordinates of the control points
Vi.

A piecewise cubic Bézier curve S 3 is defined as a sequence of n cubic Bézier
curves: each cubic curve (with the exception of the first and the last of the sequence),
shares its first (resp. last) control point with the previous (resp. succeeding) cubic
curve. The parameterization of the piecewise cubic curve is given by

S3 (t) = Qi
3 (u) with u =

t − ti

ti+1 − ti
u ∈ [0, 1] and i ∈ {0, . . . , n − 1}

where Qi
3 is the ith cubic Bézier curve of the sequence, and t0, t1, . . . , tn is called the

“knots” sequence.
As a generalization of the Bézier curve equation to two parameters, the Bézier sur-

face Qn,m of degrees n and m of a set of (n+1)×(m+1) control points V00,V01, . . . ,Vnm,
is written

Qn,m (u, v) =
n

∑

i=0

m
∑

j=0

Bi, n (u) B j,m (v) Vi j

Bibliography

Adobe Systems (2002). Adobe Photoshop 7.0. The professional image-editing stan-
dard software.
http://www.adobe.com (cited on p. 12)

Akeo, M., Hashimoto, H., Kobayashi, T. and Shibusawa, T. (1994). Computer graph-
ics system for reproducing three-dimensional shape from idea sketch, Computer
Graphics Forum 13(3): 477–488. (cited on p. 61, 62, 69, 123)

Alias|wavefront (2002a). Fake or Foto? A visual Turing’s test: Is the picture a photo-
graph of something real, or an image generated by computer software?
http://www.fakeorfoto.com (cited on p. 10)

Alias|wavefront (2002b). Maya 2.5 Artisan. Suite of integrated pressure-sensitive
brush tools: sculpting; attribute, selection, and script painting; 3D paint.
http://www.aliaswavefront.com (cited on p. 92, 93, 94, 95, 124)

Alias|wavefront (2002c). Maya 2.5 Paint Effects. Paint technology for creating natural
detail on 2D canvas, in true 3D space, and directly onto textures.
http://www.aliaswavefront.com (cited on p. 59, 60, 94, 123)

Amenta, N., Choi, S. and Kolluri, R. K. (2001). The powercrust, Proceedings of
the Sixth Symposium on Solid Modeling and Application, ACM Press, New York,
pp. 249–260. (cited on p. 96, 97)

Barzel, R. (1992). Physically-Based Modeling for Computer Graphics: A Structured
Approach, Academic Press, London. (cited on p. 32)

Beall, J., Doppelt, A. and Hughes, J. F. (1997). Developing an interactive illustration:
Using java and the web to make it all worthwhile, in R. Earnshaw and J. Vince (eds),
The Internet in 3D: Information, Images, and Interaction, Academic Press, London,
pp. 55–63. (cited on p. 49)

Blinn, J. F. (1990). Jim Blinn’s corner: The ultimate design tool, IEEE Computer
Graphics and Applications 10(6): 90–92. (cited on p. 14)

Boden, M. A. (1992). The Creative Mind: Myths & Mechanisms, Basic Books, New
York. (cited on p. 16)

111

http://www.adobe.com
http://www.fakeorfoto.com
http://www.aliaswavefront.com
http://www.aliaswavefront.com

112 Bibliography

Bolas, M. T. (1994). Human factors in the design of an immersive display, IEEE
Computer Graphics and Applications 14(1): 55–59. (cited on p. 57)

Bourguignon, D. and Cani, M.-P. (2000). Controlling anisotropy in mass-spring sys-
tems, Proceedings of the Eleventh Eurographics Workshop on Animation and Sim-
ulation, Springer-Verlag, Berlin, pp. 113–123. (cited on p. 20)

Bourguignon, D., Cani, M.-P. and Drettakis, G. (2001). Drawing for illustration and
annotation in 3D, Computer Graphics Forum 20(3): 114–122. (cited on p. 53)

Boux de Casson, F. (2000). Simulation dynamique de corps biologiques et change-
ments de topologie interactifs, PhD thesis, Université de Savoie, France. (cited on
p. 34, 45, 46)

Branco, V., Costa, A. and Ferreira, F. N. (1994). Sketching 3D models with 2D inter-
action devices, Computer Graphics Forum 13(3): 489–502. (cited on p. 62, 69)

Bro-Nielsen, M. and Cotin, S. (1996). Real-time volumetric deformable models for
surgery simulation using finite elements and condensation, Computer Graphics Fo-
rum 15(3): 57–66. (cited on p. 26, 28)

Bronshtein, I. N. and Semendyayev, K. A. (1998). Handbook of Mathematics,
Springer-Verlag, Berlin, p. 554. (cited on p. 71)

Butterworth, J., Davidson, A., Hench, S. and Olano, M. T. (1992). 3DM: A three di-
mensional modeler using a head-mounted display, Proceedings of the Second ACM
Symposium on Interactive 3D Graphics, ACM Press, New York, pp. 135–138. (cited
on p. 55)

Buxton, B. (1997). Artists and the art of the luthier, Computer Graphics 31(1): 10–11.
(cited on p. 14)

CGAL (2002). Computational Geometry Algorithms Library, version 2.4. Useful,
reliable geometric algorithms in a C++ library.
http://www.cgal.org (cited on p. 97, 99)

Chadwick, J. E., Haumann, D. R. and Parent, R. E. (1989). Layered construction for
deformable animated characters, Computer Graphics 23(3): 243–252. (cited on p.
20, 30, 31, 38)

Chen, D. T. and Zeltzer, D. (1992). Pump it up: Computer animation of a biomechan-
ically based model of muscle using the finite element method, Computer Graphics
26(2): 89–98. (cited on p. 25)

Chen, Y., Zhu, Q. and Kaufman, A. (1998). Physically-based animation of volumetric
objects., Proceedings of IEEE Computer Animation 98, IEEE Computer Society,
Los Alamitos, California, pp. 154–160. (cited on p. 38, 43)

http://www.cgal.org

Bibliography 113

Chilvers, I., Osborne, H. and Farr, D. (eds) (1997). The Oxford Dictionary of Art,
second edn, Oxford University Press, Oxford. (cited on p. 86)

Cignoni, P., Montani, C. and Scopigno, R. (1997). Computer-assisted generation of
bas- and high-reliefs, Journal of Graphics Tools 2(3): 15–28. (cited on p. 88)

Cohen, J. M., Hughes, J. F. and Zeleznik, R. C. (2000). Harold: A world made of
drawings, Proceedings of the First International Symposium on Non Photorealistic
Animation and Rendering, ACM Press, New York, pp. 83–90. (cited on p. 66, 68, 69,
123)

Cohen, J. M., Markosian, L., Zeleznik, R. C., Hughes, J. F. and Barzel, R. (1999). An
interface for sketching 3D curves, Proceedings of the Fifth ACM Symposium on
Interactive 3D Graphics, ACM Press, New York, pp. 17–22. (cited on p. 58, 59, 68)

Cotin, S., Delingette, H. and Ayache, N. (1999). Real-time elastic deformations of soft
tissues for surgery simulation, IEEE Transactions on Visualization and Computer
Graphics 5(1): 62–73. (cited on p. 19, 27)

da Vinci, L. (1956). Treatise on Painting, McMahon, Princeton, New Jersey. A. Philip
(ed.). (cited on p. 85, 86)

Daily, J. and Kiss, K. (1995). 3D painting: Paradigms for painting in a new dimension,
Proceedings of ACM CHI 95, Vol. 2 of Short Papers, pp. 296–297. (cited on p. 95)

Daniels, E. (1999). Deep canvas in Disney’s Tarzan, Proceedings of ACM SIG-
GRAPH 99: Conference abstracts and applications, ACM Press, New York, p. 200.
(cited on p. 58, 60, 69, 123)

Debunne, G. (2000). Animation multirésolution d’objets déformables en temps-réel,
Application à la simulation chirurgicale, PhD thesis, Institut National Polytechnique
de Grenoble, France. (cited on p. 21, 28, 29, 34, 47, 49)

Debunne, G., Desbrun, M., Barr, A. and Cani, M.-P. (1999). Interactive multiresolution
animation of deformable models, Proceedings of the Tenth Eurographics Workshop
on Animation and Simulation, Springer-Verlag, Berlin, pp. 133–144. (cited on p. 19)

Debunne, G., Desbrun, M., Cani, M.-P. and Barr, A. H. (2001). Dynamic real-time
deformations using space & time adaptive sampling, Proceedings of ACM SIG-
GRAPH 2001, ACM Press, New York, pp. 31–36. (cited on p. 19, 27, 29, 47)

Deering, M. F. (1995). HoloSketch: A virtual reality sketching/animation tool, ACM
Transactions on Computer-Human Interaction 2(3): 220–238. (cited on p. 55, 57)

Desbrun, M. and Gascuel, M.-P. (1996). Smoothed particles: A new paradigm for an-
imating highly deformable bodies, Proceedings of the Seventh Eurographics Work-
shop on Animation and Simulation, Springer-Verlag, Berlin, pp. 61–76. (cited on p.
32)

114 Bibliography

Desbrun, M., Schröder, P. and Barr, A. (1999). Interactive animation of struc-
tured deformable objects, Proceedings of Graphics Interface 99, Canadian Human-
Computer Communications Society, Toronto, pp. 1–8. (cited on p. 47)

Deussen, O., Kobbelt, L. and Tucke, P. (1995). Using simulated annealing to obtain
good nodal approximations of deformable objects, Proceedings of the Sixth Euro-
graphics Workshop on Animation and Simulation, Springer-Verlag, Berlin, pp. 30–
43. (cited on p. 34, 47)

Edelsbrunner, H. and Mücke, E. P. (1994). Three-dimensional alpha shapes, ACM
Transactions on Graphics 13(1): 43–72. (cited on p. 96, 97)

Edmonds, E. A. and Moran, T. P. (1997). Interactive systems for supporting the emer-
gence of concepts and ideas, Proceedings of ACM CHI 97, Vol. 2 of Workshops,
p. 233. (cited on p. 106)

Eggli, L., Brüderlin, B. D. and Elber, G. (1995). Sketching as a solid modeling tool,
Proceedings of the Third ACM Symposium on Solid Modeling and Applications,
ACM Press, New York, pp. 313–322. (cited on p. 62, 64, 69, 123)

Eggli, L., Hsu, C., Brüderlin, B. D. and Elber, G. (1997). Inferring 3D models from
freehand sketches and constraints, Computer-aided Design 29(2): 101–112. (cited
on p. 62)

Eysenck, H. J. (1994). The measurement of creativity, in M. A. Boden (ed.), Dimen-
sions of Creativity, MIT Press, Cambridge, Massachusetts. (cited on p. 16)

Farin, G. E. (1999). NURBS: From Projective Geometry to Practical Use, second edn,
A. K. Peters, Wellesley, Massachusetts. (cited on p. 109)

Farin, G. E. (2001). Curves and Surfaces for CAGD: A Practical Guide, fifth edn,
Academic Press, New York. (cited on p. 109)

Fekete, J.-D. and Plaisant, C. (1999). Excentric labeling: Dynamic neighborhood
labeling for data visualization, Proceedings of ACM CHI 99, Vol. 1 of Navigation
and Visualization, pp. 512–519. (cited on p. 81)

Felger, W. (1995). Head-coupled display system – research issues on health aspects,
Proceedings of the Sixth International Conference on Human-Computer Interaction,
Vol. Ergonomics and Health Aspects of Work with Computers, pp. 593–598. (cited
on p. 57)

Freud, S. (1964). Leonardo da Vinci and a memory of his childhood, in J. Stra-
chey (ed.), Five Lectures on Psycho-Analysis, Leonardo da Vinci and Other Works
(1910), second edn, Vol. 11 of The Standard Edition of the Complete Psychological
Works of Sigmund Freud, The Hogarth Press and the Institute of Psycho-Analysis,
London, pp. 63–137. (cited on p. 85)

Bibliography 115

Fung, Y. C. (1965). Foundations of Solid Mechanics, Prentice Hall, Englewood Cliffs,
New Jersey. (cited on p. 21)

Garland, M. and Heckbert, P. S. (1995). Fast polygonal approximation of terrains and
height fields, Technical Report CMU-CS-95-181, Computer Science Department,
Carnegie Mellon University, Pittsburgh, Pennsylvania. (cited on p. 101, 103)

Gibson, S. and Mirtich, B. (1997). A survey of deformable modeling in computer
graphics, Technical Report TR-97-19, Mitsubishi Electric Research Laboratories,
Cambridge, Massachusetts. (cited on p. 21)

Goel, V. (1995). Sketches of Thought, MIT Press, Cambridge, Massachusetts. (cited
on p. 15)

Gourret, J.-P., Thalmann, N. M. and Thalmann, D. (1989). Simulation of object and
human skin deformations in a grasping task, Computer Graphics, Vol. 23, pp. 21–30.
(cited on p. 25)

Gross, M. D. and Do, E. Y.-L. (1996). Ambiguous intentions: A paper-like interface
for creative design, Proceedings of the Ninth ACM Symposium on User Interface
Software and Technology, pp. 183–192. (cited on p. 15, 106)

Guckenberger, D. and Stanney, K. M. (1995). Poor man’s virtual reality, Proceed-
ings of the Human Factors and Ergonomics Society 39th Annual Meeting, Vol. 2 of
Demonstrations, p. 1063. (cited on p. 57)

Han, S. and Medioni, G. (1997). 3D Sketch: Modeling by digitizing with a smart 3D
pen, Proceedings of The Fifth ACM International Conference on Multimedia, ACM
Press, New York, pp. 41–50. (cited on p. 55, 57)

Hanrahan, P. and Haeberli, P. (1990). Direct WYSIWYG painting and texturing on 3D
shapes, Computer Graphics 24(4): 215–223. (cited on p. 95)

Hapeman, E. R., Zeuch, W. R., Crandall, J. A., Carioti, S. M., Barclay, S. D. and
Underkoffler, C. (2001). Telecom Glossary 2000 – American National Standard
T1.523-2001.
http://www.atis.org/tg2k/ (cited on p. 9, 89)

Hertzmann, A. and Zorin, D. (2000). Illustrating smooth surfaces, Proceedings of
ACM SIGGRAPH 2000, ACM Press, New York, pp. 517–526. (cited on p. 75)

Hill, R. (2002). Froguts. The first online virtual frog dissection.
http://www.froguts.com (cited on p. 16)

Hollister, S. J. (2002). BME/ME 456 Biomechanics course notes. University of Michi-
gan, College of Engineering.
http://www.engin.umich.edu/class/bme456/ (cited on p. 21)

http://www.atis.org/tg2k/
http://www.froguts.com
http://www.engin.umich.edu/class/bme456/

116 Bibliography

Hunter, P. J. (1995). Myocardial constitutive laws for continuum mechanics models of
the heart, Advances in Experimental Medicine and Biology 382: 303–318. (cited on
p. 19)

Hutchinson, D., Preston, M. and Hewitt, T. (1996). Adaptive refinement for mass-
spring simulation, Proceedings of the Seventh Eurographics Workshop on Anima-
tion and Simulation, Springer-Verlag, Berlin, pp. 31–45. (cited on p. 34)

Igarashi, T., Matsuoka, S. and Tanaka, H. (1999). Teddy: A sketching interface for 3D
freeform design, Proceedings of ACM SIGGRAPH 99, Addison-Wesley, Boston,
Massachusetts, pp. 409–416. (cited on p. 65, 67, 69, 88, 95, 97, 99, 123)

Illich, I. (1981). Shadow Work, Marion Boyars, Boston, Massachusetts, chapter Re-
search by People, pp. 86–87. (cited on p. 3)

International Ergonomics Association (2000). What is ergonomics?
http://www.iea.cc/ergonomics/ (cited on p. 13, 15)

James, D. L. and Pai, D. K. (1999). ArtDefo: Accurate real time deformable objects,
Proceedings of ACM SIGGRAPH 99, Addison-Wesley, Boston, Massachusetts,
pp. 65–72. (cited on p. 26, 28)

Johnston, S. F. (2002). Lumo: Illumination for cel animation, Proceedings of the
Second International Symposium on Non-photorealistic Animation and Rendering,
ACM Press, New York, pp. 45–52. (cited on p. 92, 93, 95, 124)

Keefe, D. F., Feliz, D. A., Moscovich, T., Laidlaw, D. H. and LaViola Jr., J. J. (2001).
CavePainting: A fully immersive 3D artistic medium and interactive experience,
Proceedings of the Sixth ACM Symposium on Interactive 3D Graphics, ACM Press,
New York, pp. 85–93. (cited on p. 55, 56, 57)

Koehoorn, M., Demers, P. A., Hertzman, C., Village, J. and Kennedy, S. M. (2001).
Work organization and musculoskeletal injuries among a cohort of health care work-
ers, Technical Report 126, Institute for Work & Health, Toronto.
http://www.iwh.on.ca (cited on p. 14)

@Last Software (2002). SketchUp 2.0. Intuitive and accessible 3D design tool.
http://www.sketchup.com (cited on p. 15)

Lee, Y., Terzopoulos, D. and Waters, K. (1995). Realistic face modeling for animation,
Proceedings of ACM SIGGRAPH 95, Addison-Wesley, Boston, Massachusetts,
pp. 55–62. (cited on p. 30, 31, 33, 39)

Lipson, H. and Shpitalni, M. (1996). Optimization-based reconstruction of a 3D object
from a single freehand line drawing, Computer-aided Design 28(8): 651–663. (cited
on p. 63, 64, 69, 123)

http://www.iea.cc/ergonomics/
http://www.iwh.on.ca
http://www.sketchup.com

Bibliography 117

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3D
surface construction algorithm, Computer Graphics 21(4): 163–169. (cited on p. 82)

Louchet, J., Provot, X. and Crochemore, D. (1995). Evolutionary identification of cloth
animation models, Proceedings of the Sixth Eurographics Workshop on Animation
and Simulation, Springer-Verlag, Berlin, pp. 44–54. (cited on p. 33, 47)

Luciani, A., Jimenez, S., Florens, J. L., Cadoz, C. and Raoult, O. (1991). Computa-
tional physics: A modeler-simulator for animated physical objects, Proceedings of
Eurographics 91, North-Holland, Amsterdam, pp. 425–436. (cited on p. 20)

Luskin, J. (1993). Man vs. mouse, Proceedings of ACM SIGGRAPH 93, ACM Press,
New York, p. 401. (cited on p. 13)

Markosian, L., Kowalski, M. A., Trychin, S. J., Bourdev, L. D., Goldstein, D. and
Hughes, J. F. (1997). Real-time nonphotorealistic rendering, Proceedings of ACM
SIGGRAPH 97, Addison-Wesley, Boston, Massachusetts, pp. 415–420. (cited on p.
75)

Marks, J., Cohen, M., Ngo, J. T., Shieber, S. and Snyder, J. (1994). Optimization –
an emerging tool in computer graphics, Proceedings of ACM SIGGRAPH 94, ACM
Press, New York, pp. 483–484. (cited on p. 7)

Meseure, P. and Chaillou, C. (2000). A deformable body model for surgical simulation,
The Journal of Visualization and Computer Animation 11(4): 197–208. (cited on p.
33)

Miller, G. and Pearce, A. (1989). Globular dynamics: A connected particle system for
animating viscous fluids, Computers and Graphics 13(3): 305–309. (cited on p. 32)

Miller, G. S. P. (1988). The motion dynamics of snakes and worms, Computer Graph-
ics 22(4): 169–178. (cited on p. 20, 30, 32, 33)

Ng-Thow-Hing, V. and Fiume, E. (1997). Interactive display and animation of B-
spline solids as muscle shape primitives, Proceedings of the Eighth Eurographics
Workshop on Computer Animation and Simulation, Springer-Verlag, Berlin. (cited
on p. 31, 32)

Norman, D. A. (1988). The Psychology of Everyday Things, Basic Books, New York.
(cited on p. 12, 13, 15, 17)

Norman, D. A. (1993). Things that Make Us Smart: Defending Human Attributes in
the Age of the Machine, Perseus Books, Cambridge, Massachusetts. (cited on p. 14)

O’Brien, J. F. and Hodgins, J. K. (1999). Graphical modeling and animation of brittle
fracture, Proceedings of ACM SIGGRAPH 99, ACM Press, New York, pp. 137–
146. (cited on p. 26, 28)

118 Bibliography

of Saint Victor, H. (1966). Epitome Dindimi in philosophiam, in R. Baron (ed.),
Opera Propaedeutica, Practica Geometriae, De grammatica, Epitome Dindimi in
philosophiam, Vol. 20, University of Notre Dame Publications in Mediaeval Stud-
ies, Notre Dame, Indiana, pp. 167–207. (cited on p. 3)

Oh, B. M., Chen, M., Dorsey, J. and Durand, F. (2001). Image-based modeling and
photo editing, Proceedings of ACM SIGGRAPH 2001, ACM Press, New York,
pp. 433–442. (cited on p. 100)

Ohayon, J., Bourdarias, C., Gerbi, S. and Oddou, C. (2001). A finite element method
for the active cardiac muscle, Proceedings of the Fifth International Symposium on
Computer Methods in Biomechanics and Biomedical Engineering. (cited on p. 21,
46)

Pascarelli, E. F. (1994). Repetitive Strain Injury: A Computer User’s Guide, John
Wiley, New York. (cited on p. 14)

Pausch, R. and Crea, T. (1992). A literature survey for virtual environments: Military
flight simulator visual systems and simulator sickness, Technical Report CS-92-25,
Department of Computer Science, University of Virginia. (cited on p. 57)

Pentland, A. and Williams, J. (1989). Good vibrations: Modal dynamics for graphics
and animation, Computer Graphics 23(3): 215–222. (cited on p. 27, 28)

Picinbono, G., Delingette, H. and Ayache, N. (2000). Real-time large displacement
elasticity for surgery simulation: Non-linear tensor-mass model, Proceedings of
MICCAI 2000, Springer-Verlag, Berlin, pp. 643–652. (cited on p. 27, 28, 29)

Picinbono, G., Delingette, H. and Ayache, N. (2001). Non-linear and anisotropic elas-
tic soft tissue models for medical simulation, Proceedings of IEEE ICRA 2001.
(cited on p. 27, 28)

Pixologic (2002). ZBrush 1.5. 2D and 3D painting, texturing and sculpting tool.
http://www.pixologic.com (cited on p. 93, 94, 95, 124)

Platt, J. C. and Barr, A. H. (1988). Constraint methods for flexible models, Computer
Graphics 22(4): 279–288. (cited on p. 41)

Preim, B., Ritter, A. and Strothotte, T. (1996). Illustrating anatomic models — A semi-
interactive approach, Lecture Notes in Computer Science 1131: 23–32. (cited on p.
81)

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). Integration
of ODE: Second-order conservative equations, Numerical Recipes in C, second edn,
Cambridge University Press, Cambridge, pp. 732–734. (cited on p. 42)

http://www.pixologic.com

Bibliography 119

Promayon, E., Baconnier, P. and Puech, C. (1996). Physically-based deformations con-
strained in displacements and volume, Proceedings of Eurographics 96, Blackwell
Publishers, Oxford, pp. 155–164. (cited on p. 41)

Provot, X. (1995). Deformation constraints in a mass-spring model to describe rigid
cloth behavior, Proceedings of Graphics Interface 95, Canadian Human-Computer
Communications Society, Toronto, pp. 147–154. (cited on p. 20, 30, 33)

Pugh, D. (1992). Designing solid objects using interactive sketch interpretation, Pro-
ceedings of the Second ACM Symposium on Interactive 3D Graphics, ACM Press,
New York, pp. 117–126. (cited on p. 61, 69, 123)

Putz-Anderson, V., Bernard, B. P., Burt, S. E., Cole, L. L., Fairfield-Estill, C., Fine,
L. J., Grant, K. A., Gjessing, C., Jenkins, L., Jr., J. J. H., Nelson, N., Pfirman, D.,
Roberts, R., Stetson, D., Haring-Sweeney, M. and Tanaka, S. (1997). Musculoskele-
tal disorders and workplace factors: A critical review of epidemiologic evidence for
work-related musculoskeletal disorders of the neck, upper extremity, and low back,
Technical Report 97-141, U.S. Department of Health and Human Services – Na-
tional Institute for Occupational Safety and Health. B. P. Bernard (ed.).
http://www.cdc.gov/niosh/ergosci1.html (cited on p. 14)

Raskar, R. and Cohen, M. (1999). Image precision silhouette edges, Proceedings of
the Fifth ACM Symposium on Interactive 3D Graphics, ACM Press, New York,
pp. 135–140. (cited on p. 75)

Sachs, E., Roberts, A. and Stoops, D. (1991). 3-Draw: A tool for designing 3D shapes,
IEEE Computer Graphics and Applications 11(6): 18–26. (cited on p. 54, 56)

Sagar, M. A., Bullivant, D., Mallinson, G. D., Hunter, P. J. and Hunter, I. W. (1994).
A virtual environment and model of the eye for surgical simulation, Proceedings of
ACM SIGGRAPH 94, ACM Press, New York, pp. 205–213. (cited on p. 26)

Sakaguchi, H. and Sakakibara, M. (2001). Final Fantasy: The Spirits Within. USA-
Japan production, color, 106 min. (cited on p. 10)

Schkolne, S., Pruett, M. and Schroder, P. (2001). Surface drawing: Creating organic
3D shapes with the hand and tangible tools, Proceedings of ACM CHI 2001, Tangi-
ble Interfaces, ACM Press, New York, pp. 261–268. (cited on p. 57)

Schneider, P. J. (1990a). An algorithm for automatically fitting digitized curves, in
A. S. Glassner (ed.), Graphics Gems, Academic Press, New York, pp. 612–626.
(cited on p. 70)

Schneider, P. J. (1990b). Solving the nearest-point-on-curve problem, in A. S. Glassner
(ed.), Graphics Gems, Academic Press, New York, pp. 607–611. (cited on p. 71)

http://www.cdc.gov/niosh/ergosci1.html

120 Bibliography

Simulog (2002). TetMesh-GHS3D. Tetrahedrical mesh generator and optimizer.
http://www.simulog.fr (cited on p. 32, 36)

Stanney, K. M. and Kennedy, R. S. (1997). The psychometrics of cybersickness, Com-
munications of the ACM 40(8): 66–68. (cited on p. 57)

Strothotte, T., Preim, B., Raab, A., Schumann, J. and Forsey, D. R. (1994). How
to render frames and influence people, Computer Graphics Forum 13(3): 455–466.
(cited on p. 69)

SUMMIT (2002a). Simbryo. Stanford University.
http://simbryo.stanford.edu (cited on p. 16)

SUMMIT (2002b). Virtual creatures. Stanford University.
http://k-2.stanford.edu/creatures/ (cited on p. 16)

Sun microsystems (2002). Ahead of the pack: Ivan Sutherland.
http://www.sun.com/960710/feature3/ivan.html (cited on p. 10, 53)

Sutherland, I. E. (1963). Sketchpad: A man-machine graphical communication sys-
tem, Proceedings AFIPS Spring Joint Computer Conference, Vol. 23, American
Federation of Information Processing Societies Press, pp. 329–346. (cited on p. 53,
54, 59)

Sutherland, I. E. (1968). A head-mounted three-dimensional display, Proceedings
AFIPS Fall Joint Computer Conference, Vol. 33, Thompson Books, pp. 757–764.
(cited on p. 53, 54)

Suwa, M. and Tversky, B. (1996). What architects see in their sketches: Implications
for design tools, Proceedings of ACM CHI 96, Vol. 2 of Short papers, ACM Press,
New York, pp. 191–192. (cited on p. 106)

Szeliski, R. and Tonnesen, D. (1992). Surface modeling with oriented particle systems,
Computer Graphics 26(2): 185–194. (cited on p. 32)

Terzopoulos, D., Platt, J., Barr, A. and Fleischer, K. (1987). Elastically deformable
models, Computer Graphics 21(4): 205–214. (cited on p. 27)

Terzopoulos, D., Platt, J. and Fleischer, K. (1989). Heating and melting deformable
models (from goop to glop), Proceedings of Graphics Interface 89, Canadian
Human-Computer Communications Society, Toronto, pp. 219–226. (cited on p.
31)

The MathWorks (2002). MATLAB 6.5 and Image Processing Toolbox 3.2. Flexible
environment for technical computing and toolbox with functions for enhancing and
analyzing digital images.
http://www.mathworks.com (cited on p. 100, 102)

http://www.simulog.fr
http://simbryo.stanford.edu
http://k-2.stanford.edu/creatures/
http://www.sun.com/960710/feature3/ivan.html
http://www.mathworks.com

Bibliography 121

Tolba, O., Dorsey, J. and McMillan, L. (1999). Sketching with projective 2D strokes,
Proceedings of the Twelfth ACM Symposium on User Interface Software and Tech-
nology, ACM Press, New York, pp. 149–158. (cited on p. 58, 59, 69)

Tolba, O., Dorsey, J. and McMillan, L. (2001). A projective drawing system, Proceed-
ings of the Sixth ACM Symposium on Interactive 3D Graphics, ACM Press, New
York, pp. 25–34. (cited on p. 58)

Usson, Y., Parazza, F., Jouk, P. S. and Michalowicz, G. (1994). Method for the study
of the three-dimensional orientation of the nuclei of myocardial cells in fetal hu-
man heart by means of confocal scanning laser microscopy, Journal of Microscopy
174(2): 101–110. (cited on p. 19)

van Gelder, A. (1998). Approximate simulation of elastic membranes by triangulated
spring meshes, Journal of Graphics Tools 3(2): 21–41. (cited on p. 34)

van Overveld, C. W. A. M. (1996). Painting gradients: Free-form surface design using
shading patterns, Proceedings of Graphics Interface 96, Canadian Human-Computer
Communications Society, Toronto, pp. 151–158. (cited on p. 90, 91, 95, 124)

van Overveld, C. W. A. M. and Wyvill, B. (1997). Polygon inflation for animated
models: A method for the extrusion of arbitrary polygon meshes, The Journal of
Visualization and Computer Animation 8(1): 3–16. (cited on p. 88)

Verstijnen, I. M., Stuyver, R., Hennessey, J. M., van Leeuwen, C. C. and Hamel, R.
(1996). Considerations for electronic idea-creation tools, Proceedings of ACM CHI
96, Vol. 2 of Short papers, ACM Press, New York, pp. 197–198. (cited on p. 106)

Walsh, R. J., Raskin, S., Sherif, M. F. and Jurjus, A. R. (2002). NetAnatomy. Web site
to teach human anatomy to students of the health professions.
http://www.netanatomy.com (cited on p. 16)

Wang, W. and Grinstein, G. G. (1993). A survey of 3D solid reconstruction from 2D
projection line drawings, Computer Graphics Forum 12(2): 137–158. (cited on p.
61)

Watson, D. F. (1997). Finding non-convex hulls, Proceedings of Geodynamics and
Ore Deposits Conference, Australian Geodynamics Cooperative Research Centre,
Ballarat, Victoria, Australia, p. 101.
http://www.agcrc.csiro.au/publications/conferences/Ballarat97/posters/watson.html
(cited on p. 97, 98)

Williams, L. (1990). 3D paint, Proceedings of the First ACM Symposium on Interac-
tive 3D Graphics, ACM Press, New York, pp. 225–234. (cited on p. 86, 88, 89, 90,
91, 95, 124)

http://www.netanatomy.com
http://www.agcrc.csiro.au/publications/conferences/Ballarat97/posters/watson.html

122 Bibliography

Williams, L. (1991). Shading in two dimensions, Proceedings of Graphics Interface 91,
Canadian Human-Computer Communications Society, Toronto, pp. 143–151. (cited
on p. 89, 90, 92, 95, 99, 100, 124)

Williams, L. (1998). Image jets, level sets, & silhouettes – visible means of support.
http://graphics.stanford.edu/workshops/ibr98/Talks/Lance/silhouettes.html (cited on
p. 91, 92, 95, 99, 124)

Williams, T., Kelley, C., Lang, R., Kotz, D., Campbell, J., Elber, G., Woo, A. and many
others (2001). gnuplot 3.7. Command-driven interactive function plotting program.
http://www.gnuplot.info (cited on p. 46)

Witkin, A. (1999a). Constrained dynamics, Proceedings of ACM SIGGRAPH 99:
Course Notes 36 – Physically Based Modeling, ACM Press, New York. (cited on p.
41)

Witkin, A. (1999b). Particle system dynamics, Proceedings of ACM SIGGRAPH 99:
Course Notes 36 – Physically Based Modeling, ACM Press, New York. (cited on p.
36, 42)

Witkin, A., Fleischer, K. and Barr, A. (1987). Energy constraints on parameterized
models, Computer Graphics 21(4): 225–232. (cited on p. 41)

Witkin, A. and Welch, W. (1990). Fast animation and control of nonrigid structures,
Computer Graphics 24(4): 243–252. (cited on p. 41)

Zeleznik, R. C., Herndon, K. P. and Hughes, J. F. (1996). SKETCH: An interface
for sketching 3D scenes, Proceedings of ACM SIGGRAPH 96, Addison-Wesley,
Boston, Massachusetts, pp. 163–170. (cited on p. 15, 63, 65, 69, 123)

Zhuang, Y. and Canny, J. (1999). Real-time and physically realistic simulation of
global deformation, Proceedings of ACM SIGGRAPH 99: Conference abstracts
and applications, ACM Press, New York, pp. 270–270. (cited on p. 26)

http://graphics.stanford.edu/workshops/ibr98/Talks/Lance/silhouettes.html
http://www.gnuplot.info

List of Figures

1.1 A cartoonist’s view of evolution . 12
1.2 The need for user-centered tools . 13

2.1 Two examples of complex anisotropic materials 19
2.2 Elasticity definitions . 22
2.3 Continuous models . 28
2.4 Discreet models . 31
2.5 Mass-spring systems drawbacks . 33
2.6 Spring forces . 37
2.7 Tetrahedral element . 37
2.8 Hexahedral element . 38
2.9 Volume conservation experiments 40
2.10 Comparison with mass-spring systems 43
2.11 Different anisotropic behaviors . 44
2.12 Validation experiments . 45
2.13 Stress-strain relationships obtained with our model 48
2.14 Multiresolution experiments . 50

3.1 A landscaping sketch . 52
3.2 Ivan Sutherland’s pioneering work 54
3.3 3D-to-3D drawing systems . 56
3.4 Direct 2D drawing . 59
3.5 Disney’s Deep Canvas (Daniels, 1999) 60
3.6 Alias|wavefront’s Maya Paint Effects 60
3.7 Results from Pugh (1992) . 61
3.8 Results from Akeo et al. (1994) . 62
3.9 Results from Eggli et al. (1995) and Lipson and Shpitalni (1996) . . . 64
3.10 Results from Zeleznik et al. (1996) 65
3.11 Results from Igarashi et al. (1999) 67
3.12 Results from Cohen et al. (2000) . 68
3.13 Solving the nearest-point-on-curve problem 71
3.14 Processing vectors of curvature . 73
3.15 Construction of a 3D stroke from a 2D stroke 74
3.16 “Textbook example”: a simple circular stroke 74

123

124 List of Figures

3.17 Stroke rendering . 76
3.18 Plane positioning . 78
3.19 Different projections using objects of the scene 79
3.20 An example of artistic illustration 80
3.21 An example of annotation in 3D . 81
3.22 Using a 3D model as a guide in clothes design 82

4.1 From low relief to high relief . 87
4.2 Painter versus sculptor shading . 87
4.3 Results from Williams (1990) . 89
4.4 Results from Williams (1991) . 90
4.5 Results from van Overveld (1996) 91
4.6 Results from Williams (1998) . 92
4.7 Results from Johnston (2002) . 93
4.8 Alias|wavefront’s Maya Artisan Sculpt Polygons Tool 94
4.9 Pixologic’s ZBrush . 94
4.10 Finding a non-convex hull . 98
4.11 Hole marks to define non-spherical topology 99
4.12 Inferring a height field . 101
4.13 Height field polygonal approximation 103

Contents

Preface 7

1 Introduction 9
1.1 User-centered Computer Graphics 9

1.1.1 A Brief History of Computer Graphics 9
1.1.2 A Simple Computer Graphics Taxonomy 10

1.2 Computer Graphics as Tool Making 12
1.2.1 Classic Ergonomics . 12
1.2.2 Creative Ergonomics . 14

1.3 Interactive Animation and Modeling by Drawing 16

2 Animating Anisotropic Elastic Materials 19
2.1 Introduction . 19
2.2 Previous Work . 21

2.2.1 Continuous Models . 21
2.2.2 Discreet Models . 29

2.3 Modeling Anisotropy . 35
2.3.1 Forces Calculations . 35
2.3.2 Application to Tetrahedral Meshes 36
2.3.3 Application to Hexahedral Meshes 38

2.4 Volume Conservation . 39
2.4.1 Tetrahedral Meshes . 39
2.4.2 Hexahedral Meshes . 40
2.4.3 Alternative Formulations . 41

2.5 Results for Hexahedral and Tetrahedral Meshes 42
2.6 Validation for Tetrahedral Meshes 45

2.6.1 Stress-Strain Relationship 45
2.6.2 Multiresolution Behavior . 47

2.7 Conclusion and Future Work . 49

3 Drawing for Illustration and Annotation in 3D 51
3.1 Introduction . 51
3.2 Previous Work . 53

125

126 Contents

3.2.1 3D-to-3D Drawing Systems 54
3.2.2 2D-to-3D Drawing Systems 57

3.3 Drawing and Rendering 3D Strokes 70
3.3.1 Local Surface Estimation from 2D Input 70
3.3.2 Rendering in 3D . 73

3.4 Interface for Drawing . 76
3.5 Applications . 79
3.6 Conclusion and Future Work . 81

4 Relief: A Modeling by Drawing Tool 85
4.1 Introduction . 85
4.2 Previous Work . 88
4.3 From 2D to 2.5D . 96

4.3.1 Finding a Non-Convex Hull 96
4.3.2 Inferring a Height Field . 99

4.4 Conclusion and Future Work . 102

5 Conclusion and Future Work 105

A What is Ergonomics? 107

B Bézier Curves and Surfaces 109

Bibliography 111

Animation interactive et modélisation par le dessin
Applications pédagogiques en médecine

La compréhension et la mémorisation de données visuelles sont une part importante de l’apprentis-
sage des étudiants en médecine. Cependant, la nature tridimensionnelle et dynamique du corps humain
pose de nombreux problèmes. Leur solution nécessite de véritables outils informatiques interactifs pour
permettre aux étudiants de créer et de manipuler des données complexes. Nous proposons dans ce but
plusieurs approches.

Tout d’abord, nous nous sommes intéressés à l’animation par modèles physiques de matériaux
élastiques anisotropes. Son utilisation pendant un cours d’anatomie physiologique du myocarde offre
la possibilité aux étudiants de construire des échantillons de tissu musculaire cardiaque. Pour atteindre
cet objectif, notre modèle présente deux caractéristiques importantes : la première est un faible coût en
temps de calcul afin atteindre un affichage interactif ; la seconde est une apparence intuitive qui facilite
son contrôle par l’utilisateur.

Ensuite, nous nous sommes intéressés à l’interaction en trois dimensions à l’aide d’interfaces bi-
dimensionnelles, en vue de l’annotation de modèles existants, ou de la création de nouveaux modèles.
Cette approche tire parti du fait que le dessin est encore considéré comme une importante méthode
d’apprentissage par certains professeurs français d’anatomie. Notre système de dessin 3D possède une
représentation des traits de l’utilisateur qui permet l’affichage d’un même dessin sous plusieurs points
de vue. Cette représentation est d’ailleurs compatible avec celle de surfaces polygonales existantes, qui
peuvent ainsi être annotées. De manière complètement différente, notre outil de modélisation par le des-
sin utilise conjointement les informations provenant de la géométrie des traits et de l’analyse de l’image
produite, afin de créer des modèles en trois dimensions sans passer par une spécification explicite de la
profondeur.

Mots-clefs : informatique graphique, dessin, animation par modèles physiques, modélisation, in-
terface.

Interactive Animation and Modeling by Drawing
Pedagogical Applications in Medicine

Medicine is a discipline where visualization is an essential component of learning. However, the
three-dimensional, dynamic structure of the human body poses difficult teaching challenges. There is
a need for truly interactive computer tools that will enable students to create and manipulate computer
models, not just watch them. We propose different approaches with that goal in mind.

We were first interested in interactive physically-based animation of anisotropic elastic materials.
One possible application scenario is an anatomy course on heart physiology where students can build
interactive samples of cardiac muscular tissue. To achieve this, our model exhibits two key features.
The first one is a low computational cost that results in high frame rates; the second one is an intuitive
system image that ensures easy control by the user.

Next, we were interested in interaction in three dimensions using two-dimensional input, either
for annotating existing models, or for creating new models; taking advantage of the fact that drawing
practice is still considered a fundamental learning method by some anatomy teachers in the French
medical school curriculum. Our 3D drawing system has a stroke representation that enables drawing
redisplay when the viewpoint changes. Moreover, this representation can be mixed freely with existing
polygonal surfaces for annotation purposes. In contrast, our modeling by drawing tool uses information
from both stroke geometry and the drawn image, to allow three-dimensional modeling without explicit
depth specification.

Keywords: computer graphics, drawing, physically based animation, modeling, interface.

Spécialité modèles et instruments en médecine et biologie
Projet iMAGIS, laboratoire GRAVIR, INRIA Rhône-Alpes

655 avenue de l’Europe, 38330 Montbonnot Saint Martin, France

	Preface
	1 Introduction
	1.1 User-centered Computer Graphics
	1.1.1 A Brief History of Computer Graphics
	1.1.2 A Simple Computer Graphics Taxonomy

	1.2 Computer Graphics as Tool Making
	1.2.1 Classic Ergonomics
	1.2.2 Creative Ergonomics

	1.3 Interactive Animation and Modeling by Drawing

	2 Animating Anisotropic Elastic Materials
	2.1 Introduction
	2.2 Previous Work
	2.2.1 Continuous Models
	2.2.2 Discreet Models

	2.3 Modeling Anisotropy
	2.3.1 Forces Calculations
	2.3.2 Application to Tetrahedral Meshes
	2.3.3 Application to Hexahedral Meshes

	2.4 Volume Conservation
	2.4.1 Tetrahedral Meshes
	2.4.2 Hexahedral Meshes
	2.4.3 Alternative Formulations

	2.5 Results for Hexahedral and Tetrahedral Meshes
	2.6 Validation for Tetrahedral Meshes
	2.6.1 Stress-Strain Relationship
	2.6.2 Multiresolution Behavior

	2.7 Conclusion and Future Work

	3 Drawing for Illustration and Annotation in 3D
	3.1 Introduction
	3.2 Previous Work
	3.2.1 3D-to-3D Drawing Systems
	3.2.2 2D-to-3D Drawing Systems

	3.3 Drawing and Rendering 3D Strokes
	3.3.1 Local Surface Estimation from 2D Input
	3.3.2 Rendering in 3D

	3.4 Interface for Drawing
	3.5 Applications
	3.6 Conclusion and Future Work

	4 Relief: A Modeling by Drawing Tool
	4.1 Introduction
	4.2 Previous Work
	4.3 From 2D to 2.5D
	4.3.1 Finding a Non-Convex Hull
	4.3.2 Inferring a Height Field

	4.4 Conclusion and Future Work

	5 Conclusion and Future Work
	A What is Ergonomics?
	B Bézier Curves and Surfaces
	Bibliography

