
Eurographics Symposium on Rendering (2006)
Tomas Akenine-Möller and Wolfgang Heidrich (Editors)

Real-time soft shadow mapping by backprojection

Gaël Guennebaud, Loïc Barthe and Mathias Paulin†

IRIT - CNRS - Université Paul Sabatier - Toulouse - France

Figure 1: A scene including alpha-textured meshes (foliage and wire netting). Left: illustration of realistic soft shadows
produced by the average of 1024 hard shadows (2.5s per frame). Right: our new soft shadow algorithm rendering the same
scene at 25 fps without any precomputation.

Abstract
We present a new real-time soft shadow algorithm using a single shadow map per light source. Therefore, our
algorithm is well suited to render both complex and dynamic scenes, and it handles all rasterizable geometries.
The key idea of our method is to use the shadow map as a simple and uniform discretized represention of the scene,
thus allowing us to generate realistic soft shadows in most cases. In particular it naturally handles occluder fusion.
Also, our algorithm deals with rectangular light sources as well as textured light sources with high precision, and
it maps well to programmable graphics hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and RealismColor, shading, shadowing, and texture

1. Introduction

Rendering realistic soft shadows in real-time is a
fundamental issue in computer graphics. In addition to
increase the realism of rendered images, they simplify the
identification of spatial relationships between objects. From
the practical point of view, point light sources generate
so-called hard shadows where a sharp transition is seen
between light and umbra. However, because most light
sources are extended (area or volume), the intensity of the
light smoothly varies from no shadow to full shadow, hence
generating soft shadows with regions of penumbra. While
rendering hard shadows only require the computation of
the visibility between two points (the shaded point and the
light), soft shadows require the complicated evaluation of

† e-mail: {guenneba | lbarthe | paulin}@irit.fr

how much the light source is visible from the shaded point,
usually expressed as a percentage of visibility.

Targeting real-time non-dedicated soft shadow rendering
applications, a well suited algorithm should exhibit the
following features:

1. handle dynamic and complex scenes in real-time,
2. be independent of both the receiver’s and the occluder’s

geometry (such as meshes, point clouds, images...),
3. generate shadows as faithful as possible to real ones.

Related work: Recent optimized techniques based on
object space silhouette detection provide approximate soft
shadows in real-time for reasonably complex scenes (such
as penumbra-wedges [AAM03, ADMAM03]). However,
in addition to some shortcomings (e.g. wrong occluders
fusion), they remain limited to manifold meshes and their
complexity increases with the scene complexity, making
both the first and the second criteria very difficult to

c© The Eurographics Association 2006.

Guennebaud et al. / Real-time soft shadow mapping by backprojection

satisfy. On the other hand, shadow maps are image based
techniques supporting any type of rasterizable geometry:
meshes, point clouds or alpha-textured models (commonly
used to represent foliage or wire netting). They are also
less sensitive to the scene complexity and for these reasons,
we focus on this second family of techniques (note that a
recent survey on real-time soft shadows can be found in
[HLHS03]).

The shadow map algorithm [Wil78] first renders a depth
map of the scene from the light source. Using this depth
map, called the shadow map, a simple depth comparison
determines which pixels of the final image are lit or
not. This inexpensive process allows the generation of
shadows from scratch at each frame at real-time rate.
Unfortunately, shadow maps also exhibit several drawbacks.
One is the aliased boundary of hard shadows when the
sampling resolution is insufficient. This problem can be
solved by increasing the effective shadow map resolution
[FFBG01, SD02, MT04, WSP04] or replaced by blur with
the percentage closer filtering technique [RSC87]. Another
fundamental issue is the limitation to hard shadows and
hence, several recent real-time soft shadow methods have
been built over the shadow map algorithm. Some require
the rendering of multiple shadow maps per light [ARHM00,
HBS00], limiting their use to static scenes only. Others,
dealing with dynamic scenes, render soft shadows from
a single light sample even though this generates well
known artifacts because only the object parts visible from
the light sample are considered as occluders. However,
in addition to this shortcoming, such existing techniques
suffer from several other important limitations. For instance,
some are limited to planar receivers [SS98] while others
improperly take into account the occluder’s shape as well
as occluder fusion [BS02], and also generate popup effects
when an originally hidden shadow appears [AHT04]. Some
hybrid methods [CD03, WH03], based on both shadow
maps and silhouette extraction, can only compute a coarse
approximation of the external penumbra parts (relatively to
the hard shadow boundaries). Image based algorithms still
have to be improved in order to provide real-time rendering
of dynamic scenes with more realistic soft shadows.

In a very recent work [AHL∗06], Atty et al. have
presented a soft shadow algorithm whith a percentage of
visibility computation based, as in our approach, on the back
projection of the shadow map samples. However, unlike
our algorithm, their method relies on a very restrictive
assumption: occluders and receivers are disjointed sets.
Moreover, they are limited to very small shadow map
resolution (they report 200×200 pixels) and because all
visibility computations are done in the discrete shadow map
space, shadows are more aliased.

Contribution: We present a new soft shadow algorithm.
Rather than limiting the use of the shadow map to
simple depth queries, we consider the shadow map as a

discretized representation of the scene, each sample being
a small potential occluder. The key idea is to use this
simplified scene representation to compute the percentage
of visibility between a scene point and the extended light
source. In order to provide real-time performance, our
algorithm uses a single shadow map per light source. Despite
this approximation, in most cases, our algorithm provides
realistic soft shadows with almost correct occluder fusion.
Moreover, it handles any type of rasterizable geometry, it
deals with both rectangular and textured light sources, and it
is easy to integrate into existing applications. The real-time
performance can be guaranteed by using modular accuracy
and finally it does not require any precomputation.

2. Our soft shadow algorithm
Even though our algorithm naturally deals with multiple
rectangular light sources and with rectangular shadow map
pixels, in order to simplify the explanations, we present the
main procedure on a single square light source of width l and
on square pixels.

Our algorithm computes for each light source a soft
visibility buffer (V-buffer) modulating diffuse and specular
lighting in the final rendering pass. The visibility buffer
stores a visibility factor νp ∈ [0,1] for each pixel of the
screen thus providing the percentage (νp ∗100) of light seen
by a single pixel: fully lit if νp = 1, in umbra if νp = 0 and
in penumbra when 0 < νp < 1.

The critical problem which our method solves is then
how to perform a fast and accurate computation of the V-
buffer. The algorithm is decomposed into two steps: first,
it computes the shadow map from the light and then, for
each pixel of the V-buffer, if its corresponding point p
is in the penumbra, its visibility factor νp is evaluated
by computing the light area occluded by a subset of the
shadow map samples. This subset of shadow map samples
is called the search area and it is denoted as A. The visibility
computations are detailed in section 2.1 while optimizations,
i.e. the penumbra classification and the selection of the
search area A, are described in section 2.2.

2.1. Visibility computation
Shadow map acquisition

The first step of the visibility buffer computation is the
acquisition of the shadow map storing linear light space
depth values. This step requires the definition of a projection
frustum (illustrated in figure 2a) having its origin at the
light source center. The near plane and its borders are taken
parallel to the light. It is at a distance n from the origin and
its width is w. The other frustum parameters can be chosen
arbitrarily or, better, dynamically adapted to the view point
in order to optimize the effective shadow map resolution.
Finally, the shadow map resolution r should be a power of
two in order to simplify the construction of a hierarchical
version (section 2.2).

c© The Eurographics Association 2006.

Guennebaud et al. / Real-time soft shadow mapping by backprojection

Figure 2: (a) Shadow map parameters. (b) Projection of a
sample onto the light source from the current point p. This
projection is clipped by the light source and the rest is the
occluded area.

Visibility pass

Given the shadow map, the goal of the visibility pass is
to compute the visibility factor νp of each visible point p
of the scene. Thus, given a point p that has to be shaded,
let (u,v) and z be respectively the coordinates (in pixels)
of its projection onto the shadow map and its light space
depth value (figure 2b). The basic algorithm for computing
its visibility factor νp is straightforward. We first assume that
this point is fully visible (νp = 1) and we remove from νp
the area occluded by every potential occluding sample stored
in the shadow map.

The area occluded by a sample of coordinates (us,vs)
and depth zs is computed as follow. Its object space
representation, i.e. a square parallel to the light and the
shadow map, is projected from the current point p onto the
light source plane (figure 2b). This projection is a rectangle
parallel to the light’s borders. Let B be its bounds in the
normalized light source space, i.e. the two-dimensional light
space scaled such that the light size is 1 (figure 2b). Thus B
is given by:

B =


ble f t
bright

bbottom
btop

 =

(us−u−1/2)
(us−u+1/2)
(vs− v−1/2)
(vs− v+1/2)

w
n∗ r

zs
z

z− zs

1
l

(1)

where, w
n∗r zs is the size of the sample in the object space

and z
z−zs

is the scale between the sample plane and the light
source plane. Finally, the intersection between the light and
the sample is given by clamping the bounds B by [−1/2,
1/2] and the normalized occluded area (bright − ble f t) ∗
(btop−bbottom) is subtracted from νp.

Figure 3: (a) Illustration of gaps and overlaps. (b)
Optimization of the search area.

Note that up to now, we consider every sample of the
shadow map with a depth value less than z as the set
of potential occluders. We show in section 2.2 how to
drastically reduce this set of samples (i.e. the search area A).

Gap filling

Owing to the discontinuous representation of the shadow
map, small overlaps and gaps may occur between samples
(as illustrated in figure 3a). In overlapping regions, some
light points are removed twice, hence generating slightly
darker penumbrae. On the other hand, in gap regions,
occluded light points are not removed and this may create
unwanted light in umbra regions (see figure 7d). Whereas
overlap errors are quite acceptable, gap artifacts have to be
removed. In order to fill the gaps, we make the assumption
that they occur between neighbor samples of the shadow
map and then we extend samples’ left and bottom boundaries
such that all occluding samples join in the two-dimensional
light space (figure 3a). Whereas the previous assumption is
true in 1D, it is not always the case in 2D because samples
are shifted in the two directions. This explains why we only
extend the samples to fill gaps and why we cannot also clip
the samples to remove overlapping. Hence, this procedure
slightly increases the overlap error, but it remains rarely
perceptible while it effectively fills the gaps. We also point
out that the overlap error may becomes large as soon as
their exist two occluders such that one is close to the light
source and the other is close to the current shaded point.
Fortunately, such extrem cases rarely occur in practice. To
summarize, for a given occluding sample (us,vs):

• compute its bounds B using equation 1,
• compute the bound b′le f t (resp. b′bottom) for its neighbor

(us−1,vs) (resp. (us,vs−1)) by adapting equation 1,
• take as final value for ble f t (resp. bbottom) the minimal

value between b′le f t and ble f t (resp. b′bottom and bbottom).

c© The Eurographics Association 2006.

Guennebaud et al. / Real-time soft shadow mapping by backprojection

Obviously, a sample is extended towards one of its neighbors
if and only if this neighbor is also a potential occluder, i.e. if
its depth is lower than the current receiver depth.

Textured light source

The method presented above uses a fast analytical
computation of the area occluded by each sample. This
method can easily be adapted to handle textured and
animated light sources (like a fire) in a similar way to that
in [AAM03]. Indeed, the four scalar values B, defining the
light region occluded by a sample, can be directly used
to index a 4D texture storing the normalized light source
color of this region. This way, we can handle any kind of
area light source. All details on this method can be found
in [AAM03]. The use of 4D textures generates discretization
artifacts and the textures are expensive to store. Since our
occluding regions are rectangular quads parallel to the light,
a dramatically lighter and more accurate alternative is to use
Summed Area Tables (SAT) [Cro84]. Textured light sources
are illustrated figure 4.

2.2. Optimizations
Significant improvements in performance can be made out
by both reducing the number of potential occluding samples
and performing the expensive penumbra calculations only
on pixels potentially in the penumbra. In practice, the second
optimization requires the first one.

In order to implement these optimizations, we first have
to build a hierarchical shadow map (HSM) storing for each
pixel both minimal and maximal depth values of occluder
samples (level 0 is just the shadow map itself). As with
mipmaps, other levels are built iteratively by reducing the
resolution by a factor two, but rather than average values,
each low level pixel stores both the minimal and maximal

Figure 4: Soft shadows from a simple textured light source.
For this example we have used the SAT option.

covered depth values. In practice, our HSM is efficiently
stored in a hardware mipmapped texture such that these
reduction steps are efficiently performed by the GPU: at each
step, the largest level is rendered into the lower one with
a trivial fragment shader performing custum minimal and
maximal operations.

Search area reduction

In order to reduce the number of potential occluding
samples, we accurately evaluate the search area A. Since
the occluding samples are inside the rectangular pyramid
formed by the light quad and the current point p, a first
coarse approximation is obtained by taking the intersection
between the near plane of the shadow map and the pyramid
(figure 3b). The subset A is then a square (or a rectangle if
the light is rectangular) of width wA = l n

w

(
1
n −

1
z

)
, centered

in (u,v) (the projection of p onto the shadow map). This
approximation can be improved in two steps. First, the top
level of the HSM gives us the minimal depth value zmin
stored in the shadow map. Thus, the pyramid can be clamped
by a plane of depth zmin (figure 3b) and the width of the new
search area becomes:

wA = l
n
w

(
1

zmin
− 1

z

)
(2)

Then, we quickly find the local min depth value z′min of the
new search area (figure 3b) by accessing the appropriate
level in the HSM (note that four texture fetches are required).
The new value of wA is computed with equation 2 using z′min
rather than zmin. This step can be repeated while the search
area is significantly reduced, but in practice, we have found
that one step is sufficient.

Penumbra classification

We want now to quickly classify potential penumbra pixels
in order to reduce the number of expensive computations
of visibility factors vp. For the current point p, once
the accurate local depth bound values z′min and z′max are
evaluated (during the search area reduction), we compare its
depth value z:

1. if z≤ z′min then the pixel is fully lit and νp = 1,
2. if z > z′max then the pixel is considered as occluded and

νp = 0,
3. otherwise the pixel is potentially in penumbra and νp

must be computed accurately.

Adaptive precision

Finally, the speed of our algorithm mainly depends on the
size in pixels of the search areas which can be important
for a very large penumbra. In terms of visual quality, large
penumbrae require less details than thinner ones. Hence,
when real-time performance requires faster computation, we
reduce the precision of large penumbrae by dynamically
selecting, for each point p, a level in the HSM so that the

c© The Eurographics Association 2006.

Guennebaud et al. / Real-time soft shadow mapping by backprojection

Figure 5: In these pictures, the frame rate has been measured with a 768×768 screen resolution. Top row: our algorithm without
adaptive precision applied with two different resolutions (left and center) compared with standard hard shadow mapping (right).
Bottom row: illustration of the adaptive precision capabilities of our algorithm for two different threshold values of the search
area (center and right). Colors in the left picture indicate the locally selected level in the HSM. Colors red, green, blue and
yellow respectively correspond to levels of resolution 1024×1024, 512×512, 256×256 and 128×128.

search area does not exceed a given size threshold (figure 5).
Therefore, for large penumbrae, rather than backprojecting
many samples of the shadow map (level 0 of the HSM), we
project fewer but larger samples from a coarser level of the
HSM. Since we cannot store any coverage information per
pixel of the HSM (coverage values depend on the receiver
depth), we simply take as sample depth zs the minimal
depth value in the selected coarse level. When the scene is
composed of large penumbra areas, this approximation leads
to small visual quality degradations that are described and
discussed in section 4.1.

3. Implementation
Our soft shadow mapping algorithm can be implemented
in several ways, depending on the application and the
hardware. Since there is no general best solution, we present
our implementation and discuss the variants.

Deferred shading like strategy

In order to be independent of the scene complexity we
use a deferred shading like strategy: at each frame, the
scene is rendered a first time from the view point without
any shading calculation but, as for the shadow map, into a
single component floating point buffer storing linear depth
values. In our implementation this depth buffer is only used

by the visibility passes to compute the V-buffers (one per
light source) and hence the whole geometry is rendered a
second time for the final rendering pass (this pass can take
advantages of early z-cull). We have opted for this approach
rather than a full deferred shading approach because it is
more flexible and it provides a better hardware anti-aliasing
support.

Dynamic branching versus multi-pass

The simplest way to compute the visibility buffer is to use
a single pass with one fragment shader performing the three
following steps:

1. compute the reduced search area (using the HSM),
2. classify the pixel as fully occluded, fully lit or in

penumbra,
3. if the pixel is in penumbra, loop over samples of the

search area and accurately compute the visibility factors.

In this case, efficient dynamic branching support in
the fragment shader stages is required to both loop over
the selected samples and avoid complex computations on
pixels outside the penumbra. However, in some hardware,
branching is expensive.

The test “in penumbra?" can be attractively substituted by
two passes taking advantage of early-z fragment rejection.

c© The Eurographics Association 2006.

Guennebaud et al. / Real-time soft shadow mapping by backprojection

(a) (b) (c) (d)

Figure 6: Our algorithm (a), is compared to a reference image (b), the penumbra wedges technique (c) and the flood fill
algorithm (d).

Basically, for each pixel, the first pass computes the reduced
search area and performs the classification (steps 1 and 2).
Accordingly, fragment depth is set such that only pixels
classified as in penumbra pass the depth test during the next
pass (first part of step 3). Then, the dynamic loops can be
replaced by static loops if we set the size of the search area.
The choice of this size directly depends on the performance
one wants to achieve: a small size leads to fast computations
but the selection of a coarse level in the HSM to evaluate
the visibility factor of large penumbrae (section 2.2) while
large size produces accurate soft shadows but requires more
expensive computations.

We have tested our algorithm on current NVidia
GPUs (GeForce 6x00 and 7x00). Due to the coarse
support of dynamic branching of these GPUs (groups of
64×64 fragments follow the same branch), it is difficult
to determine the best options since performances can
significantly vary according to the scene and the view point
position. However, after many experiments and because
the dynamic loops treat fewer samples, the two passes
approach combined with dynamic loops seems to be the
best compromise. We believe that, on GPUs having efficient
dynamic branching support, such as the latest ATI GPU
generation (X1x00) which manages small groups of 4×4
pixels, the fully dynamic version would be the best choice
in any case. Such hardware should also exhibit significantly
better relative performances.

Scene Fig. 7 Fig. 1 Fig. 8
Shadow map 1.7 2.6 8.7
Camera depth map 0.7 1.3 7.6
HSM construction 3.1 3.1 3.1
Visibility pass 1 0.9 0.9 0.9
Visibility pass 2 39 28 15
Final rendering pass 0.8 1.6 8.2
Total (ms) 46.2 37.5 43.5
fps 21.6 26.6 23

Table 1: Rendering times in ms for each step of our
algorithm when it is applied on different scenes (without
adaptive resolution).

4. Results

In this section, we present performances and visual results
followed by a short discussion on limitations. The results
presented here have been obtained with a GeForce 7800
graphics card.

4.1. Performance

Our algorithm is very efficient, especially for complex
dynamic scenes. Indeed, with respect to classical shadow
mapping algorithms, our additional visibility calculations
do not depend on the scene complexity and they are only
performed on visible points which are in or close to the
penumbra. For instance, the scene in the figure 8, composed
of 800k polygons, is rendered at about 40 fps with classical
shadow mapping and at 23 fps using our soft shadow
algorithm without adaptive resolution. The rendering times
of each part of our algorithm are summarized in the table 1
for scenes of various complexities. These results clearly
show that our visibility calculations do not depend on
the scene complexity at all, but rather on the size of the
penumbrae and the resolution of the shadow map.

In practice, the worst cases are close views on large
penumbrae with a high shadow map resolution. In such
cases, our performance can drop down to a few frames per
second at full precision. For instance, the top left picture
in figure 5 shows a simple scene rendered at 2.75 fps. The
low performance is explained by the size of the search areas
which exceed 32×32 for pixels situated in large penumbrae.
This figure also illustrates the effects of our adaptive
precision strategy (section 2.2) on both performance and
visual quality. As we can see, a threshold value setting
the maximal size of the search area at 8×8 is sufficient to
successfully meet real-time rates and this with a low visual
quality degradation. Indeed, the use of local low resolutions
still provides a high quality penumbra except at the transition
between different levels of the HSM (see the discontinuities
in the penumbra of figure 5 bottom right). Note that, even
though taking minimal depth values in the low levels of
the HSM may seem to be a coarse approximation (section
2.2), for the same speed, this approximation clearly provides
a better visual quality than reducing the resolution of the
whole shadow map (figure 5 central images).

c© The Eurographics Association 2006.

Guennebaud et al. / Real-time soft shadow mapping by backprojection

(a) (b) (c)

(d) (e)

Figure 7: (a) Our algorithm. (b) Reference image. (c) The penumbra wedges technique. (d) Our algorithm without gaps filling.
(e) The flood fill algorithm.

4.2. Visual results
In order to evaluate our visual results, we take as reference
the average of several accurate hard shadows, e.g. high
resolution hard shadow maps (2048×2048) computed from
1024 point light samples.

Figure 1 demonstrates the capability of our algorithm to
deal with binary alpha-textured meshes (wire netting and
foliage) without performance penalty and with the same
visual quality as for any other rasterizable geometry. In the
figures 6 and 7 we compare our algorithm against the famous
penumbra wedges technique [AAM03] and a recent flood
fill algorithm [AHT04] on two tedious synthetic examples.
As we can see, our algorithm correctly handles occluder
fusion when the occluders are close respectively (figure 6),
while the other methods do not. When the blend of occluders
becomes more complex (figure 7) our algorithm exhibits
darker penumbra where the samples of the shadow map
overlap too much. However, our results are still closer to the
reference than those obtained with other methods. Figure 7d
also illustrates the importance of our gaps filling method.

5. Discussion and conclusion
Our algorithm significantly improves the capability of
image-based methods to generate dynamic soft shadows
in real-time. In addition to providing all the advantages
of classical shadow maps (such as independence from the
geometry), it produces soft shadows with similar quality
to real-time silhouette extraction based techniques but
without scalability limitations. Furthermore, our algorithm
can handle textured light sources, it is easy to integrate into
applications and it does not require any precomputation.

In order to exhibit all these important features, our
technique uses some approximations. Since we use a single
shadow map, we consider as occluders only object parts
that are visible from the center of the light. However,
some hidden parts can be visible from other points of the
light. Thus these object parts should be treated as occluders
whereas they are not considered as such by our method (see
figure 9). Artifacts due to this approximation are the same
as the single silhouette artifacts of the penumbra-wedges
technique [AAM03].

Even though these artifacts are seldom perceptible, they
can be significantly reduced by splitting the light source
area as proposed in [ADMAM03] for the penumbra wedges
technique. In this case it is important to notice that, in
the case of simple scenes, almost the same performance is
obtained when n small light sources are used rather than a
single light source of the same area. Indeed, whereas the

Figure 9: Illustration of the well known single light sample
artifact. Left: reference image. Right: our algorithm.

c© The Eurographics Association 2006.

Guennebaud et al. / Real-time soft shadow mapping by backprojection

Figure 8: A scene composed of 800k polygons (screen resolution: 768×768 pixels). From left to right: reference image obtained
from the average of 1024 light samples (17s per frame), our algorithm without adaptive resolution (23 fps) and standard shadow
mapping with hardware 2×2 percentage closer filtering showing the pixels of the shadow map (40 fps).

rendering time of the shadow maps will be multiplied by
a factor of n, our visibility computations will not increase
since they are linear with respect to the light source area.

In the future we intend to increase the accuracy of our
soft shadows. This can be achieved by first removing sample
overlappings, and then improving the quality of our adaptive
precision strategy when the shadow map resolution is too
high. Also, when the local shadow map resolution is too
low, it becomes necessary to increase its effective resolution.
Hence, it could be pertinent to investigate the integration of
such existing methods for hard shadow mapping into our soft
shadow mapping algorithm.

References

[AAM03] ASSARSSON U., AKENINE-MÖLLER T.: A geometry-
based soft shadow volume algorithm using graphics hardware.
Proceedings of ACM SIGGRAPH 2003 22, 3 (2003), 511–520.

[ADMAM03] ASSARSON U., DOUGHERTY M., MOUNIER M.,
AKENINE-MÖLLER T.: An optimized soft shadow volume
algorithm with real-time performance. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware (2003), ACM Press.

[AHL∗06] ATTY L., HOLZSCHUCH N., LAPIERRE M.,
HASENFRATZ J.-M., HANSEN C., SILLION F.: Soft shadow
maps: Efficient sampling of light source visibility. Computer
Graphics Forum (2006). (to appear).

[AHT04] ARVO J., HIRVIKORPI M., TYYSTJÄRVI J.:
Approximate soft shadows using image-space flood-fill
algorithm. In Proceedings of Eurographics 2004, Computer
Graphics Forum (2004), vol. 23, pp. 271–280.

[ARHM00] AGRAWALA M., RAMAMOORTHI R., HEIRICH A.,
MOLL L.: Efficient image-based methods for rendering soft
shadows. In Proceedings of ACM SIGGRAPH 2000 (2000),
ACM Press, pp. 375–384.

[BS02] BRABEC S., SEIDEL H.-P.: Single sample soft shadows
using depth maps. In Proceedings of Graphics Interface (2002).

[CD03] CHAN E., DURAND F.: Rendering fake soft shadows
with smoothies. In Proceedings of the 14th Eurographics

workshop on Rendering (2003), Eurographics Association,
pp. 208–218.

[Cro84] CROW F. C.: Summed-area tables for texture mapping.
In Proceedings of ACM SIGGRAPH ’84 (New York, NY, USA,
1984), ACM Press, pp. 207–212.

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K.,
GREENBERG D. P.: Adaptive shadow maps. In Proceedings
of ACM SIGGRAPH 2001 (New York, NY, USA, 2001), ACM
Press, pp. 387–390.

[HBS00] HEIDRICH W., BRABEC S., SEIDEL H.-P.: Soft
shadow maps for linear lights high-quality. In Rendering
Techniques ’00 (Proceedings of the 11th EG Workshop on
Rendering (2000), Eurographics Association, pp. 269–280.

[HLHS03] HASENFRATZ J.-M., LAPIERRE M., HOLZSCHUH

N., SILLION F.: A survey of real-time soft shadows algorithms.
Computer Graphics Forum 22, 4 (2003).

[MT04] MARTIN T., TAN T.-S.: Anti-aliasing and continuity
with trapezoidal shadow maps. In Proceedings of the 15th EG
Symposium on Rendering (2004), Eurographics Association.

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.:
Rendering antialiased shadows with depth maps. In Proceedings
of SIGGRAPH ’87 (New York, NY, USA, 1987), ACM Press,
pp. 283–291.

[SD02] STAMMINGER M., DRETTAKIS G.: Perspective shadow
maps. In Proceedings of ACM SIGGRAPH ’02 (New York, NY,
USA, 2002), ACM Press, pp. 557–562.

[SS98] SOLER C., SILLION F. X.: Fast calculation of soft shadow
textures using convolution. In Proceedings of ACM SIGGRAPH
’98 (New York, NY, USA, 1998), ACM Press, pp. 321–332.

[WH03] WYMAN C., HANSEN C.: Penumbra maps:
Approximate soft shadows in real-time. In Proceedings
of the 14th Eurographics workshop on Rendering (2003),
Eurographics, Eurographics Association, pp. 202–207.

[Wil78] WILLIAMS L.: Casting curved shadows on curved
surfaces. In Proceedings of ACM SIGGRAPH ’78 (New York,
NY, USA, 1978), ACM Press, pp. 270–274.

[WSP04] WIMMER M., SCHERZER D., PURGATHOFER W.:
Light space perspective shadow maps. In Proceedings of the 15th
EG Symposium on Rendering (2004), Eurographics Association.

c© The Eurographics Association 2006.

