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Flat acceleration.

Motivations

What is it about?

Symbolic model-checking
@ extends model-checking to infinite systems,

@ many techniques and tools

Problem of convergence
@ theory: often undecidable

@ practice: the iterative fixpoint computation is not sufficient.

Acceleration

@ methods to enhance convergence, mainly by computing the
transitive closure of some part of the system.

@ promising case-studies

@ BUT (too many!) different techniques and different tools.



Flat acceleration.

Motivations

What is it about?

Toward a unification of acceleration techniques )

1. General framework for symbolic model-checking with
acceleration, encompassing most existing techniques.

2. We identify three main levels for acceleration techniques (/loop,
flat, and global). For each one:
@ a symbolic procedure computing reachability sets

@ characterization of the class of systems on which it terminates.

3. Several algorithmic/heuristic improvements for flat acceleration.



Flat acceleration.

Motivations

What is it about?

Unification and clarification of previous works in the field.

@ common theoretical background justifying existing tools
(ALv, LasH, Fast, TREX)

@ meaningful comparisons of techniques and tools.

@ guidelines to improve or design from scratch symbolic model
checkers with acceleration.




Flat acceleration.

Motivations

Context

(]

We do not check programs but mathematical models.

@ Automata extended with a finite number of variables.

@ Many applications.

@ Communication @ VASS/Petri Nets,
protocols, @ Timed Automata,

@ Embedded systems, @ Hybrid systems,

(]

Program abstractions, ... o (lossy) CFSMs, ...




Flat acceleration.

Motivations

Systems

Systems S = (X, Q, T, D, [])

@ an infinite set of formulas X,

@ a finite labeled control structure

o finite set @ of locations
o finite set of transitions T C Q@ X ¥ X Q.

@ an interpretation of formulas / = (X, D, [])

& a domain of interpretation D,
@ an interpretation function [-] : £ — 2P*P




Flat acceleration.

Motivations

Systems

Ex: Counter Systems

1-3> = linear assignments, linear
inequalities on variables x, y.
2-D = N?

3] “x>07? x—x+2" —
{6y, Xy )Ix > 0AX = x+2Ay" =y}

x>0? x—x+2

X—XxX—y x> y?
x—x+1

y—y+1




Flat acceleration.

Motivations

Systems

Ex: Channel Systems
1->¥ = ?a or la with a € {0,1, A0, A1}.
2- D = (0,1)* x (A0, A1)*

3[]: “1a1" —
{((wl,w2),(wl, Al w2))}




Flat acceleration.

Motivations

Systems - semantics

Transition system, reachability set

@ configuration ¢ = (q,d) € @ x D
o (q,d) 2 (g, d) iff (d, o) € [1]

0 t; i t)
o ¢’ epost*(c)iffc B =... 5.

@ post*(cp) is the reachability set from cp.

Safety properties = properties on reachable configurations.
@ interesting: mutual exclusion, deadlock freedom, ...

@ can be checked easily from the reachability set.

@ we focus on the computation of post*(cp)
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lterative computation of post™(c)
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Motivations

lterative computation of post*(c)




Flat acceleration.

Motivations

Comments

Works well for systems with a finite number of configurations.

Problem in the infinite case
@ the state space is infinite.
@ enumerating concrete configurations cannot be sufficient.

@ Manipulate symbolic configurations (regions) x € L encoding
(infinite) sets of configurations.

@ Symbolic representations must at least provide symbolic
operations for post, U, C (denoted POST, LI, )

@ Depends heavily on the underlying interpretation (X, D, [-]).
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Motivations

Symbolic iterative computation of post*(c)

procedure REACH1(xo)

parameters: S

input: initial region xg € L
1. x «— Xp

: while post(x) Z x do
3:  x« post(x)Ux

4: end while

5: return x

N




Flat acceleration.

Motivations

Symbolic framework

Symbolic framework

A symbolic framework SF = (X, D, [-];, L, [],)

e | =(X,D,[];) is an interpretation,

o L is a set of formulas called regions,

o [],: L— 2P is a region concretization,
such that there exist a decidable relation C and recursive functions
LI, POST satisfying

© there exists an element L€ L such that [L], = 0.

Q x1 C xp iff [x1], C [x2],.

Q [x1Ux2], = [xa], U [x2],-

Q Va e X, [post(a,x)], = [a]; ([x],)-




Flat acceleration.

Motivations

Symbolic framework - Examples

Ex: Counter Systems

1-> = linear assignments, linear
inequalities on variables x, y. x> 07 x — x+2
2-D = N?
[y *x>07 x —x+2" —
Gy Xy )Ix 2 0AX =x+2Ay' =y} |, R
4-1 = Presburger formulas over free
variables x, y
5-[-],: the corresponding semi-linear set Q
over N2 AT

' y—y+1

6-POST, LI, C: corresponding operations
on Presburger formulas




Flat acceleration.

Motivations

Symbolic framework - Examples

Ex: Channel Systems

1-¥ = ?a or la with a € {0,1, A0, A1}.
2- D = (0,1)* x (A0, A1)*

3-[]: 'A1 — {((wl, w2),(wl, Al - w2))}
4-1 = regexp({0, 1, A0, AL, #})

5-[-],: the corresponding language as
channel content (# separates queues).

6-POST, LI, C: corresponding operations on
regular expressions




Flat acceleration.

Motivations

Symbolic framework - Examples

]
]
]
]
]
]
]

Counter systems: CST, NDD

Timed automata: Difference Bound Matrices
Hybrid systems: Convex polyhedra, RVAs, ~ PDBM
CFSM: QDD, CQDD, SLRE

lossy CFSM: SRE

Token ring of arbitrary size: APC.

Pushdown systems: regular expressions.



Flat acceleration.

Motivations

Limits of the iterative symbolic computation

O Given a symbolic framework (/, L) and an initial region xo,
then it may be the case that post*([xo]) & L.

@ Even for systems for which post*([xo]]) € L, REACH1 does not
often converge (e.g. timed automata or pushdown).

© Practical termination is limited to very specific systems.
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Outline

@ Motivations
@ Beyond iterative computation: Acceleration
© Flat acceleration in depth

© Framework of flat acceleration, applications

@ Conclusion
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Beyond iterative computation: Acceleration

Notion of acceleration

Acceleration

Enhance convergence of the iterative procedure by computing
directly the infinite iteration of some transitions of the system.

If x>0 then x «+ x +2

o

/

If cg = {0} then



Flat acceleration.

Beyond iterative computation: Acceleration

Notion of acceleration

Acceleration

Enhance convergence of the iterative procedure by computing
directly the infinite iteration of some transitions of the system.

If x>0 then x «+ x +2

o

/
If co = {0} then post*(cp) = 2.N in one step.
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Beyond iterative computation: Acceleration

Notion of acceleration

Acceleration

Enhance convergence of the iterative procedure by computing
directly the infinite iteration of some transitions of the system.

?a, b

o

/

If cg = a* then
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Beyond iterative computation: Acceleration

Notion of acceleration

Acceleration

Enhance convergence of the iterative procedure by computing
directly the infinite iteration of some transitions of the system.

?a, b

_/
=a“-b

*

If ¢ = a* then post™(¢p) in one step.
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Beyond iterative computation: Acceleration

Different levels of acceleration

tl: x > 0? x «— x+2

Loop acceleration

.- . t3: x > y?
Compute the transitive closure of simple | 4. x — x

loops of the control graph.

y
Here: t1* and t2*. Q

t2: x —x+1
y—y+l1
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Beyond iterative computation: Acceleration

Different levels of acceleration

tl: x > 0? x «— x+2

Flat acceleration

ong x> y?
Compute the transitive closure of any el t3: x > y7

circuit of the control graph.

Here: t1* and t2*, but also (3 - t4)* Q

t2: x —x+1
y—y+l1
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Beyond iterative computation: Acceleration

Different levels of acceleration

tl: x > 0? x «— x+2

Global acceleration

Compute the transitive closure of any 3 x> y?
regular language over transitions. th x — x

Here: t1%, t2%, (t1-t3-t2- t4)* but also

y
(t1* - t3 - t2* - t4)* Q

t2: x —x+1
y—y+l1




Flat acceleration.

Beyond iterative computation: Acceleration

Formal definition

Different levels of acceleration

A symbolic framework SF supports

© loop acceleration if there exists a recursive function
POST_STAR : 2 X L — L such that Vae ¥, Vx € L,
[PosT_sTAR(a,x)] = [a]” ([x]);

@ flat acceleration if there exists a recursive function
POST_STAR : 2* X L — L such that V@ € ©*, Vx € L,
[PosT_sTAR(m, x)] = [=]" ([x]);

© global acceleration if there exists a recursive function
POST_STAR : RegExp(X) x L — L such that for any regular
expression a over ¥, for any x € L,

[POST_STAR(a, x)] = [a] ([x])-




Beyond iterative computation: Acceleration

In practice

Loop acceleration

timed automata,

Minsky machines,

°
°

@ (lossy) cfsm,
@ linear counter systems (with finite monoid),
°
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Beyond iterative computation: Acceleration

In practice

Flat acceleration
@ linear counter systems (with finite monoid) equipped with
Presburger formulas [Boigelot, Finkel-Leroux].
o CFSM with CQDD [Bouajjani-Habermehl'99],

@ non-counting CFSMs equipped with SLRE [FPS-1C03] or
QDD [BGWW-SAS97],

@ lossy CFSMs equipped with sre [ABJ-2000].
@ ~ Restricted counter systems with arithmetics [AAB-SPINOO].
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Beyond iterative computation: Acceleration

In practice

Global acceleration

pushdown systems with regular languages

timed automata [Comon-Jurski'99]

Reversal-counter systems [Ibarra2002] with Presburger
formulas,

2-dim VASS [Leroux-Sutre'04], lossy VASS and other
subclasses of VASS with Presburger formulas [LS],

@ semi-commutative rewriting systems with APC
[Bouajjani-Muscholl-Touilli].

(]
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Beyond iterative computation: Acceleration

Comments

@ Acceleration appears to be a well-spread notion in symbolic
model-checking.

@ Given a symbolic framework, Global = Flat = Loop.

@ Loop acceleration: easy to obtain, but rarely sufficient to lead
to fixpoint computation.

o Flat acceleration is more flexible, but requires good
compositional properties of ¥, and often complex
constructions for POST_STAR.

o Global acceleration is a very strong property, ensuring the
effective computation of post*([x]) for any x € L.



Beyond iterative computation: Acceleration

Comments

For Turing powerful systems, global acceleration is not available.
Then flat acceleration seems to be the best compromise.
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© Motivations
© Beyond iterative computation: Acceleration
© Flat acceleration in depth

@ Framework of flat acceleration, applications

© Conclusion
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Flat acceleration in depth

Flat systems

For which systems does flat acceleration ensure convergence?

A system is flat iff the control graph has no nested loop. J

tl: x > 07 x —x+2

20 x —x+1
ql @Q ye—y+i

t3: x > y?




Flat acceleration.

Flat acceleration in depth

Flat systems

For which systems does flat acceleration ensure convergence?

A system is flat iff the control graph has no nested loop. )

tl: x> 0? x «—x+2

t2: x —x+1
%qlé @Q ye—y+1

t3: x > y?

Reachability set computation
({x=0Ay=0},q1) — ({Elkx—2k/\y—0} ql)
({3k,x = 2k Ay = 0}, q2) == ({30,3k,x = 2k+0 Ay = 0}, q2)
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Flat acceleration in depth

Flat systems

For which systems does flat acceleration ensure convergence?

A system is flat iff the control graph has no nested loop. J

tl: x> 0?7 x —x+2

2 x «—x+1
ql @Q yey+1

t3: x > y?

Given a symbolic framework (/, L) supporting flat acceleration, if S
is flat then for all xg € L, post*([xo]) is effectively definable in L.
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Flat acceleration in depth

Flattening

The issue is to deal with a non flat system S.

Remark that if

©Q we know a flat system S’ such that S and S’ are equivalent
w.r.t. reachability, and

@ we can compute post(c) from post, (c)

Then we can compute easily posts(c).

A way to achieve these conditions is to consider flattenings (=~
unfoldings) of S.
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Flat acceleration in depth

Flattening - 2

tl: x > 07 x «— x+2

t2: x —x+1
y—y+1




Flat acceleration.

Flattening

S'=(Q,x, T',D,[]) is a flattening of S = (Q, %, T, D, [-]) if
Q S isflat
@ there is a mapping z : Q" — Q such that ¥(q1,w, q) € T/,
(z(q1),w,z(q2)) € T.

>

flattable

A system S = (Q,X, T, D, []) is L-forward flattable iff for any
x € L, there exists a flattening S’ = (Q', X, T', D, [-]) of S and
x’ € L such that S and S’ are equivalent w.r.t. reachability.

Let S be a L-forward flattable system supporting flat acceleration.
Then post*([x]) is effectively L-definable.
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Flat acceleration in depth

Flattable systems everywhere!!

?A0
?AL1

O

?AL 2A0

—

—

20
?1 A1

a=u

1 A0 71 20
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Flat acceleration in depth

Flattable systems everywhere!!

TimeOut

Sender

init transmission ?A1

first message

- 0000 -

7 A0

last message
end transmission

- EEEEE -

TimeOut
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Flat acceleration in depth

Flattable systems everywhere!!

d1<C1 & C1+C0-2d0>0 /
dl++, Cp++

d<CW/d++Cp++  Cp=N/
Cp=0,d=0,dF=0

d1<C1 & C1+C0-2d0<=0/
Cl—m dF++ CF++,Cpi+

/ CF=0,CW=N,Cp=0 dF<CF/

d=0.dF= dF++, Cptt

d0<C0 & C1+C0-2d1>0/

Nw‘ Cp++

d0<C0 & C1+C0-2d1<=0/
CO--,dF++,CF++,Cp++

init

/C1>=0, C0>=0,
C1+C0=CW, d1=1,d0=0,
dF=0,Cp=1

dF<CF / dF++,Cp++

Cp=N/
CW=C1+C0,Cp=0, dF<CF/
d=0,dF=0 dF++Cpt+ Cp=N/ d1=0,d0=0,dF=0,Cp=0

d1<C1 & C1>C0/
Cp=N & !(C1=0) & !(C0=0) / d1++Cpt+
1=0,d0=0,dF=0,Cp=0

d1<C1 & C1<=C0/
Cl—- CF++,dF++,Cpt+

d0<C0 & C0<=C1/
CO--, CF++, dF++,Cpt+

d0<C0 & CO>C1/
d0++ Cp+
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Flat acceleration in depth

Flattable systems everywhere!!

More generally

@ timed automata [Comon-Jurski'99],

@ 2-dim VASS [Leroux-Sutre'04], lossy VASS and other
subclasses of VASS, k-reversal counter machines [to appear]

@ WSTS (backward from upward closed sets)

@ most successful case-studies from ALv, FAsT, LasH, TREX,
and so on.

@ "“Is a system S flattable?” is undecidable

@ For some systems S, post*(cp) is L-definable for all ¢g, but S
is still not flattable (lossy channels).
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Flat acceleration in depth

Procedure

Procedure for flattable systems:
© enumerate all flattenings S’ of S
@ compute post,(c’), test if it is the fixpoint of S

@ yes: return
@ no: goto 1

Flattenings are not very easy to manipulate.
A restricted regular linear expression over ¥ is a regular expression

of the form wyw;j ... w;, where w; € L.

A system S = (Q,X, T, D, [-]) is L-forward flattable iff for all
x € L, there exists a rlre p over T such that
post*([x]) = post(p, [x]) (computable with flat acceleration).
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Flat acceleration in depth

Procedure - 2

procedure REACH2(x0)
input: xg € L
1: X « Xg
2: while PosT(x) IZ x do
3:  Choose fairly w € T*
4: X < POST_STAR(w, x)
5. end while
6: return x

© When REACH?2 terminates, [REACH2(x¢)]] = post*([xo])
(partial correction).

© REACH2 terminates on any input iff S is L-forward flattable
(termination).
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Flat acceleration in depth

Refinements

procedure REACH3(x0)
parameters: S, L
input: xg € L
X—x0; k— 0
k— k+1
start
while PosT(x) [Z x do /* k-flattable */
Choose fairly w € T=k
X < POST_STAR(w, x)
end while /* end k-flattable */
with
when Watchdog stops goto 2
return x

@I HPNWE

| =
Q
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Flat acceleration in depth

Refinements -2

REACH3 still correct and complete for flattable systems. )

Technical issues:
@ implementation of Choose

@ implementation of Watchdog

Still a problem: cardinal of T=k. Adapt reduction techniques
[Finkel-Leroux 2002].
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Flat acceleration in depth

Refinements -2

Reduction
Replace T<K by T] such that
@ equivalent w.r.t. reachability. post*(T=K) = post*(T})

o flat acceleration can still be performed on T,

@ |T,| is much smaller than |T§k|
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Flat acceleration in depth

Refinements -2

Example: reduction technique of FAST [Finkel-Leroux 2002].
@ apply to finite monoid linear systems
@ ¢17 x' « f(x) and ®2? x’ « f(x): transform into
D1 VD7 X — f(x).

® |T,| is polynomial in k.

@ acceleration of particular nested loops.

@ go outside strict flat acceleration.
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Framework of flat acceleration, application

Framework

© S closed enough to the
@ asystem S real world?
@ a symbolic framework @ post*(cg) not
(1,L) representable in L
© an acceleration function © post*(cp) not
© a procedure to find cycles computable through
acceleration
Q practical (time, memory)
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Framework of flat acceleration, application
LApplications

Comparison of techniques/tools

Avrv, FAST, LAasH and TREX are very close tools designed to
compute reachability sets of counter systems.

ALv [ Lasa | Fast TREX
system full linear restricted
symbolic fram. | Presburger (automata) Avrith.

(undec. C)
acceleration no flat flat

(partial. rec.)
termination O-F [ 1.F | F k-F (+ oracle C)

F: flattable systems.
k-F: flattable using elementary cycles of length < k.
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Framework of flat acceleration, application

L Applications

System Arv | LasH | FasT
TTP no yes | yes (1)
prod/cons (2) no yes | yes (1)
prod/cons (N) | no no yes (2)
lift control, N no no yes (2)
train no no yes (2)
consistency no no yes (3)
CSM, N no no yes (2)
PNCSA no no no

IncDec no no no

BigJAVA no no no

forward computation
yes =termination within 1200 seconds.

Experiments are closely related with the comparison through our
framework.
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Framework of flat acceleration, application

LApplications

Improvement of existing tools

TREX for lossy channels
@ system: lossy channels systems (?read, lwrite)
@ symbolic framework: SRE ((a+¢)-(a+b+c)*+...)
@ flat acceleration

@ procedure: search cycles of length < k (k statically defined)

Propositions to improve TREX

TREX respects almost all the flat acceleration framework.

@ increase k dynamically to have a complete heuristics,

@ adapt reduction techniques to reduce the number of cycles
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Conclusion

Conclusion (1)

@ A generic framework for acceleration

@ Three levels of acceleration (loop, flat, global). For each case,
@ characterization of termination
@ complete procedure to compute post*(cy) when feasible

@ Refinements for flat acceleration

& heuristic
¢ algorithmic
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Conclusion

Conclusion (2)

Accelerated symbolic model-checking

@ Acceleration is a central issue in infinite model-checking.

@ Flat acceleration is a good compromise: most usual systems
support it, many subclasses are flattable, and many successful
case-studies exist (FAsT, LasH, TREX).

Framework for flat acceleration

A generic framework for acceleration in 4 key points

@ clarify and unify existing work
@ meaningful comparison of techniques/tools
@ guidelines to build new tools or improve existing ones.

@ given a symbolic framework and a flat acceleration we provide
an efficient heuristic, complete for flattable systems.
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