

Persée Mai 2005 Peter Habermehl

Abstract Regular Model Checking and application to programs

over lists

with Ahmed BOUAJJANI, Pierre MORO, Tomas VOJNAR (TU Brno)

Peter Habermehl
LIAFA, University Paris 7

May 23rd, 2005

1

Persée Mai 2005 Peter Habermehl

Introduction

• Regular model checking

• Modeling programs with 1-selector-linked structures

– lists, circular lists, lists with sharing

• Applying abstract regular model checking

• Experimental results

• Conclusion and perspectives

2

Persée Mai 2005 Peter Habermehl

Regular model checking

[Pnueli & al. 97], [Fribourg & al. 97], [Wolper, Boigelot, 98], [Bouajjani & al. 00]

• Configurations of systems are modeled as words over a finite alphabet Σ.

• Finite automata A over Σ represent (infinite) regular sets of words (configurations)

– Init: set of initial configurations
– Bad: set of bad configurations

• Transitions are modeled by a transducer τ (automata over Σ × Σ).

3

Persée Mai 2005 Peter Habermehl

Regular model checking

• A lot of infinite-state systems can be encoded in this way:

– (Lossy) FIFO-channel systems, Push-down automata
– Counter machines
– Parameterised systems (parameterised number of identical components)
– Programs over lists (with sharing)
– Using trees: More general systems

• Given Init and τ

• Reachable configurations in n steps: τn(Init)

• τ∗(Init) :=
⋃

∞

k=0 τk(Init) (not necessarily regular)

4

Persée Mai 2005 Peter Habermehl

Regular model checking

• Basic model-checking problem : τ ∗(Init) ∩ Bad = ∅ ?

• Several approaches exist
[Abdulla, Boigelot, Bouajjani, Jonsson, Legay, Nilsson, d’Orso, Pnueli, Touili, Wolper,...]

• Calculating exact reachability sets or relations

– Special classes of systems or transitions where τ ∗ can be calculated
– General methods:
∗ quotienting of iterated transducers
∗ extrapolation of automata

• Calculating overapproximations of τ ∗(Init) (invariants of τ)

– Inference of regular languages [H., Vojnar 04]
– Abstract regular model-checking [Bouajjani, H., Vojnar 04]
∗ Applying the abstract-check-refine paradigm
∗ Abstraction of automata representing configurations

5

Persée Mai 2005 Peter Habermehl

Applying the abstract regular model-checking framework to

programs with 1-selector-linked structures

• Encoding of configurations (stores) as words

– similar to encoding of PALE [Jensen, Jorgensen, Klarlund, Schwartzbach 97]

• Encoding of program statements as transducers

• Adapting the existing abstraction schemata

• Advantages

– Automatic verification
– Automatic loop invariant generation

6

Persée Mai 2005 Peter Habermehl

From programs to transducers

Example C-like program – reversing a list

• reverses a list pointed to by l

• Data is abstracted (finite domains can be handled)

List x, y, l;
1: x = null;
2: while (l != null) {
3: y = l → next;
4: l → next = x;
5: x = l;
6: l = y; }
7: l = x;
8: // end of program

7

Persée Mai 2005 Peter Habermehl

Example

1: x = null;
2: while (l != null) {
3: y = l → next;
4: l → next = x;
5: x = l;
6: l = y; }
7: l = x;

1 | xy | | l →→→→→→ ⊥ |

8

Persée Mai 2005 Peter Habermehl

Example

1: x = null;
2: while (l != null) {
3: y = l → next;
4: l → next = x;
5: x = l;
6: l = y; }
7: l = x;

1 | xy | | l →→→→→→ ⊥ |
2 | y | x | l →→→→→→ ⊥ |

9

Persée Mai 2005 Peter Habermehl

Example

1: x = null

2: while (l != null) {
3: y = l → next;
4: l → next = x;
5: x = l;
6: l = y; }
7: l = x;

1 | xy | | l →→→→→→ ⊥ |
2 | y | x | l →→→→→→ ⊥ |
3 | y | x | l →→→→→→ ⊥ |
4 | | x | l → y →→→→→ ⊥ |
5 | | x | l → ⊥ | y →→→→→ ⊥ |
6 | | | xl → ⊥ | y →→→→→ ⊥ |
2 | | | x → ⊥ | ly →→→→→ ⊥ |

etc.

10

Persée Mai 2005 Peter Habermehl

Example

1: x = null

2: while (l != null) {
3: y = l → next;
4: l → next = x;
5: x = l;
6: l = y; }
7: l = x;

3 | | | x →→→ ⊥ | ly →→→ ⊥ |

11

Persée Mai 2005 Peter Habermehl

Example

1: x = null

2: while (l != null) {
3: y = l → next;
4: l → next = x;
5: x = l;
6: l = y; }
7: l = x;

3 | | | x →→→ ⊥ | ly →→→ ⊥ |
4 | | | x →→→ ⊥ | l → y →→ ⊥ |

12

Persée Mai 2005 Peter Habermehl

Example

1: x = null

2: while (l != null) {
3: y = l → next;
4: l → next = x;
5: x = l;
6: l = y; }
7: l = x;

3 | | | x →→→ ⊥ | ly →→→ ⊥ |
4 | | | x →→→ ⊥ | l→y →→ ⊥ |

13

Persée Mai 2005 Peter Habermehl

Example

1: x = null

2: while (l != null) {
3: y = l → next;
4: l → next = x;
5: x = l;
6: l = y; }
7: l = x;

3 | | | x →→→ ⊥ | ly →→→ ⊥ |
4 | | | x →→→ ⊥ | l→y →→ ⊥ |
5 | | | xmt →→→ ⊥ | l→ mf | y →→ ⊥ |

14

Persée Mai 2005 Peter Habermehl

Example

1: x = null

2: while (l != null) {
3: y = l → next;
4: l → next = x;
5: x = l;
6: l = y; }
7: l = x;

3 | | | x →→→ ⊥ | ly →→→ ⊥ |
4 | | | x →→→ ⊥ | l→y →→ ⊥ |
5 | | | xmt →→→ ⊥ | l→ mf | y →→ ⊥ |
5 | | | l → x →→→ ⊥ | y →→ ⊥ |

15

Persée Mai 2005 Peter Habermehl

Example

1: x = null

2: while (l != null) {
3: y = l → next;
4: l → next = x;
5: x = l;
6: l = y; }
7: l = x;

3 | | | x →→→ ⊥ | ly →→→ ⊥ |
4 | | | x →→→ ⊥ | l → y →→ ⊥ |
5 | | | xmt →→→ ⊥ | l → mf | y →→ ⊥ |
5 | | | l → x →→→ ⊥ | y →→ ⊥ |

etc.

8 | | y | xl →→→→→→ ⊥

16

Persée Mai 2005 Peter Habermehl

Sets of configurations

• The set of initial configurations

Init = (1 | xy | | l →→∗ ⊥ |)

• The set of reachable configurations at line 8 is given by

τ∗(Init) = (8 | | y | xl →→∗ ⊥ |)

• A loop invariant

(2 | y | x | l →→∗ ⊥ |)+(2 | | yl | x →→∗ ⊥ |)+(2 | | | x →→∗ ⊥ | ly →→∗ ⊥ |)

17

Persée Mai 2005 Peter Habermehl

Properties checked

• Basic properties

– No garbage is created
– No null pointer dereference
– The result is a list

• more complex properties

– The list is really reversed
– l →∗ fst → snd →∗→ ⊥ leads to l →∗ snd → fst →∗→ ⊥

18

Persée Mai 2005 Peter Habermehl

Using markers for shared (or circular) lists

p2

p1

p3

• The store can contain shared parts and cycles

• Property: a store with k pointer variables without garbage can be encoded with
at most k pairs of markers.
here : p1 →→→ nt → mt →→→→→ ht → mf | p2 →→→ nf | p3 →→→ hf

• We fix a number of markers : A configuration contains the set of unused markers

• Available pairs of markers are used “on demand” by the transducer

• If no pair of markers is available, a pair is eliminated if possible

19

Persée Mai 2005 Peter Habermehl

Elimination of a pair of markers

Example
| y mt →→ · · · → ⊥ | x →→ · · · → mf | is changed to
| x →→ · · · → y →→ · · · → ⊥

• Involves shifting of parts words of arbitrary size

• Non-regular relation: can not be described as the application of one transducer

• But shifting of one symbol can be done with a transducer

• Transitive closure of this transducer on an input set realizes the shifting.

20

Persée Mai 2005 Peter Habermehl

Encoding program statements as transducers

Automatic translation from program statements to transducers

• free, new

• Tests x == y and x == null

• Assignments x = null and x = y

• Assignment y = x → next

• Assignment x → next = y

– realized using a new pair of markers if available
– If no pair of markers is available, a pair is eliminated (if possible)

21

Persée Mai 2005 Peter Habermehl

Abstract regular model-checking [04]

• τ∗(Init) ∩ Bad = ∅ ?

• Define a finite-range abstraction function α on automata

• Compute iteratively (α ◦ τ)∗(Init),

• If (α ◦ τ)∗(Init) ∩ Bad = ∅ then answer YES

• Otherwise, let θ be the computed symbolic path from Init to Bad,

• Check if θ includes a concrete counterexample,

– If yes, then answer NO,

– Otherwise, define a refinement of α which excludes θ, and redo computation

22

Persée Mai 2005 Peter Habermehl

Abstractions

• In earlier work [CAV 04] we have defined representation-oriented abstractions

– define a (finite index) equivalence relation on states of automata representing
configurations
∗ Equivalence based on languages of words up to finite length
∗ Equivalence based on same status wrt “predicate” automata

– collapse equivalent states

23

Persée Mai 2005 Peter Habermehl

Example finite-length abstraction

with words up to length 3

0

0

1

1

1

0 1

0

1

00

24

Persée Mai 2005 Peter Habermehl

Example predicate abstraction

1

1

1

1

0

1

00

0 0

1 1

p q r

q

0
q

0
q

0

q p,r

25

Persée Mai 2005 Peter Habermehl

New abstractions

• Here, we propose configuration-oriented abstractions

– defined on configurations
– piecewise 0-k counter abstractions
– Closure abstractions

26

Persée Mai 2005 Peter Habermehl

Piecewise 0-k counter abstractions

• Let S be the set of strong symbols: they have a bounded number of occurrences
in every word (e.g., separators, markers, pointer variables).

• Given a word w, consider its decomposition according to strong symbols:

w = w0s1w1s2w2 · · · snwn

where si ∈ S and wi ∈ (Σ \ S)∗.

• For k ∈ N
>0, define the relation αk such that, for every word w:

αk(w) = L0s1L1s2L2 · · · snLn

where Li = {u ∈ (Σ \ S)∗ : ∀a ∈ Σ \ S.|wi|a < k and |u|a = |wi|a, or
|wi|a ≥ k and |u|a ≥ k}

• The relation αk is regular (definable by a finite transducer) and finite range.

27

Persée Mai 2005 Peter Habermehl

Closure abstractions

• Given u ∈ Σ+, and k ∈ N
>0, define an extrapolation relation:

R(u,k) = {(w, w′) : w = u1u
ku2 and w′ = u1u

ku∗u2}

• R an extrapolation relation and L a regular set ⇒ R∗(L) is regular.

• An extrapolation system is a finite union of extrapolation relations.

– Let ≺ ⊆ Σ∗ × Σ∗ such that:
∗ u is not a factor of v (i.e., u does not appear as a subword of v),
∗ u cannot be written as w1v

pw2 for any p ∈ N, and two words w1, w2

such that w1 is a suffix of v and w2 is a prefix of v.
– ∀u, v ∈ Σ∗, if u ≺ v then ∀p ≥ 0.∀w1, w2 ∈ Σ∗.vp 6= w1uw2.
– Let R = R(u1,k1)∪· · ·∪R(un,kn). R is serialisable if the reflexive-transitive

closure of ≺ is a partial ordering on the set {uk1
1 , . . . , ukn

n }.
– Let i1, i2, . . . , in be a total ordering compatible with ≺.

Then R∗ = R∗

(uin,kin) ◦ · · · ◦ R∗

(ui1
,ki1

).

28

Persée Mai 2005 Peter Habermehl

Experimental results

using new abstractions (up to 100 times faster)

Program Markers |M |max
st.+tr. Tsec

Reverse, basic consistency 0 51+105 0.3
Reverse, full 0 281+369 4.2

Faulty reverse 1 61+138 0.2
Insert, bas. cons. 0 81+102 0.5
Insert, bas. cons. 2 165+577 0.15

Insert, full 0 755+936 10.8
Delete, bas. cons. 0 55+113 0.3
Merge, bas. cons. 0 209+279 2.7
Merge, corr.mix. 0 1080+1415 40.4

Bubblesort, bas. cons. 2 2095+2872 305
Bubblesort, full 2 2339+2887 279

Circular list reverse, bas. cons. 3 655+764 5.4
Circular list reverse, full 3 2349+2822 50.6

Circular list rem.seg., bas. cons. 2 116+291 1.0

29

Persée Mai 2005 Peter Habermehl

Conclusion and perspectives

• We have applied and adapted the abstract regular model-checking framework to
programs over lists

– Encoding
– New abstractions based on configurations

• Current and future work:

– Extension to trees done recently (Adam Rogalewicz)
– Specialised treatment for counter automata with integers (using NDDs) and

reals (using RVA)
– Handling more general classes of dynamic data structures (using trees)
– Combining with other sources of infinity

(recursion, multithreading, unbounded data domains)

30

