Combination of accelerations.

Sébastien Bardin

Joint work with Alain Finkel

LSV - CNRS & ENS de Cachan

Difficult because of

- 1. data ranging over infinite domains (integers, clocks, queues, parameters, ...)
- 2. heterogeneous data types (example: Bounded Retransmission Protocol)

Existing solutions

- 1. infiniteness:
 - symbolic representation,
 - acceleration or widening.
- 2. heterogeneity: ??

So when we know acceleration for data type \mathcal{D}_1 and acceleration for data type \mathcal{D}_2 , we do not know anything about $\mathcal{D}_1 \times \mathcal{D}_2!!$

Related work on heterogeneity

- specific approach (counters and clocks, stacks and counters) with *dedicated* acceleration
- upper approximation of post* by Cartesian product (TReX)
- the Composite Symbolic Library, or algebraic BDDs: nice methods for post, but does not work for acceleration.

Our objective

 \mathcal{D} is a domain, \mathcal{S} a symbolic representation and post^{*} an acceleration.

Given $(\mathcal{D}_1, \mathcal{S}_1, \mathsf{post}^*_1)$ and $(\mathcal{D}_2, \mathcal{S}_2, \mathsf{post}^*_2)$, we want to deduce a symbolic representation and an acceleration for $\mathcal{D}_1 \times \mathcal{D}_2$.

Definition 1 (transition system) A transition system is a pair (D, \rightarrow) where D is a set (the domain) and $\rightarrow \subseteq D \times D$ is the transition relation.

Definition 2 (finitely presented transition system) A transition system (D, \rightarrow) is finitely presented if there exist $m \ge 0$ recursive relations $r_i \subseteq \mathcal{D} \times \mathcal{D}$ such that $\rightarrow = (r_1, \ldots, r_m)^*$. Let $\mathcal{R} = \{r_1, \ldots, r_m\}$. We write (D, \mathcal{R}) for (D, \rightarrow) .

Definition 3 (heterogeneous system) A heterogeneous system is a transition system $\mathcal{H} = (D, \rightarrow)$ such that there exist $n \geq 2, k_1, \ldots, k_n \in \mathbb{N}$ and n sets \mathcal{D}_i such that $\mathcal{D} = \mathcal{D}_1^{k_1} \times \ldots \times \mathcal{D}_n^{k_n}$ written $\times \mathcal{D}_i^{k_i}$.

In the following, the transition systems we consider are all finitely presented heterogeneous systems, written ($\times \mathcal{D}_i^{k_i}, \mathcal{R}$)

Symbolic representations

Definition 4 (symbolic representation) A symbolic representation for a finitely presented transition system $\mathcal{H} = (D, \mathcal{R})$ is a 5-uplet $\mathcal{S} = (S, \gamma, \sqcup, \sqsubseteq, \mathsf{post})$ verifying:

- 1. $\gamma(s_1 \sqcup s_2) = \gamma(s_1) \cup \gamma(s_2)$ (consistancy of union);
- 2. $\gamma(\text{post}(r, s)) = r(\gamma(s))$ (consistancy of post);
- *3.* $s_1 \sqsubseteq s_2 \Rightarrow \gamma(s_1) \subseteq \gamma(s_2)$ *(consistancy of inclusion).*

Some examples

- UBAs, NDDs and RVAs for \mathbb{N}, \mathbb{Z} , and \mathbb{R} .
- CPDBM for clocks and counters.
- QDDs, SLRE and CQDDs for perfect FIF0 queues or stacks.
- SRE for lossy FIFO channels.
- SMS for pointers.

Acceleration

Definition 5 (symbolic reachability set problem)

- Input
 - > a finitely presented transition system $\mathcal{H} = (\mathcal{D}, \mathcal{R})$,
 - ► $S = (S, \gamma, \sqcup, \sqsubseteq, post)$ a symbolic representation for H,
 - > an initial symbolic state $s_0 \in S$,
- Output: $s' \in S$ such that $\mathcal{R}^*(\gamma(s_0)) = \gamma(s')$.

Definition 6 (acceleration function) Consider $\mathcal{H} = (\mathcal{D}, \mathcal{R})$ a finitely presented transition system and $\mathcal{S} = (S, \gamma, \sqcup, \sqsubseteq, \mathsf{post})$ a symbolic representation for \mathcal{H} . An acceleration function for $(\mathcal{H}, \mathcal{S})$ is a computable totally defined function $\mathsf{post}^* : \mathcal{R}^* \times S \to S$ such that

$$\forall r, \mathsf{s} \in \mathcal{R}^* \times \mathsf{S}, \gamma(\mathsf{post}^*(r, \mathsf{s})) = r^*(\gamma(\mathsf{s}))$$

Weak heterogeneous systems

Definition 7 (weak heterogeneous systems) Let $\mathcal{H} = (\times \mathcal{D}_i^{k_i}, \mathcal{R})$ be a finitely presented heterogeneous system. \mathcal{H} is weakly heterogeneous if there exist $n \mathcal{R}_i$ finite sets of relations over $\mathcal{D}_i^{k_i} \times \mathcal{D}_i^{k_i}$ such that $\mathcal{R} \subseteq \times \mathcal{R}_i$. We write $\mathcal{H} = (\times \mathcal{D}_i^{k_i}, \mathcal{R}, \times \mathcal{R}_i)$.

- *Data types are strongly encapsulated*. Each data has its own operations, and the whole system is built combining these operations.
- Consistent with modular or object oriented design.
- Can model communication protocols using channels with finite sets of messages, (parameterized) maximum number of reemissions and clocks for abortion (ABP,BRP,...)
- Cannot model writing the value of a counter into a queue, since it implies *mixing the structures of the data types, and not only their operations*.

In the following, we want to derive algorithms or properties on the whole system \mathcal{H} from the study of projected systems $(\mathcal{D}_i^{k_i}, \mathcal{R}_i)$.

We define the Cartesian product of $S_1 = (S_1, \gamma_1, \sqcup_1, \sqsubseteq_1, \mathsf{post}_1)$ and $S_2 = (S_2, \gamma_2, \sqcup_2, \sqsubseteq_2, \mathsf{post}_2)$ by $S_1 \times S_2 = (\mathcal{P}_f(S_1 \times S_2), \gamma_1 \times \gamma_2, \sqcup, \sqsubseteq_1 \times \sqsubseteq_2, \mathsf{post}_1 \times \mathsf{post}_2).$

Theoreme 1 If S_1 is a symbolic representation for $(\mathcal{D}_1^{k_1}, \mathcal{R}_1)$ and S_2 is a symbolic representation for $(\mathcal{D}_2^{k_2}, \mathcal{R}_2)$ then $S_1 \times S_2$ is a symbolic representation for all weak heterogeneous systems $(\mathcal{D}_1^{k_1} \times \mathcal{D}_2^{k_2}, \mathcal{R}, \mathcal{R}_1 \times \mathcal{R}_2)$.

Result used in the Composite Symbolic Library (ALV).

Does not hold for acceleration.

- $r_1^*(d_1) \times r_2^*(d_2) = \bigcup_{i \in \mathbb{N}} \bigcup_{j \in \mathbb{N}} r_1^i(d_1) \times r_2^j(d_2)$ (1)
- $(r_1 \times r_2)^*(d_1, d_2) = \bigcup_{k \in \mathbb{N}} r_1^k(d_1) \times r_2^k(d_2)$ (2)
- (2) ⊆ (1).

The previous proof relies on the non synchronization of the number of iteration.

Idea:

- hypothesis on the transition system: weak heterogeneous;
- hypothesis on the symbolic representation: must have a *counting* part;
- hypothesis on the acceleration function: must use the counting part to model explicitly the number of iterations.

Then we want to define a variant of Cartesian product, synchronizing the representations of iterations.

Presburger symbolic representation

Definition 8 (Presburger symbolic representation) Let $\mathcal{H} = (\mathcal{D}, \mathcal{R})$ be a finitely presented transition system. A Presburger symbolic representation for \mathcal{H} is an effective symbolic representation $Sp = (Sp, \gamma, \sqcup, \sqsubseteq, post)$ such that:

- Sp is a set of 2-uplets sp = $(w, \Phi(\overline{w}))$ with:
 - > w is a word over a language \mathcal{L} ,
 - $\succ \overline{w}$ is a finite set of variables associated to $w \in \mathcal{L}$,
 - > $\Phi(\overline{w})$ is a Presburger formula whose free variables are in \overline{w} .
- the concretization function γ is defined as follow:
 - ► there exists a function $\gamma_a : (w : \mathcal{L}) \times \mathbb{N}^{|\overline{w}|} \to \mathcal{D}$
 - $\succ \ \gamma((w, \Phi(\overline{w}))) = \bigcup_{v \in \Phi} \gamma_a(w, v)$
- $post(r, (w, \Phi(\overline{w}))) = (w', \exists \overline{w}. \Phi(\overline{w}) \land \varphi(\overline{w}, \overline{w}'))$ where w' and φ depend only of r and w.

Counting acceleration

Definition 9 (Counting acceleration) Let $\mathcal{H} = (\mathcal{D}, \mathcal{R})$ be a finitely presented transition system and $Sp = (Sp, \gamma, \sqcup, \sqsubseteq, \text{post})$ a Presburger symbolic representation for \mathcal{H} . A counting acceleration for (\mathcal{H}, Sp) is an acceleration function post^* for (\mathcal{H}, Sp) such that $\forall sp = (w, \Phi(\overline{w})) \in Sp, \forall r \in \mathcal{R},$

- $\mathsf{post}^*(r, (w, \Phi(\overline{w}))) = (w', \exists \theta \in \mathbb{N} . \exists \overline{w} . \Phi(\overline{w}) \land \varphi(\overline{w}, \overline{w}', \theta))$ where (w', φ) depends only of r and w;
- $\gamma((w', \exists \theta \in \mathbb{N}. \exists \overline{w}. \Phi(\overline{w}) \land \varphi(\overline{w}, \overline{w}', \theta) \land \theta = i)) = r^i(\gamma(w, \Phi(\overline{w}))).$

Synchronized product

Synchronized product of Presburger symbolic representations

- Input: $(w_1, \Phi_1(\overline{w_1}))$ and $(w_2, \Phi_2(\overline{w_2}))$
- Output: $(w_1, w_2, \Phi(\overline{w_1}, \overline{w_2}))$.

We can define an acceleration for it.

• Input:

$$\blacktriangleright \operatorname{post}_{1}^{*}: (r, w_{1}) \to (w_{1}', \varphi_{1}(\overline{w_{1}}, \overline{w_{1}}', \theta)),$$

- > $\mathsf{post}^*_2 : (r, w_2) \to (w'_2, \varphi_2(\overline{w_2}, \overline{w_2}', \theta))$
- Output: $\text{post}^*(r, (w_1, w_2)) \rightarrow ((w'_1, w'_2), \varphi_1(\overline{w_1}, \overline{w_1}', \theta) \land \varphi_2(\overline{w_2}, \overline{w_2}', \theta))$

Theoreme 2 Let $\mathcal{H} = (\times \mathfrak{D}_i^{k_i}, \mathcal{R} \subseteq \times \mathcal{R}_i)$ a weak heterogeneous system. Assume that for all *i*, there exists Sp_i a Presburger symbolic representation for $\mathcal{H}_i = (\mathfrak{D}_i^{k_i}, \mathcal{R}_i)$ and post^{*}_i a counting acceleration for (\mathcal{H}_i, Sp_i) . Then

- $\bigotimes Sp_i$ is a Presburger symbolic representation for \mathcal{H} ,
- there exists a counting acceleration for $(\mathcal{H}, \mathcal{S}p_i)$.

Laboratoire Spécification Vérification

Existing symbolic representations

		effective symbolic	
	data	representation	post*/ counting
SRE	lossy queues	yes	yes/no
QDD	queues/stacks	yes	yes/no
SLRE	queues/stacks	yes	yes/no
CQDD	queues/stacks	yes	yes
UBA/NDD	counters	yes	yes
RVA	clocks and counters	yes	yes
SMS	pointers	yes	?
CPDBMs	clocks and counters	\sqsubseteq semi-decidable	semi-decidable

Theoreme 3 A symbolic representation and an acceleration function can be computed automatically for weak heterogeneous systems manipulating counters, clocks, perfect FIFO queues and stacks.

Toward a generic tool

Perspective

- heuristics and termination results from the projections on each data type,
- theoretical work on getting more efficient combinations,
- a tool.

