A note on the acyclic 3-choosability of some planar
graphs

Hervé HocquartiMicka&l Montassigrand André Raspatid
Université de Bordeaux
LaBRI UMR 5800
351, cours de la Libération
F-33405 Talence Cedex, France

August 13, 2009

Abstract

An acyclic coloring of a grapldr is a coloring of its vertices such that : (i) no two adjacent

vertices inG receive the same color and (ii) no bicolored cycles exigFimA list assignment of

G is a functionL that assigns to each vertexe V(G) a list L(v) of available colors. Le be

a graph and. be a list assignment @¥. The graphi is acyclically L-list colorable if there exists
an acyclic coloringp of G such thatp(v) € L(v) forallv € V(G). If G is acyclically L-list
colorable for any list assignmeit with |L(v)| > k forallv € V(G), thenG is acyclically
k-choosable. In this paper, we prove that every planar graghneither cycles of lengths 4 to 7
(resp. to 8, to 9, to 10) nor triangles at distance less 7 (f&sp, 2) is acyclically 3-choosable.

1 Introduction

A proper coloringof a graph is an assignment of colors to the vertices of thptgsach that two
adjacent vertices do not use the same colork-€oloring of G is a proper coloring of5 usingk
colors ; a graph admitting A-coloring is said to bé-colorable An acyclic coloringof a graph
G is a proper coloring of7 such thatG' contains no bicolored cycles ; in other words, the graph
induced by every two color classes is a forest. A list assgmofG is a functionL that assigns to
each vertew € V(G) alist L(v) of available colors. Le€ be a graph and be a list assignment
of G. The graphG is acyclically L-list colorableif there is an acyclic coloring of G such that
¢(v) € L(v)forallv € V(G). If G is acyclically L-list colorable for any list assignme#twith
|L(v)] > kforallv € V(G), thenG is acyclically k-choosable The acyclic choice numbeof
G, XL (@), is the smallest integér such thaiG is acyclicallyk-choosable. Borodiet al. [5] first
investigated the acyclic choosability of planar graphsprgthat:

Theorem 1 [5] Every planar graph is acyclically 7-choosable.
and put forward to the following challenging conjecture:
Conjecturel [5] Every planar graph is acyclically 5-choosable.

This conjecture if true strengthens Borodin’s Theorem fiifee acyclic 5-colorability of planar
graphs and Thomassen’s Theorem [10] on the 5-choosakfilghanar graphs.

*hocquard@ abri.fr
fnont assi @abri.fr
fraspaud@abri . fr



In 1976, Steinberg conjectured that every planar graphowitieycles of lengths 4 and 5 is 3-
colorable (see Problem 2.9 [9]). This problem remains opeh990, Erds suggested the following
relaxation of Steinberg’s Conjecture: what is the smaliet#geri such that every planar graph
without cycles of lengths 4 tdis 3-colorable? The best known resultiis= 7 [6]. This question
is also studied in the choosability case: what is the smtalésger: such that every planar graph
without cycles of lengths 4 tbis 3-choosable? In [11], Voigt proved that Steinberg’s @cotjre can
not be extended to list coloring ; heneex 6. Nevertheless, in 1996, Borodin [2] proved that every
planar graph without cycles of lengths 4 to 9 is 3-coloraliefact, 3-choosable. Se,< 9.

Recently the question of Edd was studied in the acyclic choosability case: What is tinaiest
integeri such that every planar graph without cycles of lengths #4itacyclically 3-choosable?
Borodin [3] and, independently, Hocquard and Montassigpf8vedi = 12.

In this note we give some new sufficient conditions of the Acy:choosability of planar graphs
refining this last result. By A (G) denote the minimal distance (number of edges) betweergtaan
in G. We prove:

Theorem 2 LetG be a planar graph. Moreover, @ satisfies one of the following conditions,

1. G contains no cycles of length 4 to 10, afd(G) > 2
2. G contains no cycles of length 4 to 9, aiid(G) > 3
3. G contains no cycles of length 4 to 8, atid (G) > 5
4. G contains no cycles of length 4 to 7, aid (G) > 7

thenG is acyclically 3-choosable

Notations Let G be a planar graph. We u$§G), E(G) andF(G) to denote the set of vertices,
edges and faces ¢f respectively. Letl(v) denote the degree of a vertexn G andr(f) the length
of a facef in G. A vertex of degreé: (resp. at leask, at mostk) is called ak-vertex(resp. = k-
vertex,=k-vertey. We use the same notations for facesk-tace(resp.= k-face, = k-face is a face
of lengthk (resp. at least, at mostk).

2 Proof of Theorem 2

2.1 Preliminaries

Let G be a counterexample to Theorem 2 with the minimun order/abeé a list assignment such
that there does not exist an acydiecoloring of G.

Claim 1 The counterexampl@ satisfies the following properties:
1. G does not contain 1-vertices.
. G does not contain two adjacent 2-vertices.
. G does not contain 3-vertices adjacent to two 2-vertices.

2
3
4. G does not contain 4-vertices adjacent to three 2-vertices.
5. G does not contain trianglesyz with d(x) = 2.

6

. G does not contain trianglesyz such thatd(x) = d(y) = 3, andz andy are adjacent to
2-vertices.

7. G does not contain pathsyz with d(x) = d(y) = d(z) = 3, andz,y, 2z are adjacent to
2-vertices.



Proof

. Suppose that contains a 1-vertex adjacent to a vertex. By minimality of G, the graph

G’ = G\{u} is acyclically 3-choosable. Consequently, there exista@elic L-coloring ¢
of G’. To extend this coloring t6 we just coloru with c(u) € L(u)\{c(v)}. The obtained
coloring is acyclic, a contradiction.

. Suppose thafz contains a 2-vertex. adjacent to a 2-vertex. Lett¢ andw be the other

neighbors ofu andv respectively. By minimality of7, the graphG’ = G\ {u} is acyclically
3-choosable. Consequently, there exists an acyclaoloring ¢ of G'. We show that we
can extend this coloring t6&/. Assume first that(t) # c(v). Then we just colom with
c(u) € L(u)\{c(t), c(v)}. Now, if c(t) = c(v), we coloru with ¢(u) € L(u)\{c(v), c(w)}.
In the two cases, the obtained coloring is acyclic, a coiittich.

. Suppose that’ contains a 3-vertex adjacent to two 2-vertices andy. Letz,w, z be the

other neighbors of;, v, y respectively. By minimality of7, the graph&’ = G \ {u,v,y} is
acyclically 3-choosable. Hence, there exists an acyclooloringc of G’. We show that we
can extend this coloring t6'. We first assign ta a color, different from(z), that appears at
most once onw andz. If this color is different from:(w) andc(z), we just proper colov and
y. The obtained coloring is acyclic, a contradiction. If thdar assigned ta appears once on
w andz, sayw, then we color properly and assign te a color different fromc(w) ande(x).
The obtained coloring is acyclic, a contradiction.

. Suppose thafr contains a 4-vertex adjacent to three 2-vertices y, ands. Letx, w, z,t

be the other neighbors eaf, v, y, s respectively. By minimality of7, the graphG’ = G \
{u,v,y, s} is acyclically 3-choosable. Hence, there exists an acyeloloringc of G’. We
show that we can extend this coloring@ We first assign ta: a color, different frome(x),
that appears at most once on z, andt. If this color is different frome(w), ¢(z) ande(t),
we just proper colop, i, ands. The obtained coloring is acyclic, a contradiction. If tfedor
assigned ta, appears once om, z andt, sayw, then we color properly, s and assign te a
color different frome(w) andc(x). The obtained coloring is acyclic, a contradiction.

. Suppose that contains a 2-vertex incident to a 3-facewvw. By minimality of G, the graph

G’ = G\{u} is acyclically 3-choosable. Consequently, there exista@elic L-coloring ¢
of G’. We can extend this coloring 1@ by coloringu with c(u) € L(u)\{c(v),c(w)}, a
contradiction.

. Suppose thafr contains a 3-faceyz with d(z) = d(y) = 3. Moreoverz (resp. y) is

adjacent to a 2-vertex (resp. s). Finally letu (resp.t) be the other neighbor af (resp. s).
By minimality of G, the graphG’ = G \ v is acyclically 3-choosable. Hence, there exists
an acyclicL-coloringc of G’. If c(u) # c(x), we just color properly and the obtained
coloring is acyclic, a contradiction. Assume thét) = c(z). If L(v) # {c(x),c(y), c(2)},
we colorv with a color different frome(x), ¢(y), ¢(z) and the obtained coloring is acyclic,
a contradiction. Suppose thafv) = {c(z),c(y),c(2)}. If (c(x),c(y)) # (c(s),c(t)), we
colorv with ¢(y) and the coloring obtained is acyclic. Suppose that), c(y)) = (¢(s), ¢(t)).
Observe now thaf(z) = {c(x), c(y), c(z)} ; otherwise, we recolar with a color different
fromc(x), ¢(y), c(z) and proper colov. Similarly, L(y) = {¢(x), c(y), c(2)} ; otherwise, we
recolory with a color different fronc(x), ¢(y), ¢(z) and colorv with a color different from
c(x) andc(z). Finally we exchange the colors arandy and proper color the verticesand

s. The obtained coloring is acyclic, a contradiction.

. Suppose that' contains a pathryz with d(x) = d(y) = d(z) = 3, andz, y, z are adjacent to

2-verticesu, v, w, respectively. Lep, ¢, r, s, t be the other neighbors af u, v, w, z, respec-
tively. By minimality of G, the graphG’ = G\{z, v, 2z, u, v, w} is acyclically 3-choosable.
Consequently, there exists an acydiecoloring c of G’. We show that we can extend this
coloring toG.



7.1 SupposeL(y)\{c(p),c(r),c(t)} # 0. We assign toy a color¢(y) different from
c(p), e(r), (t).

7.1.1 If L(z) # {c(p), c(y), c(q)}, then we assign te a color different frome(p), c¢(y)
andc(q). Then, we colom with a color different front(q) ande(x), and we assign
to z a color different from(y) ande(t). If ¢(z) # ¢(s), then we just colotw with
a color different frome(s) ande(z) ; otherwise, we colow with a color different
from ¢(s) andc(t). Finally we colorv with a color different frome(r) ande(y), and
the coloring obtained is acyclic, a contradiction.

7.1.2 Suppose now,(z) = {c(p),c(y),c(q)} with c(p) # c(y) # c(q) # c(p) and, by
symmetry,L(z) = {c(y), c(t),c(s)} with e(y) # e(t) # c(s) # c(y). We first
assign tar the colore(g) and we colorz with the colore(s). We can observe that,
if ¢(s) # c(q), then we assign ta a color different frome(¢) andc¢(p), we color
w with a color different frome(s) andc(t) and we colorv with a color different
from ¢(r) andc(y). The coloring obtained is acyclic, a contradiction. So assu
thatc(s) = ¢(q), then we have two cases:

7.1.2.1 IfL(u) # {c(p), c(y), c(q)}, then we assign te a color different frone(p), ¢(y)
andc(q). We color properly the vertex We colorw with a color different from
¢(s) ande(t). The coloring obtained is acyclic, a contradiction.

7.1.2.2 Suppose now, L(u) = {clp),cly),c(q)} and, by symmetry,
L(w) = {e(s),c¢(y),c(t)}. Sete(q) = 1 ande(y) = 2. We havec(q) =
clx) = e(z) = ¢(s) = 1, ely) = 2, L(u) = L(xz) = {1,2,¢(p)}, and
L(w) = L(z) = {1,2,¢(t)}. Now we recolorz andz with 2. If ¢(p) # ¢(t),
then we assign tg a color different from 2 and(r), and we color properly.
If ¢(p) = ¢(t), then we colowy with a color different from 2 and(p), and we
color properlyv. The coloring obtained is acyclic.

7.2 Assume thak(y) = {c(p),c(r), c(t)}. Sete(r) = 1,¢(p) = 2,¢(t) = 3. We first assign
to the vertexy the color 1.

7.2.1 fL(z) # {1,2,¢(q)}, then we assign te a color different froml, 2 ande(q). We
color properlyu andz, and we colow with a color different from 1 and(z). Then,
we color properlyw if ¢(z) # ¢(s) ; otherwise, we choose far a color different
from 3 andc(z). The coloring obtained is acyclic, a contradiction.

7.2.2 Finally assume L(x) = {1,2,¢(¢q)} and, by symmetry,
L(z) = {1,3,¢(s)}. First, we assign the color 1 to the verticesnd z, and we
recolory properly. Finally we color properly, v, andw. The coloring obtained is
acyclic, a contradiction.

O

Lemmal LetG be a connected plane graph withvertices,m edges and- faces. Let > 2, we
have the following:

DO ((k=2)d(w) —2k) + > (2r(f) - 2k) = —4k (1)
veV(G) fEF(Q)
Proof
Euler’s formulan — m + f = 2 can be rewritten a§2k — 4)m — 2kn) + (4m — 2kf)) = —4k.
Therelation Y d(v)= > r(f)=2m completes the proof. o
veV (H) fEF(H)

2.2 Proof of Theorem 2.1

Let G be a counterexample to Theorem 2.1 with the minimum ordeg. graphG satisfies Claim 1
and Equation (2) (given by Equation (1) for= 11):
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> (9dw)—22) + > (2r(f)—22) = —44 )

veV(Q) FEF(G)

We apply now a discharging procedure. We define the weiglttiomw : V(G)UF(G) — R
byw(z) =9d(z)—22if x € V(G)andw(z) = 2r(x)—22if z € F(G). Itfollows from Equation
(2) that the total sum of weights is equal to -44. In what fwlo we will define discharging rules
and redistribute weights accordingly. Once the discharigrfinished, a new weight functian*
is produced. However, the total sum of weights is kept fixegnvthe discharging is achieved.
Nevertheless, we will show that*(z) > 0 forallz € V(G) U F(G). This leads to the following
obvious contradiction:

0 < > w*(z) = > wx) = —44 < 0 (3)

zeV(G)UF(Q) e V(G)UF(G)
and hence demonstrates that no such counterexample can exis

We make the discharging procedure in two steps:
Step 1. Every=3-vertex gives 2 to each adjacent 2-vertex.

We denote by’ (x) the new charge of € V(G) U F(G) after Step 1. Byny(v) denote the
number of triangles at distance exactly one from
When Step 1 is finished, we proceed with Step 2:

Step 2. Every = 3-vertexwv incident to a trianglel’ givesw’(v) to T. Every Z3vertexv at distance
exactly one to triangles gives (v) /nr(v) to each triangle.

Letv be ak-vertex. By Claim 1.1k > 2.

Casek = 2 Observe thato(v) = —4. By Claim 1.2,v is adjacent to=3-vertices. Hencew'(v) =
—4+2-2=0by Step 1. By Step 2)*(v) > 0.

Case k = 3 Initially, w(v) = 5. By Claim 1.3 is adjacent to at most one 2-vertex. Hence,ig adjacent
to a 2-vertex, then'(v) = 5 — 2 = 3 andw’(v) = 5 otherwise. By Step 2,*(v) > 0.

Casek = 4 |Initially, w(v) = 14. By Claim 1.4,v is adjacent to at most two 2-vertices. S ifs adjacent
to two (resp. one, zero) 2-vertices, theffv) = 14 — 2 - 2 = 10 (resp. 12, 14). And by Step
2,w*(v) > 0.

Casek > 5 Initially, w(v) = 9k — 22. The vertexv gives 2 to each adjacent 2-vertex in Step 1. So
w'(v) > 9k — 22 — 2k = 7Tk — 22 > 13. And, by Step 2w*(v) > 0.

Hence, after Steps 1 and 2, we have:c V(G),w*(v) > 0. Observe now that, after Step 1, all
Z3-vertex can give at Iea%t to each triangle at distance exactly one during Step 2.

Let f be ak-face. Clearly, ifc > 11, thenw*(f) = w(f) = 2r(f) — 22 > 0. Now, suppose
that f is a 3-faceryz with d(x) < d(y) < d(z). By claim 1.5,d(x) > 3. Initially, w(f) = —16. If
d(z) > 4, then the vertices, y, z gives at leas8 + 3+ 10 to f and sav*(f) > 0. Assume now that
d(x) = d(y) = d(z) = 3. By Claim 1.6, at most one of the verticesy, ~ is adjacent to a 2-vertex.
If one of these vertices is adjacent to a 2-vertex, sathenx gives 3 tof, and the verticeg and
z give each 5 tof. Now y andz are adjacent to two distinct vertices, sayandz; (different from
x,y, z), which give each at leastto f. Hencev*(f) > —16 +3+2-5+2- 3 > 0. If none of the
verticesr, y, z is adjacent to a 2-vertex, we have similagly(f) > —16 +3 -5+ 3 - % > 0.

Hence, after Steps 1 and 2, we have:c V(G)UF(G),w*(z) > 0. The contradiction obtained
by Equation (3) completes the proof.



2.3 Proof of Theorem 2.2

Let G be a counterexample to Theorem 2.2 with the minimum ordeg. graphG satisfies Claim 1
and Equation (4) (given by Equation (1) fer= 10):

> (4dw)—10) + > (r(f) —10) = =20 (4)
veV(G) fEF(Q)

As for the proof of Theorem 2.1, we apply now a dischargingpdure. We define the weight
functionw : V(G)UF(G) — Rbyw(z) =4d(z)—10if z € V(G) andw(z) = r(z)—10if = €
F(G). Itfollows from Equation (4) that the total sum of weight®igual to -20. In what follows, we
will define discharging rules and redistribute weights adowly. Once the discharging is finished,
a new weight functionv* is produced. However, the total sum of weights is kept fixe@nvthe
discharging is achieved. Nevertheless, we will show @idt:) > 0 for all x € V(G) U F(G).
This leads to the following obvious contradiction:

0 < Z w'(x) = Z w(z) = 20 < 0 (5)

zeV(G)UF(G) zeV(G)UF(G)
and hence demonstrates that no such counterexample can exis
We make the discharging procedure in two steps:

Step 1. Every=3-vertex gives 1 to each adjacent 2-vertex.
When Step 1 is finished, we proceed with Step 2:
Step 2. EveryZ3-vertexv at distance at most one to a triangleyivesw’ (v) to T..

Notice that a vertex can be at distance one to at most ongleiahetv be ak-vertex. By Claim
1.1,k > 2.

Casek = 2 Observe thato(v) = —2. By Claim 1.2,v is adjacent to>3-vertices. Hencew'(v) =
—2+2-1=0by Step 1. By Step 2y*(v) > 0.

Case k = 3 Initially, w(v) = 2. By Claim 1.3 is adjacent to at most one 2-vertex. Hence,ig adjacent
to a 2-vertex, then/(v) = 2 — 1 = 1 andw’(v) = 2 otherwise. By Step 2y*(v) > 0.

Casek = 4 Initially, w(v) = 6. By Claim 1.4,v is adjacent to at most two 2-vertices. Swiis adjacent
to two (resp. one, zero) 2-vertices, thet{fv) = 6 — 2 -1 = 4 (resp. 5, 6). And by Step 2,
w*(v) > 0.

Casek > 5 Initially, w(v) = 4k — 10. The vertexv gives 1 to each adjacent 2-vertex in Step 1. So
w'(v) > 4k — 10 — k = 3k — 10 > 5. And, by Step 2w*(v) > 0.

Hence, after Steps 1 and 2, we have:c V(G),w*(v) > 0. Observe now that, after Step 1, all
Z3-vertex can give at least 1 to the triangle (if any) at distaexactly one during Step 2.

Let f be ak-face. Clearly, ift > 10, thenw*(f) = w(f) = r(f) — 10 > 0. Now, suppose that
is a 3-faceryz with d(x) < d(y) < d(z). Initially, w(f) = —7. By claim 1.5,d(x) > 3. Moreover
by Claim 1.6, it follows that ifx andy are 3-vertices, at most once ofandy is adjacent to a 2-
vertex. Ifd(z) > 4, thenw*(f) > =7+ 142 +4 = 0. Assume now thai(z) = d(y) = d(z) = 3.
W.l.o.g., we consider two cases: (i)s adjacent to a 2-vertex, (2)is not adjacent to a 2-vertex.

(1) The vertexc gives 1 tof ; the verticegy andz gives 2 tof. Moreover, the neighborg , 21
(# z,y, 2) of y, z respectively are distinct and give each at least ¥ .toHencew*(f) >
—7T+1+2-2+2-1=0.

(2) The vertices:, y, z give each 2 tof. Moreover, the neighbots,, y1, z1 (¢ x,y, 2) of x,y, z
respectively are distinct and give each at least L.thlencew*(f) > —7+3-24+3-1>0.

Hence, after Steps 1 and 2, we have:c V(G)UF(G),w*(z) > 0. The contradiction obtained
by Equation (5) completes the proof.



2.4 Proof of Theorem 2.3

Let G be a counterexample to Theorem 2.3 with the minimum ordeg. graphG satisfies Claim 1
and Equation (6) (given by Equation (1) fer= 9):

> (7dw) —18) + > (2r(f)—18) = —36 (6)
veV(G) fEF(G)

As for the proof of Theorem 2.2, we apply now a dischargingcpdure. We define the weight
functionw : V(G)UF(G) — Rbyw(z) = 7d(x)—18if x € V(G) andw(z) = 2r(x)—18if z €
F(G). It follows from Equation (6) that the total sum of weight®igual to -36. In what follows, we
will define discharging rules and redistribute weights adowly. Once the discharging is finished,
a new weight functionv* is produced. However, the total sum of weights is kept fixe@nvthe
discharging is achieved. Nevertheless, we will show @hidt:) > 0 for all x € V(G) U F(G).
This leads to the following obvious contradiction:

0 < Z w'(x) = Z w(x) = =36 < 0 @)
z€V(G)UF(G) zeV(G)UF(G)
and hence demonstrates that no such counterexample can exis
We make the discharging procedure in two steps:
Step 1. Every=3-vertex gives 2 to each adjacent 2-vertex.
When Step 1 is finished, we proceed with Step 2:
Step 2. EachZ3-vertexv at distance at most two to a trianglegivesw’ (v) to 7.

Letv be ak-vertex. By Claim 1.1k > 2.

Casek = 2 Observe thats(v) = —4. By Claim 1.2,v is adjacent to”3-vertices. Hencew'(v) =
—4+2-2=0by Step 1. By Step 2)*(v) > 0.

Case k = 3 Initially, w(v) = 3. By Claim 1.3 is adjacent to at most one 2-vertex. Hence,ig adjacent
to a 2-vertex, then/(v) = 3 — 2 = 1 andw’(v) = 3 otherwise. By Step 2y*(v) > 0.

Casek = 4 Initially, w(v) = 10. By Claim 1.4,v is adjacent to at most two 2-vertices. S i adjacent
to two (resp. one, zero) 2-vertices, theffv) = 10 — 2 - 2 = 6 (resp. 8, 10). And by Step 2,
w*(v) > 0.

Casek > 5 Initially, w(v) = Tk — 18. The vertexv gives 2 to each adjacent 2-vertex in Step 1. So
w'(v) > Tk — 18 — 2k = 5k — 18 > 7. And, by Step 2w* (v) > 0.
Hence, after Steps 1 and 2, we have:c V(G),w*(v) > 0. Observe now that, after Step 1, all
Z3-vertex can give at least 1 to the triangle (if any) at distaatmost 2 in Step 2.

Let f be ak-face. Clearly, ift > 9, thenw*(f) = w(f) = 2r(f) — 18 > 0. Now, suppose that
fis a 3-faceryz with d(z) < d(y) < d(z). Letxzixs, yy1y2, andzz zo be three vertex-disjoint
2-paths starting from, y, =z respectively (these paths exist since there are no cyclength 4 to
8). Initially, w(f) = —12. By claim 1.5,d(xz) > 3. Moreover by Claim 1.6, it follows that if
x andy are 3-vertices, at most once ofandy is adjacent to a 2-vertex. H(z) > 4, then the
verticesr, y, z give at least 1, 3, 10 respectively, and the vertices;, z; give at leas® - 1; hence,
w*(f) > -12+1+34+6+2-1> 0. Assume now thad(z) = d(y) = d(z) = 3. W.lL.o.g., we
consider two cases: (k)is adjacent to a 2-vertex, (2)is not adjacent to a 2-vertex.

(1) Thevertex: gives 1 tof ; the verticeg andz give 3tof. Moreover, the vertices,, y1, y2, 21, 22
give each atleast 1. Hene&(f) > —12+1+4+2-34+5-1=0.

(2) The verticest, y, z give each 3 tof. The verticesey, z2,y1, Y2, 21, 22 give each at least 1.
Hencew*(f) > —12+3-3+6-1>0.

Hence, after Steps 1 and 2, we have:c V(G)UF(G),w*(z) > 0. The contradiction obtained
by Equation (7) completes the proof.



2.5 Proof of Theorem 2.4

Let G be a counterexample to Theorem 2.4 with the minimum ordeg. graphG satisfies Claim 1
and Equation (8) (given by Equation (1) fer= 9):

Y. Bdw)=8)+ > ((f)=8) = 16 (8)
veV(G) fEF(G)

As for the proof of Theorem 2.2, we apply now a dischargingpdure. We define the weight
functionw : V(G)UF(G) — Rbyw(z) =3d(z)—8if x € V(G) andw(z) =r(z) —8ifz €
F(G). Itfollows from Equation (8) that the total sum of weight®igual to -16. In what follows, we
will define discharging rules and redistribute weights adowly. Once the discharging is finished,
a new weight functionv* is produced. However, the total sum of weights is kept fixe@nvthe
discharging is achieved. Nevertheless, we will show @idt:) > 0 for all x € V(G) U F(G).
This leads to the following obvious contradiction:

0 < Z w'(z) = Z w(z) = —16 < 0 9
zeV(G)UF(G) z€V(G)UF(G)
and hence demonstrates that no such counterexample can exis

We make the discharging procedure in two steps:
Step 1. Every=3-vertex gives 1 to each adjacent 2-vertex.
When Step 1 is finished, we proceed with Step 2:
Step 2. EachZ3-vertexv at distance at most three to a triangl@ivesw’ (v) to T'.

Letv be ak-vertex. By Claim 1.1k > 2.

Casek = 2 Observe thato(v) = —2. By Claim 1.2,v is adjacent to=3-vertices. Hencew'(v) =
—2+2-1=0by Step 1. By Step 2y*(v) > 0.

Case k = 3 Initially, w(v) = 1. By Claim 1.3 is adjacent to at most one 2-vertex. Hence,ig adjacent
to a 2-vertex, then’(v) = 1 — 1 = 0 andw’(v) = 1 otherwise. By Step 2,*(v) > 0.

Case k = 4 Initially, w(v) = 4. By Claim 1.4v is adjacent to at most two 2-vertices. Se i adjacent to
two (resp. one, zero) 2-vertices, thet{v) = 4—2-1 = 2 (resp. 3, 4). By Step 2,*(v) > 0.

Casek > 5 Initially, w(v) = 3k — 8. The vertexv gives 1 to each adjacent 2-vertex in Step 1. So
w'(v) >3k —8 — k =2k — 8> 2. By Step 2w*(v) > 0.

Hence, after Steps 1 and 2, we have:€ V(G),w*(v) > 0. Observe now that, after Step 1, (1)
all Z4-vertex can give at least 2 to the triangle (if any) at diséasicmost 4 in Step 2, (2) a 3-vertex
not adjacent to a 2-vertex can give 1 to the triangle (if angjstance at most 4 in Step 2, and (3) the
unique kind of vertices which cannot give anything is a 3taendjacent to a 2-vertex. It follows by
Claim 1.7:

Observation 1 If rst is 2-path composed of3-vertices, then at least one of these vertices has a
weight at least 1 after Step 1.

Let f be ak-face. Clearly, ift > 8, thenw*(f) = w(f) =r(f) —8 > 0.

Now, suppose thaf is a 3-faceryz with d(z) < d(y) < d(z). Letazizoxs, yy1y2ys, and
2212223 be three vertex-disjoint 3-paths starting framy, ~ respectively (these paths exist since
there are no cycles of length 4 to 7). Initially( /) = —5.

We consider several cases according to the degreesgjofindz:



Consider the casé(z) = 3, d(y) = 3, d(z) > 4, andd(z;) = 2. During Step 2y andz give
1 and at least 2 respectively. If at least one of the vertiges., y3 has degree at least 4. Then
w*(f)=-5+1+2+2=0. Assume now thad(y;) < 3for: =1,2,3. By Claims 1.2, 1.3, 1.5,
and 1.6, we can choose the vertiggsuch that that(y;) = 3 fori = 1,2, 3. Hence by Observation
1, we are sure that at least one vertexfys, y3 has a weight at least one after Step 1. This weight
is transfered tgf during Step 2. Similarly, by Claims 1.2, is of degree at least 3. if(z2) > 4,
thenw*(f) = -5+ 142+ 1+2 > 0. Assume now thai(z,) = 3. Leta% the third neighbor ot
(since there are no cycles of length 4 tai,is distinct toz, y, z, x1, 2, 3, Y1, Y2, Y3, 21, 22, 23)-
By Claim 1.3, we havel(xz3) > 3 andd(z3) > 3. So by Obervation 1, at least one vertex of
x2,x3, 5 has a weight at least one after Step 1. This weight is traedferf during Step 2. Hence
w(f)=-b5+1+2+1+1=0.

Consider the casé(z) = 3, d(y) = 3, d(z) > 4, andd(z1) > 3, d(y1) > 3, d(z1) > 3.
During Step 2,x, y and z give 1, 1, and at least 2 respectively. If at least one of th#ices
x1,T2,Ts3,Y1,Y2,ys has degree at least 4. Then(f) = -5+ 1+1+2+2 > 0. Assume now
thatd(z;) < 3 andd(y;) < 3fori =1,2,3. By Claims 1.2, 1.3, 1.5, and 1.6, we can chogsan
y; such thatd(z;) = 3 andd(y;) = 3 fori = 1,2, 3. Hence by Observation 1, we are sure that at
least one vertex afy, zo, 23 (resp.y1, y2, y3) has a weight at least one after Step 1. This weight is
transfered tof during Step 2. Hence*(f) = -5+1+1+2+1+1>0.

Consider the casé(z) = d(y) = d(z) = 3, andd(x1) = 2. During Step 2,f receives 1 from
y and1 from z. We first show that each path 9fy.ys andz; 2,23 gives at least 1 t¢g. Consider
y1y2y3. If one ofyy, yo, y3 is of degree at least 4, then this path will give at least 1.t®@therwise,
by Claims 1.2, 1.3, 1.5, and 1.6, we can assumedg) > 3 fori = 1, 2, 3. Hence by Observation
1, we are sure that at least one vertexafys, y3 has a weight at least one after Step 1. Similarly,
the pathz; 2523 gives at least 1 tg. Now, by Claims 1.2x is of degree at least 3. if(x2) > 4,
thenw*(f) = —5+14+1+14+1+2> 0. Assume now thad(z3) = 3. Letz’, the third neighbor of
x2 (since there are no cycles of length 4 ta% is distinct tox, y, z, x1, T2, T3, Y1, Y2, Y3, 21, 22, 23).
By Claim 1.3, we havel(x3) > 3 andd(z5) > 3. So by Obervation 1, at least one vertex of
xo, x3, x5 has a weight at least one after Step 1. This weight is traedferf during Step 2. Hence
Ww(f)=-5+1+1+1+1+1=0.

Consider the casé(z) = d(y) = d(z) = 3, andd(z1) > 3, d(y1) > 3, d(z1) > 3. Using
similar arguments, one can prove thdt /) > -5+ 1+1+1+14+1+1>0.

Hence, after Steps 1 and 2, we have:c V(G)UF(G),w*(z) > 0. The contradiction obtained
by Equation (9) completes the proof.

3 Conclusion

We conclude with some specific problems. It was recently gadsy Borodinet al. [4] that every
planar graph with girth at least 7 is acyclically 3-choosal§lWe recall that the girth of grapH is
the length of a shortest cycle 6f)

Problem 1 Prove that:
1. Every planar graph with girth at least 6 is acyclically Baosable.
2. Every planar graph without cycles of length 4itis acyclically 3-choosable with < i < 11.

3. There exists a constadtsuch that every planar grapy’ without cycles of length 4 t6 and
da(G) > dis acyclically 3-choosable.
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