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Abstract

An acyclic coloring of a graphG is a coloring of its vertices such that : (i) no two adjacent
vertices inG receive the same color and (ii) no bicolored cycles exist inG. A list assignment of
G is a functionL that assigns to each vertexv ∈ V (G) a listL(v) of available colors. LetG be
a graph andL be a list assignment ofG. The graphG is acyclicallyL-list colorable if there exists
an acyclic coloringφ of G such thatφ(v) ∈ L(v) for all v ∈ V (G). If G is acyclicallyL-list
colorable for any list assignmentL with |L(v)| ≥ k for all v ∈ V (G), thenG is acyclically
k-choosable. In this paper, we prove that every planar graph with neither cycles of lengths 4 to 7
(resp. to 8, to 9, to 10) nor triangles at distance less 7 (resp. 5, 3, 2) is acyclically 3-choosable.

1 Introduction

A proper coloringof a graph is an assignment of colors to the vertices of the graph such that two
adjacent vertices do not use the same color. Ak-coloring of G is a proper coloring ofG usingk
colors ; a graph admitting ak-coloring is said to bek-colorable. An acyclic coloringof a graph
G is a proper coloring ofG such thatG contains no bicolored cycles ; in other words, the graph
induced by every two color classes is a forest. A list assignment ofG is a functionL that assigns to
each vertexv ∈ V (G) a list L(v) of available colors. LetG be a graph andL be a list assignment
of G. The graphG is acyclicallyL-list colorable if there is an acyclic coloringφ of G such that
φ(v) ∈ L(v) for all v ∈ V (G). If G is acyclicallyL-list colorable for any list assignmentL with
|L(v)| ≥ k for all v ∈ V (G), thenG is acyclicallyk-choosable. Theacyclic choice numberof
G, χl

a(G), is the smallest integerk such thatG is acyclicallyk-choosable. Borodinet al. [5] first
investigated the acyclic choosability of planar graphs proving that:

Theorem 1 [5] Every planar graph is acyclically 7-choosable.

and put forward to the following challenging conjecture:

Conjecture 1 [5] Every planar graph is acyclically 5-choosable.

This conjecture if true strengthens Borodin’s Theorem [1] on the acyclic 5-colorability of planar
graphs and Thomassen’s Theorem [10] on the 5-choosability of planar graphs.
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In 1976, Steinberg conjectured that every planar graph without cycles of lengths 4 and 5 is 3-
colorable (see Problem 2.9 [9]). This problem remains open.In 1990, Erd̋os suggested the following
relaxation of Steinberg’s Conjecture: what is the smallestintegeri such that every planar graph
without cycles of lengths 4 toi is 3-colorable? The best known result isi = 7 [6]. This question
is also studied in the choosability case: what is the smallest integeri such that every planar graph
without cycles of lengths 4 toi is 3-choosable? In [11], Voigt proved that Steinberg’s Conjecture can
not be extended to list coloring ; hence,i ≥ 6. Nevertheless, in 1996, Borodin [2] proved that every
planar graph without cycles of lengths 4 to 9 is 3-colorable ;in fact, 3-choosable. So,i ≤ 9.

Recently the question of Erdős was studied in the acyclic choosability case: What is the smallest
integeri such that every planar graph without cycles of lengths 4 toi is acyclically 3-choosable?
Borodin [3] and, independently, Hocquard and Montassier [8] provedi = 12.

In this note we give some new sufficient conditions of the acyclic 3-choosability of planar graphs
refining this last result. Byd∆(G) denote the minimal distance (number of edges) between triangles
in G. We prove:

Theorem 2 LetG be a planar graph. Moreover, ifG satisfies one of the following conditions,

1. G contains no cycles of length 4 to 10, andd∆(G) ≥ 2

2. G contains no cycles of length 4 to 9, andd∆(G) ≥ 3

3. G contains no cycles of length 4 to 8, andd∆(G) ≥ 5

4. G contains no cycles of length 4 to 7, andd∆(G) ≥ 7

thenG is acyclically 3-choosable

Notations Let G be a planar graph. We useV (G), E(G) andF (G) to denote the set of vertices,
edges and faces ofG respectively. Letd(v) denote the degree of a vertexv in G andr(f) the length
of a facef in G. A vertex of degreek (resp. at leastk, at mostk) is called ak-vertex(resp. ≥k-
vertex,≤k-vertex). We use the same notations for faces : ak-face(resp.≥k-face,≤k-face) is a face
of lengthk (resp. at leastk, at mostk).

2 Proof of Theorem 2

2.1 Preliminaries

Let G be a counterexample to Theorem 2 with the minimun order andL be a list assignment such
that there does not exist an acyclicL-coloring ofG.

Claim 1 The counterexampleG satisfies the following properties:

1. G does not contain 1-vertices.

2. G does not contain two adjacent 2-vertices.

3. G does not contain 3-vertices adjacent to two 2-vertices.

4. G does not contain 4-vertices adjacent to three 2-vertices.

5. G does not contain trianglesxyz with d(x) = 2.

6. G does not contain trianglesxyz such thatd(x) = d(y) = 3, andx andy are adjacent to
2-vertices.

7. G does not contain pathsxyz with d(x) = d(y) = d(z) = 3, andx, y, z are adjacent to
2-vertices.
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Proof

1. Suppose thatG contains a 1-vertexu adjacent to a vertexv. By minimality of G, the graph
G′ = G\{u} is acyclically 3-choosable. Consequently, there exists anacyclicL-coloringc
of G′. To extend this coloring toG we just coloru with c(u) ∈ L(u)\{c(v)}. The obtained
coloring is acyclic, a contradiction.

2. Suppose thatG contains a 2-vertexu adjacent to a 2-vertexv. Let t and w be the other
neighbors ofu andv respectively. By minimality ofG, the graphG′ = G\{u} is acyclically
3-choosable. Consequently, there exists an acyclicL-coloring c of G′. We show that we
can extend this coloring toG. Assume first thatc(t) 6= c(v). Then we just coloru with
c(u) ∈ L(u)\{c(t), c(v)}. Now, if c(t) = c(v), we coloru with c(u) ∈ L(u)\{c(v), c(w)}.
In the two cases, the obtained coloring is acyclic, a contradiction.

3. Suppose thatG contains a 3-vertexu adjacent to two 2-verticesv andy. Let x, w, z be the
other neighbors ofu, v, y respectively. By minimality ofG, the graphG′ = G \ {u, v, y} is
acyclically 3-choosable. Hence, there exists an acyclicL-coloringc of G′. We show that we
can extend this coloring toG. We first assign tou a color, different fromc(x), that appears at
most once onw andz. If this color is different fromc(w) andc(z), we just proper colorv and
y. The obtained coloring is acyclic, a contradiction. If the color assigned tou appears once on
w andz, sayw, then we color properlyy and assign tov a color different fromc(w) andc(x).
The obtained coloring is acyclic, a contradiction.

4. Suppose thatG contains a 4-vertexu adjacent to three 2-verticesv, y, ands. Let x, w, z, t
be the other neighbors ofu, v, y, s respectively. By minimality ofG, the graphG′ = G \
{u, v, y, s} is acyclically 3-choosable. Hence, there exists an acyclicL-coloringc of G′. We
show that we can extend this coloring toG. We first assign tou a color, different fromc(x),
that appears at most once onw, z, andt. If this color is different fromc(w), c(z) andc(t),
we just proper colorv, y, ands. The obtained coloring is acyclic, a contradiction. If the color
assigned tou appears once onw, z andt, sayw, then we color properlyy, s and assign tov a
color different fromc(w) andc(x). The obtained coloring is acyclic, a contradiction.

5. Suppose thatG contains a 2-vertexu incident to a 3-faceuvw. By minimality ofG, the graph
G′ = G\{u} is acyclically 3-choosable. Consequently, there exists anacyclicL-coloringc
of G′. We can extend this coloring toG by coloringu with c(u) ∈ L(u)\{c(v), c(w)}, a
contradiction.

6. Suppose thatG contains a 3-facexyz with d(x) = d(y) = 3. Moreoverx (resp. y) is
adjacent to a 2-vertexv (resp.s). Finally letu (resp.t) be the other neighbor ofv (resp.s).
By minimality of G, the graphG′ = G \ v is acyclically 3-choosable. Hence, there exists
an acyclicL-coloring c of G′. If c(u) 6= c(x), we just color properlyv and the obtained
coloring is acyclic, a contradiction. Assume thatc(u) = c(x). If L(v) 6= {c(x), c(y), c(z)},
we colorv with a color different fromc(x), c(y), c(z) and the obtained coloring is acyclic,
a contradiction. Suppose thatL(v) = {c(x), c(y), c(z)}. If (c(x), c(y)) 6= (c(s), c(t)), we
colorv with c(y) and the coloring obtained is acyclic. Suppose that(c(x), c(y)) = (c(s), c(t)).
Observe now thatL(x) = {c(x), c(y), c(z)} ; otherwise, we recolorx with a color different
from c(x), c(y), c(z) and proper colorv. Similarly,L(y) = {c(x), c(y), c(z)} ; otherwise, we
recolory with a color different fromc(x), c(y), c(z) and colorv with a color different from
c(x) andc(z). Finally we exchange the colors onx andy and proper color the verticesv and
s. The obtained coloring is acyclic, a contradiction.

7. Suppose thatG contains a pathxyz with d(x) = d(y) = d(z) = 3, andx, y, z are adjacent to
2-vertices,u, v, w, respectively. Letp, q, r, s, t be the other neighbors ofx, u, v, w, z, respec-
tively. By minimality of G, the graphG′ = G\{x, y, z, u, v, w} is acyclically 3-choosable.
Consequently, there exists an acyclicL-coloringc of G′. We show that we can extend this
coloring toG.
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7.1 SupposeL(y)\{c(p), c(r), c(t)} 6= ∅. We assign toy a color c(y) different from
c(p), c(r), c(t).

7.1.1 If L(x) 6= {c(p), c(y), c(q)}, then we assign tox a color different fromc(p), c(y)
andc(q). Then, we coloru with a color different fromc(q) andc(x), and we assign
to z a color different fromc(y) andc(t). If c(z) 6= c(s), then we just colorw with
a color different fromc(s) andc(z) ; otherwise, we colorw with a color different
from c(s) andc(t). Finally we colorv with a color different fromc(r) andc(y), and
the coloring obtained is acyclic, a contradiction.

7.1.2 Suppose now,L(x) = {c(p), c(y), c(q)} with c(p) 6= c(y) 6= c(q) 6= c(p) and, by
symmetry,L(z) = {c(y), c(t), c(s)} with c(y) 6= c(t) 6= c(s) 6= c(y). We first
assign tox the colorc(q) and we colorz with the colorc(s). We can observe that,
if c(s) 6= c(q), then we assign tou a color different fromc(q) andc(p), we color
w with a color different fromc(s) andc(t) and we colorv with a color different
from c(r) andc(y). The coloring obtained is acyclic, a contradiction. So assume
thatc(s) = c(q), then we have two cases:

7.1.2.1 IfL(u) 6= {c(p), c(y), c(q)}, then we assign tou a color different fromc(p), c(y)
andc(q). We color properly the vertexv. We colorw with a color different from
c(s) andc(t). The coloring obtained is acyclic, a contradiction.

7.1.2.2 Suppose now, L(u) = {c(p), c(y), c(q)} and, by symmetry,
L(w) = {c(s), c(y), c(t)}. Setc(q) = 1 and c(y) = 2. We havec(q) =
c(x) = c(z) = c(s) = 1, c(y) = 2, L(u) = L(x) = {1, 2, c(p)}, and
L(w) = L(z) = {1, 2, c(t)}. Now we recolorx andz with 2. If c(p) 6= c(t),
then we assign toy a color different from 2 andc(r), and we color properlyv.
If c(p) = c(t), then we colory with a color different from 2 andc(p), and we
color properlyv. The coloring obtained is acyclic.

7.2 Assume thatL(y) = {c(p), c(r), c(t)}. Setc(r) = 1, c(p) = 2, c(t) = 3. We first assign
to the vertexy the color 1.

7.2.1 IfL(x) 6= {1, 2, c(q)}, then we assign tox a color different from1, 2 andc(q). We
color properlyu andz, and we colorv with a color different from 1 andc(z). Then,
we color properlyw if c(z) 6= c(s) ; otherwise, we choose forw a color different
from 3 andc(z). The coloring obtained is acyclic, a contradiction.

7.2.2 Finally assume L(x) = {1, 2, c(q)} and, by symmetry,
L(z) = {1, 3, c(s)}. First, we assign the color 1 to the verticesx andz, and we
recolory properly. Finally we color properlyu, v, andw. The coloring obtained is
acyclic, a contradiction.

2

Lemma 1 Let G be a connected plane graph withn vertices,m edges andr faces. Letk ≥ 2, we
have the following:

∑

v∈V (G)

((k − 2)d(v) − 2k) +
∑

f∈F (G)

(2r(f) − 2k) = −4k (1)

Proof
Euler’s formulan − m + f = 2 can be rewritten as((2k − 4)m − 2kn) + (4m − 2kf)) = −4k.

The relation
∑

v∈V (H)

d(v) =
∑

f∈F (H)

r(f) = 2m completes the proof. 2

2.2 Proof of Theorem 2.1

Let G be a counterexample to Theorem 2.1 with the minimum order. The graphG satisfies Claim 1
and Equation (2) (given by Equation (1) fork = 11):
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∑

v∈V (G)

(9d(v) − 22) +
∑

f∈F (G)

(2r(f) − 22) = −44 (2)

We apply now a discharging procedure. We define the weight functionω : V (G)∪F (G) → R

by ω(x) = 9d(x)−22 if x ∈ V (G) andω(x) = 2r(x)−22 if x ∈ F (G). It follows from Equation
(2) that the total sum of weights is equal to -44. In what follows, we will define discharging rules
and redistribute weights accordingly. Once the discharging is finished, a new weight functionω∗

is produced. However, the total sum of weights is kept fixed when the discharging is achieved.
Nevertheless, we will show thatω∗(x) ≥ 0 for all x ∈ V (G) ∪ F (G). This leads to the following
obvious contradiction:

0 ≤
∑

x∈V (G)∪ F (G)

ω∗(x) =
∑

x∈V (G)∪F (G)

ω(x) = −44 < 0 (3)

and hence demonstrates that no such counterexample can exist.

We make the discharging procedure in two steps:

Step 1. Every≥3-vertex gives 2 to each adjacent 2-vertex.

We denote byω′(x) the new charge ofx ∈ V (G) ∪ F (G) after Step 1. BynT (v) denote the
number of triangles at distance exactly one fromv.

When Step 1 is finished, we proceed with Step 2:

Step 2. Every ≥3-vertexv incident to a triangleT givesω′(v) to T . Every≥3vertexv at distance
exactly one to triangles givesω′(v)/nT (v) to each triangle.

Let v be ak-vertex. By Claim 1.1,k ≥ 2.

Case k = 2 Observe thatω(v) = −4. By Claim 1.2,v is adjacent to≥3-vertices. Hence,ω′(v) =
−4 + 2 · 2 = 0 by Step 1. By Step 2,ω∗(v) ≥ 0.

Case k = 3 Initially, ω(v) = 5. By Claim 1.3,v is adjacent to at most one 2-vertex. Hence, ifv is adjacent
to a 2-vertex, thenω′(v) = 5 − 2 = 3 andω′(v) = 5 otherwise. By Step 2,ω∗(v) ≥ 0.

Case k = 4 Initially, ω(v) = 14. By Claim 1.4,v is adjacent to at most two 2-vertices. So ifv is adjacent
to two (resp. one, zero) 2-vertices, thenω′(v) = 14 − 2 · 2 = 10 (resp. 12, 14). And by Step
2, ω∗(v) ≥ 0.

Case k ≥ 5 Initially, ω(v) = 9k − 22. The vertexv gives 2 to each adjacent 2-vertex in Step 1. So
ω′(v) ≥ 9k − 22 − 2k = 7k − 22 ≥ 13. And, by Step 2,ω∗(v) ≥ 0.

Hence, after Steps 1 and 2, we have:∀v ∈ V (G), ω∗(v) ≥ 0. Observe now that, after Step 1, all
≥3-vertex can give at least32 to each triangle at distance exactly one during Step 2.

Let f be ak-face. Clearly, ifk ≥ 11, thenω∗(f) = ω(f) = 2r(f) − 22 ≥ 0. Now, suppose
thatf is a 3-facexyz with d(x) ≤ d(y) ≤ d(z). By claim 1.5,d(x) ≥ 3. Initially, ω(f) = −16. If
d(z) ≥ 4, then the verticesx, y, z gives at least3 + 3 + 10 to f and soω∗(f) ≥ 0. Assume now that
d(x) = d(y) = d(z) = 3. By Claim 1.6, at most one of the verticesx, y, z is adjacent to a 2-vertex.
If one of these vertices is adjacent to a 2-vertex, sayx, thenx gives 3 tof , and the verticesy and
z give each 5 tof . Now y andz are adjacent to two distinct vertices, sayy1 andz1 (different from
x, y, z), which give each at least32 to f . Henceω∗(f) ≥ −16 + 3 + 2 · 5 + 2 · 3

2 ≥ 0. If none of the
verticesx, y, z is adjacent to a 2-vertex, we have similarlyω∗(f) ≥ −16 + 3 · 5 + 3 · 3

2 ≥ 0.

Hence, after Steps 1 and 2, we have:∀x ∈ V (G)∪F (G), ω∗(x) ≥ 0. The contradiction obtained
by Equation (3) completes the proof.
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2.3 Proof of Theorem 2.2

Let G be a counterexample to Theorem 2.2 with the minimum order. The graphG satisfies Claim 1
and Equation (4) (given by Equation (1) fork = 10):

∑

v∈V (G)

(4d(v) − 10) +
∑

f∈F (G)

(r(f) − 10) = −20 (4)

As for the proof of Theorem 2.1, we apply now a discharging procedure. We define the weight
functionω : V (G)∪F (G) → R by ω(x) = 4d(x)−10 if x ∈ V (G) andω(x) = r(x)−10 if x ∈
F (G). It follows from Equation (4) that the total sum of weights isequal to -20. In what follows, we
will define discharging rules and redistribute weights accordingly. Once the discharging is finished,
a new weight functionω∗ is produced. However, the total sum of weights is kept fixed when the
discharging is achieved. Nevertheless, we will show thatω∗(x) ≥ 0 for all x ∈ V (G) ∪ F (G).
This leads to the following obvious contradiction:

0 ≤
∑

x∈V (G)∪ F (G)

ω∗(x) =
∑

x∈V (G)∪F (G)

ω(x) = −20 < 0 (5)

and hence demonstrates that no such counterexample can exist.

We make the discharging procedure in two steps:

Step 1. Every≥3-vertex gives 1 to each adjacent 2-vertex.

When Step 1 is finished, we proceed with Step 2:

Step 2. Every≥3-vertexv at distance at most one to a triangleT givesω′(v) to T .

Notice that a vertex can be at distance one to at most one triangle. Letv be ak-vertex. By Claim
1.1,k ≥ 2.

Case k = 2 Observe thatω(v) = −2. By Claim 1.2,v is adjacent to≥3-vertices. Hence,ω′(v) =
−2 + 2 · 1 = 0 by Step 1. By Step 2,ω∗(v) ≥ 0.

Case k = 3 Initially, ω(v) = 2. By Claim 1.3,v is adjacent to at most one 2-vertex. Hence, ifv is adjacent
to a 2-vertex, thenω′(v) = 2 − 1 = 1 andω′(v) = 2 otherwise. By Step 2,ω∗(v) ≥ 0.

Case k = 4 Initially, ω(v) = 6. By Claim 1.4,v is adjacent to at most two 2-vertices. So ifv is adjacent
to two (resp. one, zero) 2-vertices, thenω′(v) = 6 − 2 · 1 = 4 (resp. 5, 6). And by Step 2,
ω∗(v) ≥ 0.

Case k ≥ 5 Initially, ω(v) = 4k − 10. The vertexv gives 1 to each adjacent 2-vertex in Step 1. So
ω′(v) ≥ 4k − 10 − k = 3k − 10 ≥ 5. And, by Step 2,ω∗(v) ≥ 0.

Hence, after Steps 1 and 2, we have:∀v ∈ V (G), ω∗(v) ≥ 0. Observe now that, after Step 1, all
≥3-vertex can give at least 1 to the triangle (if any) at distance exactly one during Step 2.

Let f be ak-face. Clearly, ifk ≥ 10, thenω∗(f) = ω(f) = r(f)−10 ≥ 0. Now, suppose thatf
is a 3-facexyz with d(x) ≤ d(y) ≤ d(z). Initially, ω(f) = −7. By claim 1.5,d(x) ≥ 3. Moreover
by Claim 1.6, it follows that ifx andy are 3-vertices, at most once ofx andy is adjacent to a 2-
vertex. Ifd(z) ≥ 4, thenω∗(f) ≥ −7 + 1 + 2 + 4 = 0. Assume now thatd(x) = d(y) = d(z) = 3.
W.l.o.g., we consider two cases: (1)x is adjacent to a 2-vertex, (2)x is not adjacent to a 2-vertex.

(1) The vertexx gives 1 tof ; the verticesy andz gives 2 tof . Moreover, the neighborsy1, z1

( 6= x, y, z) of y, z respectively are distinct and give each at least 1 tof . Henceω∗(f) ≥
−7 + 1 + 2 · 2 + 2 · 1 = 0.

(2) The verticesx, y, z give each 2 tof . Moreover, the neighborsx1, y1, z1 ( 6= x, y, z) of x, y, z
respectively are distinct and give each at least 1 tof . Henceω∗(f) ≥ −7 + 3 · 2 + 3 · 1 ≥ 0.

Hence, after Steps 1 and 2, we have:∀x ∈ V (G)∪F (G), ω∗(x) ≥ 0. The contradiction obtained
by Equation (5) completes the proof.
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2.4 Proof of Theorem 2.3

Let G be a counterexample to Theorem 2.3 with the minimum order. The graphG satisfies Claim 1
and Equation (6) (given by Equation (1) fork = 9):

∑

v∈V (G)

(7d(v) − 18) +
∑

f∈F (G)

(2r(f) − 18) = −36 (6)

As for the proof of Theorem 2.2, we apply now a discharging procedure. We define the weight
functionω : V (G)∪F (G) → R byω(x) = 7d(x)−18 if x ∈ V (G) andω(x) = 2r(x)−18 if x ∈
F (G). It follows from Equation (6) that the total sum of weights isequal to -36. In what follows, we
will define discharging rules and redistribute weights accordingly. Once the discharging is finished,
a new weight functionω∗ is produced. However, the total sum of weights is kept fixed when the
discharging is achieved. Nevertheless, we will show thatω∗(x) ≥ 0 for all x ∈ V (G) ∪ F (G).
This leads to the following obvious contradiction:

0 ≤
∑

x∈V (G)∪ F (G)

ω∗(x) =
∑

x∈V (G)∪F (G)

ω(x) = −36 < 0 (7)

and hence demonstrates that no such counterexample can exist.

We make the discharging procedure in two steps:

Step 1. Every≥3-vertex gives 2 to each adjacent 2-vertex.

When Step 1 is finished, we proceed with Step 2:

Step 2. Each≥3-vertexv at distance at most two to a triangleT givesω′(v) to T .

Let v be ak-vertex. By Claim 1.1,k ≥ 2.

Case k = 2 Observe thatω(v) = −4. By Claim 1.2,v is adjacent to≥3-vertices. Hence,ω′(v) =
−4 + 2 · 2 = 0 by Step 1. By Step 2,ω∗(v) ≥ 0.

Case k = 3 Initially, ω(v) = 3. By Claim 1.3,v is adjacent to at most one 2-vertex. Hence, ifv is adjacent
to a 2-vertex, thenω′(v) = 3 − 2 = 1 andω′(v) = 3 otherwise. By Step 2,ω∗(v) ≥ 0.

Case k = 4 Initially, ω(v) = 10. By Claim 1.4,v is adjacent to at most two 2-vertices. So ifv is adjacent
to two (resp. one, zero) 2-vertices, thenω′(v) = 10 − 2 · 2 = 6 (resp. 8, 10). And by Step 2,
ω∗(v) ≥ 0.

Case k ≥ 5 Initially, ω(v) = 7k − 18. The vertexv gives 2 to each adjacent 2-vertex in Step 1. So
ω′(v) ≥ 7k − 18 − 2k = 5k − 18 ≥ 7. And, by Step 2,ω∗(v) ≥ 0.

Hence, after Steps 1 and 2, we have:∀v ∈ V (G), ω∗(v) ≥ 0. Observe now that, after Step 1, all
≥3-vertex can give at least 1 to the triangle (if any) at distance at most 2 in Step 2.

Let f be ak-face. Clearly, ifk ≥ 9, thenω∗(f) = ω(f) = 2r(f) − 18 ≥ 0. Now, suppose that
f is a 3-facexyz with d(x) ≤ d(y) ≤ d(z). Let xx1x2, yy1y2, andzz1z2 be three vertex-disjoint
2-paths starting fromx, y, z respectively (these paths exist since there are no cycles oflength 4 to
8). Initially, ω(f) = −12. By claim 1.5,d(x) ≥ 3. Moreover by Claim 1.6, it follows that if
x andy are 3-vertices, at most once ofx andy is adjacent to a 2-vertex. Ifd(z) ≥ 4, then the
verticesx, y, z give at least 1, 3, 10 respectively, and the verticesx1, y1, z1 give at least2 · 1; hence,
ω∗(f) ≥ −12 + 1 + 3 + 6 + 2 · 1 ≥ 0. Assume now thatd(x) = d(y) = d(z) = 3. W.l.o.g., we
consider two cases: (1)x is adjacent to a 2-vertex, (2)x is not adjacent to a 2-vertex.

(1) The vertexx gives 1 tof ; the verticesy andz give 3 tof . Moreover, the verticesx2, y1, y2, z1, z2

give each at least 1. Henceω∗(f) ≥ −12 + 1 + 2 · 3 + 5 · 1 = 0.

(2) The verticesx, y, z give each 3 tof . The verticesx1, x2, y1, y2, z1, z2 give each at least 1.
Henceω∗(f) ≥ −12 + 3 · 3 + 6 · 1 ≥ 0.

Hence, after Steps 1 and 2, we have:∀x ∈ V (G)∪F (G), ω∗(x) ≥ 0. The contradiction obtained
by Equation (7) completes the proof.
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2.5 Proof of Theorem 2.4

Let G be a counterexample to Theorem 2.4 with the minimum order. The graphG satisfies Claim 1
and Equation (8) (given by Equation (1) fork = 9):

∑

v∈V (G)

(3d(v) − 8) +
∑

f∈F (G)

(r(f) − 8) = −16 (8)

As for the proof of Theorem 2.2, we apply now a discharging procedure. We define the weight
functionω : V (G) ∪F (G) → R by ω(x) = 3d(x)− 8 if x ∈ V (G) andω(x) = r(x) − 8 if x ∈
F (G). It follows from Equation (8) that the total sum of weights isequal to -16. In what follows, we
will define discharging rules and redistribute weights accordingly. Once the discharging is finished,
a new weight functionω∗ is produced. However, the total sum of weights is kept fixed when the
discharging is achieved. Nevertheless, we will show thatω∗(x) ≥ 0 for all x ∈ V (G) ∪ F (G).
This leads to the following obvious contradiction:

0 ≤
∑

x∈V (G)∪ F (G)

ω∗(x) =
∑

x∈V (G)∪F (G)

ω(x) = −16 < 0 (9)

and hence demonstrates that no such counterexample can exist.

We make the discharging procedure in two steps:

Step 1. Every≥3-vertex gives 1 to each adjacent 2-vertex.

When Step 1 is finished, we proceed with Step 2:

Step 2. Each≥3-vertexv at distance at most three to a triangleT givesω′(v) to T .

Let v be ak-vertex. By Claim 1.1,k ≥ 2.

Case k = 2 Observe thatω(v) = −2. By Claim 1.2,v is adjacent to≥3-vertices. Hence,ω′(v) =
−2 + 2 · 1 = 0 by Step 1. By Step 2,ω∗(v) ≥ 0.

Case k = 3 Initially, ω(v) = 1. By Claim 1.3,v is adjacent to at most one 2-vertex. Hence, ifv is adjacent
to a 2-vertex, thenω′(v) = 1 − 1 = 0 andω′(v) = 1 otherwise. By Step 2,ω∗(v) ≥ 0.

Case k = 4 Initially, ω(v) = 4. By Claim 1.4,v is adjacent to at most two 2-vertices. So ifv is adjacent to
two (resp. one, zero) 2-vertices, thenω′(v) = 4−2 ·1 = 2 (resp. 3, 4). By Step 2,ω∗(v) ≥ 0.

Case k ≥ 5 Initially, ω(v) = 3k − 8. The vertexv gives 1 to each adjacent 2-vertex in Step 1. So
ω′(v) ≥ 3k − 8 − k = 2k − 8 ≥ 2. By Step 2,ω∗(v) ≥ 0.

Hence, after Steps 1 and 2, we have:∀v ∈ V (G), ω∗(v) ≥ 0. Observe now that, after Step 1, (1)
all ≥4-vertex can give at least 2 to the triangle (if any) at distance at most 4 in Step 2, (2) a 3-vertex
not adjacent to a 2-vertex can give 1 to the triangle (if any) at distance at most 4 in Step 2, and (3) the
unique kind of vertices which cannot give anything is a 3-vertex adjacent to a 2-vertex. It follows by
Claim 1.7:

Observation 1 If rst is 2-path composed of≥3-vertices, then at least one of these vertices has a
weight at least 1 after Step 1.

Let f be ak-face. Clearly, ifk ≥ 8, thenω∗(f) = ω(f) = r(f) − 8 ≥ 0.
Now, suppose thatf is a 3-facexyz with d(x) ≤ d(y) ≤ d(z). Let xx1x2x3, yy1y2y3, and

zz1z2z3 be three vertex-disjoint 3-paths starting fromx, y, z respectively (these paths exist since
there are no cycles of length 4 to 7). Initially,ω(f) = −5.

We consider several cases according to the degrees ofx, y, andz:

8



Consider the cased(x) = 3, d(y) = 3, d(z) ≥ 4, andd(x1) = 2. During Step 2,y andz give
1 and at least 2 respectively. If at least one of the verticesy1, y2, y3 has degree at least 4. Then
ω∗(f) = −5 + 1 + 2 + 2 = 0. Assume now thatd(yi) ≤ 3 for i = 1, 2, 3. By Claims 1.2, 1.3, 1.5,
and 1.6, we can choose the verticesyi such that thatd(yi) = 3 for i = 1, 2, 3. Hence by Observation
1, we are sure that at least one vertex ofy1, y2, y3 has a weight at least one after Step 1. This weight
is transfered tof during Step 2. Similarly, by Claims 1.2,x2 is of degree at least 3. Ifd(x2) ≥ 4,
thenω∗(f) = −5+1+2+1+2 ≥ 0. Assume now thatd(x2) = 3. Letx′

3 the third neighbor ofx2

(since there are no cycles of length 4 to 7,x′
3 is distinct tox, y, z, x1, x2, x3, y1, y2, y3, z1, z2, z3).

By Claim 1.3, we haved(x3) ≥ 3 andd(x′
3) ≥ 3. So by Obervation 1, at least one vertex of

x2, x3, x
′
3 has a weight at least one after Step 1. This weight is transfered tof during Step 2. Hence

ω∗(f) = −5 + 1 + 2 + 1 + 1 = 0.

Consider the cased(x) = 3, d(y) = 3, d(z) ≥ 4, andd(x1) ≥ 3, d(y1) ≥ 3, d(z1) ≥ 3.
During Step 2,x, y and z give 1, 1, and at least 2 respectively. If at least one of the vertices
x1, x2, x3, y1, y2, y3 has degree at least 4. Thenω∗(f) = −5 + 1 + 1 + 2 + 2 ≥ 0. Assume now
thatd(xi) ≤ 3 andd(yi) ≤ 3 for i = 1, 2, 3. By Claims 1.2, 1.3, 1.5, and 1.6, we can choosexi an
yi such thatd(xi) = 3 andd(yi) = 3 for i = 1, 2, 3. Hence by Observation 1, we are sure that at
least one vertex ofx1, x2, x3 (resp.y1, y2, y3) has a weight at least one after Step 1. This weight is
transfered tof during Step 2. Henceω∗(f) = −5 + 1 + 1 + 2 + 1 + 1 ≥ 0.

Consider the cased(x) = d(y) = d(z) = 3, andd(x1) = 2. During Step 2,f receives 1 from
y and1 from z. We first show that each path ofy1y2y3 andz1z2z3 gives at least 1 tof . Consider
y1y2y3. If one ofy1, y2, y3 is of degree at least 4, then this path will give at least 1 tof . Otherwise,
by Claims 1.2, 1.3, 1.5, and 1.6, we can assume thatd(yi) ≥ 3 for i = 1, 2, 3. Hence by Observation
1, we are sure that at least one vertex ofy1, y2, y3 has a weight at least one after Step 1. Similarly,
the pathz1z2z3 gives at least 1 tof . Now, by Claims 1.2,x2 is of degree at least 3. Ifd(x2) ≥ 4,
thenω∗(f) = −5+1+1+1+1+2≥ 0. Assume now thatd(x2) = 3. Letx′

3 the third neighbor of
x2 (since there are no cycles of length 4 to 7,x′

3 is distinct tox, y, z, x1, x2, x3, y1, y2, y3, z1, z2, z3).
By Claim 1.3, we haved(x3) ≥ 3 andd(x′

3) ≥ 3. So by Obervation 1, at least one vertex of
x2, x3, x

′
3 has a weight at least one after Step 1. This weight is transfered tof during Step 2. Hence

ω∗(f) = −5 + 1 + 1 + 1 + 1 + 1 = 0.

Consider the cased(x) = d(y) = d(z) = 3, andd(x1) ≥ 3, d(y1) ≥ 3, d(z1) ≥ 3. Using
similar arguments, one can prove thatω∗(f) ≥ −5 + 1 + 1 + 1 + 1 + 1 + 1 ≥ 0.

Hence, after Steps 1 and 2, we have:∀x ∈ V (G)∪F (G), ω∗(x) ≥ 0. The contradiction obtained
by Equation (9) completes the proof.

3 Conclusion

We conclude with some specific problems. It was recently proved by Borodinet al. [4] that every
planar graph with girth at least 7 is acyclically 3-choosable. (We recall that the girth of graphG is
the length of a shortest cycle ofG.)

Problem 1 Prove that:

1. Every planar graph with girth at least 6 is acyclically 3-choosable.

2. Every planar graph without cycles of length 4 toi is acyclically 3-choosable with6 ≤ i ≤ 11.

3. There exists a constantd such that every planar graphG without cycles of length 4 to6 and
d∆(G) ≥ d is acyclically 3-choosable.
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