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Proper k -coloring

A proper k-coloring of the vertices of a graph
G = (V (G),E(G)) is a mapping c : V (G) −→ {1, · · · , k} such
that ∀uv ∈ E(G), c(u) 6= c(v).

Acyclic k -coloring

An acyclic k-coloring of a graph G is a proper k -coloring of G
such that G contains no bicolored cycles ; in other words, the
graph induced by every two color classes is a forest.
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The coloring of G is not acyclic
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Acyclic chromatic number

The acyclic chromatic number of a graph G, denoted by χa(G),
is the smallest integer k such that G has an acyclic k -coloring.

B. Grünbaum.
Acyclic colorings of planar graphs.
Israel J. Math., (14):390-408, 1973.
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Acyclic colorings were introduced by Grünbaum in 1973 who
conjectured that 5 colors are sufficent to acyclically color any
planar graph; this was confirmed by Borodin in 1979.

Theorem [O.V. Borodin ’79]

Every planar graph is acyclically 5-colorable.

O.V. Borodin
On acyclic colorings of planar graphs.
Discrete Math., (25):211-236, 1979.

This bound is best possible since there exist 4-regular planar
graphs which are not acyclically colorable with four colors.
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Grünbaum’s example
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Graphs of bounded maximum degree

Motivation

As usual in the case of the coloring problems, one would like to
bound χa(G) by a function of ∆ (f (∆)).

Theorem [N. Alon, C. McDiarmid, B. Reed ’91]

For large values of ∆, every graph is acyclically colorable with
O(∆4/3) colors. Moreover, there exist graphs with
χa(G) = Ω(∆

4
3 / log∆).

Both proofs use probablistic method.
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Graphs of bounded maximum degree

Remark

χa(Kn) = χ(Kn) = n = ∆+ 1,
χa(K2n \M) = 2n − 1 = ∆+ 1 >> χ(K2n \M) = n ≃ ∆

2
with M a perfect matching.

Question

Can we find a concrete example of graph with χa(G) ≥ ∆+ 2 ?
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Graphs of bounded maximum degree

Observation

For ∆ = 0, 1, 2 : f (∆) = 1, 2, 3 (easy).

Theorem [Grünbaum ’73]

Every graph with ∆ ≤ 3 is acyclically 4-colorable, and the
bound is tight (because of K4).

B. Grünbaum.
Acyclic colorings of planar graphs.
Israel J. Math., (14):390-408, 1973.
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Graphs of bounded maximum degree

Theorem [M.I. Burstein ’79]

Every graph with ∆ ≤ 4 is acyclically 5-colorable, and the
bound is tight.

M.I. Burstein
Every 4-valent graph has an acyclic 5-coloring.
Soobs̆c̆. Akad. Nauk Gruzin SSR, (93):21-24, 1979 (in
Russian).
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Graphs of bounded maximum degree
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Graphs of bounded maximum degree

Theorem [G. Fertin, A. Raspaud ’05]

Every graph, for any ∆ ≥ 6, is acyclically
(

∆(∆−1)
2

)

-colorable

for even ∆ and acyclically
(

∆(∆−1)
2 − 1

)

-colorable for odd ∆.

G. Fertin, A. Raspaud
Acyclic coloring of graphs of maximum degree ∆.
DMTCS proc. AE, 389-396, 2005.
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Graphs of bounded maximum degree

Theorem [G. Fertin, A. Raspaud ’05]

Every graph with ∆ ≤ 5 is acyclically 9-colorable.

G. Fertin, A. Raspaud
Acyclic coloring of graphs of maximum degree five : nine
colors are enough.
Inform. Process. Lett., (105):65-72, 2008.
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Graphs of bounded maximum degree

Theorem [Yadav, Varagani, Kothapalli, Venkaiah ’09]

Every graph with ∆ ≤ 5 is acyclically 8-colorable.
Every graph with ∆ ≤ 6 is acyclically 12-colorable.

K. Yadav, S. Varagani, K. Kothapalli, and V. Ch. Venkaiah
Acyclic Vertex Coloring of Graphs of Maximum Degree 5
International Conference on Graph Theory and its
Applications, 2009.

K. Yadav, S. Varagani, K. Kothapalli, and V. Ch. Venkaiah
Acyclic Vertex Coloring of Graphs of Maximum Degree 6
V Latin-American Algorithms, Graphs, and Optimization
Symposium (LAGOS), 2009.
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Graphs of bounded maximum degree

Theorem [Yadav, Varagani, Kothapalli, Venkaiah ’10]

Every graph is acyclically 3∆2+4∆+8
8 -colorable, for any ∆ ≥ 8.

K. Yadav, S. Varagani, K. Kothapalli, and V. Ch. Venkaiah
Acyclic Vertex Coloring of Graphs of Maximum Degree ∆
Proc. of Indian Mathematical Society, 2009.
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Graphs of bounded maximum degree

Theorem [Dieng, H., Naserasr ’10]

Let f (∆) =















8 if ∆ = 5
11 if ∆ = 6
17 if ∆ = 7
∆2

−5∆
2 + 2 × ⌊∆−1

2 ⌋+ 3 if ∆ ≥ 8

Every graph is acyclically f (∆)-colorable, for any ∆ ≥ 5.
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Proof for ∆ = 5: the case of 5-regular graph
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Good Spanning Trees

Theorem [Dieng, H., Naserasr ’10]

Let G be a ∆-regular connected graph. There exists a spanning
tree T of G having a vertex u with ∆− 1 leaves in T .
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Good Spanning Trees

r
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Post order walk
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The color list of u

c2

u

c1

c4 c3

c1

Lu = (2, 1, 1, 1)
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Maximum number of dangerous colors to color u

u

Lu = (1, 1, · · · , 1)

1 2 k − 1 k
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Maximum number of dangerous colors to color u

1 1 2

u

2
n1 n2

Lu = (n1, n2)

∆− 1 ∆− 1 ∆− 1∆− 1

BC(u) = ⌊n1×(∆−1)
2

⌋ + ⌊n2×(∆−1)
2

⌋ = 2n1 + 2n2
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Coloring the vertices
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Simple cases

Based on the type of Lu we have several cases.
We assume u 6= xn.

• Lu = (1), (1, 1), (1, 1, 1), (1, 1, 1, 1) we color u properly, that
is possible because there remains at least 4 colors.

• Lu = (2), (2, 1), (2, 1, 1), (3) we can color u because there
remains at least one color.
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Lu = (3, 1)

1 1 1

u

4 distinct colors

2

4 distinct colors 4 distinct colors
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Lu = (3, 1)

1 1 1

u

3 distinct colors

2

4 distinct colors 4 distinct colors

⌊3+2×4
2

⌋ + 2 = 7
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Lu = (3, 1)

1 1 1

u

2

{3, 4, 5, 6}

7

Lu = (2, 1, 1)
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Lu = (4)

1 1 1

u

4 distinct colors

1

{2, 3, 4, 5}

6

Lu = (3, 1)

Youssou Dieng, Hervé Hocquard, Reza Naserasr Acyclic coloring of graphs with given maximum degree



Introduction
Our work

Conclusion and future works
Appendix

Some results
Our results
Sketch of proof

Lu = (4)

1 1 1

u

1

3− distinct colors 3− distinct colors 3− distinct colors 3− distinct colors

⌊4×3
2
⌋ + 1 = 7
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Lu = (2, 2)

1 1 2

u

2
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Lu = (2, 2)

1 1 2

u

4 distinct colors

2

{3, 4, 5, 6}

7

Lu = (2, 1, 1)
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Lu = (2, 2)

1 1 2

u

2

3− distinct colors 3− distinct colors 3− distinct colors 3− distinct colors
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Lu = (2, 2)

1 1 2

u

2

2− distinct colors 3− distinct colors 3− distinct colors 3− distinct colors

⌊2+3

2
⌋ + ⌊2×3

2
⌋ + 2 = 7
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Lu = (2, 2)

1 1 2

u

2

⌊2×3
2
⌋ + ⌊2×3

2
⌋ + 2 = 8

3 distinct colors 3 distinct colors 3 distinct colors 3 distinct colors
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Lu = (2, 2)

1 1 2

u

2

{3, 4, 5} {6, 7, 8}{3, 4, 5} {6, 7, 8}
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Lu = (2, 2)

1 1 2

u

2

{6, 7, 8}{3, 4, 5} {6, 7, 8}
543
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Lu = (2, 2)

1 1 2

u

2

{6, 7, 8}{3, 4, 5} {6, 7, 8}
543

6

Lu = (2, 1, 1)
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Lu = (2, 2)

1 1 2

u

2

{6, 7, 8}{3, 4, 5} {6, 7, 8}

4 5 33

{2, 6, 7, 8} {2, 6, 7, 8}

Youssou Dieng, Hervé Hocquard, Reza Naserasr Acyclic coloring of graphs with given maximum degree



Introduction
Our work

Conclusion and future works
Appendix

Some results
Our results
Sketch of proof

Lu = (2, 2)

1 1 2 2

{6, 7, 8}{3, 4, 5} {6, 7, 8}

4 5 33

{2, 6, 7, 8} {2, 6, 7, 8}

3
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Lxn = (1, 1, 1, 1, 1)

21 45

xn

3
x1 x2 x3 x4
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Lxn = (2, 1, 1, 1)

21 41

xn

x3 x4

{5, 6, 7, 8} {5, 6, 7, 8}

x1 x2

3

Youssou Dieng, Hervé Hocquard, Reza Naserasr Acyclic coloring of graphs with given maximum degree



Introduction
Our work

Conclusion and future works
Appendix

Some results
Our results
Sketch of proof

Lxn = (2, 1, 1, 1)

2
2 2

1 41
x3 x4

{5, 6, 7, 8} {5, 6, 7, 8}

x1 x2

3

1
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Proof for ∆ ≥ 6

Remark
• For ∆ = 6, we use the same techniques but we make deeper
analysis.

• For ∆ ≥ 7, we do a similar analysis based on induction.
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Questions

Is it true that looking at distance > 2 decreases the number of
colors ?

There are graphs of maximum degree 5 that need 6 colors.
Can we find a graph G of maximum degree 5 with χa(G) > 6 ?

For ∆ ≥ 5, we suspect the bounds we found are not tight. Can
we improve those bounds ?

What is the smallest value of ∆ for which there is a graph with
χa(G) ≥ ∆+ 2 ?
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Proof for ∆ = 5

x5

x6

x8

x9

x14

x13

x7

x12

x15

x10

x11

xn = x16

2
4

1
3

Lx5
= (1)
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= (2, 1)
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2

3

Lx8
= (1, 1)

1
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Lx9
= (1, 1, 1)
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x14
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1 2
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= (2, 1)
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x14

x13

x12

x15

x11

xn = x16

2
4

1
3

2

3

1 2

1

5

Lx11
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x14

x13

x12

x15

xn = x16
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3

2

3

1 2

1

5

Lx12
= (2, 1, 1)

5

Youssou Dieng, Hervé Hocquard, Reza Naserasr Acyclic coloring of graphs with given maximum degree



Introduction
Our work

Conclusion and future works
Appendix

Proof for ∆ = 5
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2

3
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1

5

5

4

Lx13
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1
3

3

1 2

5

5

4

Lx13
= (2, 1, 1)
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x14

xn = x16

2
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1
3

2

3

1 2

1

5

5

4

Lx14
= (3, 1)

x15

2
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Proof for ∆ = 5

x15

xn = x16

2
4

1
3

2

3

1 2

1

5

5

4

2

6

Lx15
= (2, 1, 1)
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Proof for ∆ ≥ 8

Lemma [Dieng, H., Naserasr ’10]

Let G be a graph of maximum degree ∆ ≥ 8 together with
ordering of vertices defined above and let ϕi (1 ≤ i ≤ ∆− 2) be
a partial acyclic coloring which has colored vertices
x1, x2, · · · , xi using at most f (∆) = ∆2

−5∆
2 + 2 × ⌊∆−1

2 ⌋+ 3
colors. Suppose Lxi+1 = (1, 1, . . . , 1) (with 1 ≤ l ≤ ∆− 1 being
the number 1’s) or Lxi+1 = (n1, n2, . . . , nk , 1, . . . , 1) (with
n1 ≥ n2 ≥ . . . ≥ nk ≥ 2 and 1 ≤ l ≤ ∆− 2 being the number
1’s). Then there is an acyclic coloring ϕi+1 of
G[{x1, x2, · · · , xi+1}] using at most f (∆) colors.
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