Aucun document autorisé - Téléphones portables, calculatrices et tout accessoire électronique interdits.

Pour chacune des vingt questions de ce QCM, une seule réponse est exacte.

Une réponse **exacte rapporte** 1 **point**. Une réponse **fausse enlève** 0,5 **point**. L'absence de réponse n'ajoute ni n'enlève aucun point. Si le total des points est négatif, la note est ramenée à 0.

Exercice 1

On peut affirmer que:

1. $\lim_{x \to -\infty} \frac{5x^2 + 2x - 3}{2x^2 - 7} =$

réponse a : $+\infty$

réponse b : $-\infty$

RÉPONSE C: 0

RÉPONSE D : $\frac{5}{2}$

2. On peut affirmer que $\lim_{x \to 1} \frac{2x^2 - 6x + 4}{x^2 + 2x - 3} =$

réponse a : 2

réponse b : 0

RÉPONSE C : $-\frac{1}{2}$

RÉPONSE D : $-\frac{1}{4}$

3. On peut affirmer que $\lim_{x\to 1} \frac{x-1}{\sqrt{x+3}-2} =$

réponse a : 0

 $\mathsf{R\acute{e}ponse}\:\mathsf{b}:+\infty$

RÉPONSE C: 4

RÉPONSE D : 6

Exercice 2 _

Les services de la mairie d'une ville ont étudié l'évolution de la population de cette ville. Chaque année, 10% de la population quitte la ville et 1 000 personnes s'y installent. En 2012, la ville comptait 40 000 habitants. On note U_n le nombre d'habitants de la ville en l'année 2012 + n. On a donc $U_0 = 40\,000$. On admet que la suite (U_n) est définie pour tout entier naturel n par $U_{n+1} = 0.9 \times U_n + 1\,000$. On considère la suite (V_n) définie pour tout entier naturel n par $V_n = U_n - 10\,000$.

4. La valeur de U_1 est :

RÉPONSE A : $4\,600$ RÉPONSE C : $46\,000$ RÉPONSE B : 37 000 RÉPONSE D : 36 900

5. La suite (V_n) est :

Réponse a : géométrique de raison -10% .

RÉPONSE в : géométrique de raison 0,9.

RÉPONSE ${\bf c}$: géométrique de raison -0.9.

RÉPONSE D : arithmétique de raison -10000.

6. La suite (U_n) a pour limite :

réponse a : $+\infty$ réponse c : 1000

RÉPONSE B : 0RÉPONSE D : 10000

Exercice 3

7. Dans \mathbb{R} , l'équation $\ln(x+4) + \ln(x-2) = \ln(2x+1)$

RÉPONSE A: n'a pas de solution

RÉPONSE C: admet deux solutions x = -3 et x = 3

RÉPONSE B : admet exactement une solution x = 3

RÉPONSE D: admet une infinité de solutions

8. Dans \mathbb{R} , l'équation $2e^{2x} + 8e^{x} + 6 = 0$

RÉPONSE A: n'a pas de solution

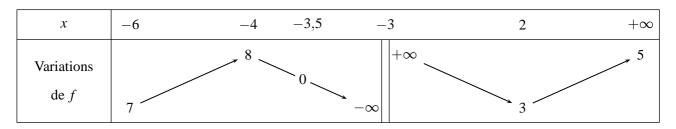
RÉPONSE C : admet exactement deux solutions

RÉPONSE B: admet exactement une solution

RÉPONSE D: admet une infinité de solutions

Exercice 4 _

Une fonction f est définie et dérivable sur l'ensemble $[-6; -3[\cup] - 3; +\infty[$. Le tableau de variations de la fonction f est le suivant :



9. On peut affirmer que:

 $\text{RÉPONSE A}: \lim_{x \to 5} f(x) = +\infty$

 $\text{Réponse c}: \lim_{x \to -6} f(x) = -\infty$

RÉPONSE B : $\lim_{x \to +\infty} f(x) = 5$ RÉPONSE D : $\lim_{x \to +\infty} f(x) = 0$

10. La courbe représentative de f admet pour asymptotes les droites d'équation :

RÉPONSE A : x = 5 et y = -3

RÉPONSE B : x = -3 et y = 5

RÉPONSE C : y = 8 et y = 3

RÉPONSE D : x = -6 et y = 5

11. Dans l'ensemble $[-6; -3[\cup] - 3; +\infty[$ l'équation f(x) = 4 admet

RÉPONSE A: 0 solution

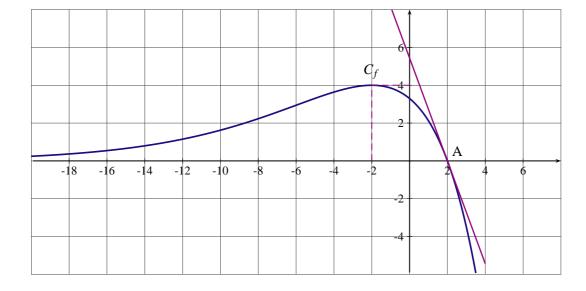
RÉPONSE B: 1 solution

RÉPONSE C: 2 solutions

RÉPONSE D: 3 solutions

Exercice 5

On a tracé ci-dessous la courbe représentative C_f d'une fonction f définie sur \mathbb{R} ainsi que sa tangente au point A(2;0). On donne $e \simeq 2{,}71$ et f'(-2) = 0 et f(-2) = 4.



12. Quelle est l'équation de la tangente à C_f en A?

RÉPONSE A : y = -ex + 2eRÉPONSE C : y = ex + 3e réponse B : y = 3x + 2eréponse D : y = -5x + 4e

13. La fonction f est :

Réponse a : concave sur $]-\infty$; 0] Réponse c : concave sur [-6; 2]

RÉPONSE B : convexe sur $]-\infty$; 0] RÉPONSE D : convexe sur [-6; 2]

14. Sur [-6; 2] la fonction f admet :

RÉPONSE A : 4 comme maximum global RÉPONSE C : -2 comme maximum global

RÉPONSE B : 4 comme maximum local non global RÉPONSE D : -2 comme maximum local non global

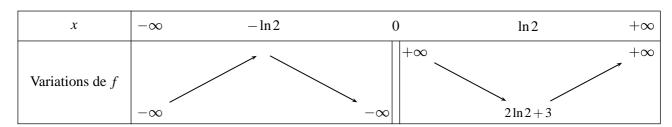
Exercice 6 _

Soit f une fonction définie sur $]-\infty;0[\cup]0;+\infty[$ par $f(x)=2x+1+\frac{e^x}{e^x-1}.$

On admet que la fonction f est dérivable sur $]-\infty;0[\cup]0;+\infty[$.

On désigne par \mathscr{C} la courbe représentative de f dans un repère orthogonal.

Le tableau de variations de la fonction f est donné ci-dessous.



15. Dans l'intervalle]0; $+\infty[$, l'équation $f(x) = e^2$ admet :

RÉPONSE A : aucune solution RÉPONSE C : deux solutions RÉPONSE B : une unique solution RÉPONSE D : trois solutions

16. La tangente à la courbe \mathscr{C} au point d'abscisse $\ln(1,5)$ admet un coefficient directeur égal à :

réponse a : 0

 ${\tt RÉPONSE}\ {\tt B}: 2$

RÉPONSE C : -2

réponse d : -4

17. $f[-\ln(2)]$ est égal à :

réponse a : $-2\ln(2)+3$

RÉPONSE B : $\ln\left(\frac{1}{4}\right)$

 $\text{Réponse c}: -2\ln(2) + 1$

 $\text{RÉPONSE D}: -2\ln(2) + \frac{3}{4}$

Exercice 7

Soient les polynômes $P(x) = x^6 - 6x^4 + 4x^3 + 9x^2 - 12x + 4$ et $Q(x) = (x-1)^2(x+2)$.

18. On peut affirmer que:

RÉPONSE A : 1 est racine d'ordre 2 de P

RÉPONSE B: 1 est racine d'ordre au moins 2 de P

RÉPONSE C : -2 est racine d'ordre 1 de P RÉPONSE D : 2 est racine d'ordre 2 de P

19. Le quotient de la division euclidienne de P(x) par Q(x) est égal à :

RÉPONSE A : $x^3 - 3x + 2$

RÉPONSE B : $x^3 + 3x - 2$

RÉPONSE **c** : $2x^3 - 3x + 1$

RÉPONSE D: 0

20. Le reste de la division euclidienne de P(x) par Q(x) est égal à :

RÉPONSE A : $x^3 + 3x - 2$

RÉPONSE B : $x^3 - 3x + 2$

RÉPONSE C : 0 RÉPONSE D : $2x^3 - 3x + 1$