Semestre 1 2014/2015

TD 3: Fonctions logarithme et exponentielle

Exercice 1

Résoudre dans $\mathbb R$ les équations et inéquations suivantes :

1.
$$\ln(1-2x) = \ln(x+2) + \ln 3$$

2.
$$\ln(1-x^2) = \ln(2x-1)$$

3.
$$\ln \sqrt{2x-2} = \ln (4-x) - \frac{1}{2} \ln x$$

4.
$$2e^{2x} - 5e^x = -2$$

5.
$$e^x - 2e^{-x} - 1 = 0$$

6.
$$\ln(2-x) \le \ln(2x+1) - \ln(3)$$

7.
$$\ln(3x+2) \ge \ln\left(x^2 + \frac{1}{4}\right)$$

8. $e^x > -3$

8.
$$e^x > -3$$

9.
$$\exp\left(1+\frac{2}{x}\right) \leqslant e^x$$

Exercice 2_

Étudier les limites aux bornes de son ensemble de définition de la fonction f définie par :

a)
$$f(x) = 3x + 2 - \ln x$$
;

b)
$$f(x) = \frac{2x + \ln x}{1 + \ln x}$$

c)
$$f(x) = \frac{2 \ln x - 1}{x}$$
;

d)
$$f(x) = \frac{1}{x} - \ln x$$

e)
$$f(x) = \frac{e^x - 2}{e^x + 1}$$
;

b)
$$f(x) = \frac{2x + \ln x}{x}$$
; c) $f(x) = \frac{2\ln x - 1}{x}$; d) $f(x) = \frac{1}{x} - \ln x$;
f) $f(x) = \exp\left(\frac{x+3}{x^2-1}\right)$; g) $f(x) = xe^x - e^x + 1$

$$g) \quad f(x) = xe^x - e^x + 1$$

Exercice 3 ___

1. Dans chacun des cas suivants, calculer la dérivée f' de la fonction f définie sur $]0; +\infty[$:

a)
$$f(x) = x \ln x - x$$

a)
$$f(x) = x \ln x - x$$
; b) $f(x) = \ln \left(\frac{1}{x}\right)$;

c)
$$f(x) = \ln \sqrt{x}$$

c)
$$f(x) = \ln \sqrt{x}$$
; d) $f(x) = (\ln x)^2$; e) $\ln (x^2)$

e)
$$\ln\left(x^2\right)$$

2. Calculer la dérivée f' de la fonction f sur son ensemble de définition :

a)
$$f(x) = \exp(x^2 + 3x - 1)$$
; b) $f(x) = e^{\frac{1}{x}}$;

b)
$$f(x) = e^{\frac{1}{x}}$$
;

c)
$$f(x) = e^{e^x}$$

c)
$$f(x) = e^{e^x}$$
; d) $f(x) = e^{\sqrt{x} \ln x}$

Exercice 4 ____

_____(D'après sujet bac Amérique du Nord 2007)

PREMIÈRE PARTIE

On considère une fonction g définie sur l'intervalle $\left|-\frac{1}{2};+\infty\right|$ par :

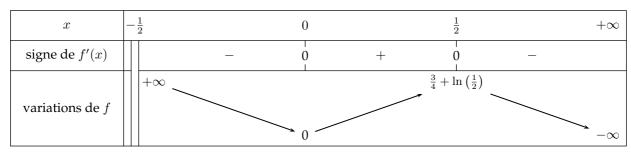
$$g(x) = -x^2 + ax - \ln(2x + b)$$
, où a et b sont deux réels.

Calculer a et b pour que la courbe représentative de g dans un plan muni d'un repère $(0; \vec{i}, \vec{j})$ passe par l'origine du repère et admette une tangente parallèle à l'axe des abscisses au point d'abscisse $\frac{1}{2}$.

DEUXIÈME PARTIE

Soit f la fonction définie sur l'intervalle $\left[-\frac{1}{2}; +\infty\right[$ par $f(x)=-x^2+2x-\ln(2x+1)$.

On admet que f est dérivable et on note f' sa dérivée. Le tableau de variations de la fonction f est le suivant :



1. Justifier tous les éléments contenus dans ce tableau.

2. Montrer que l'équation f(x)=0 admet une unique solution α dans l'intervalle $\left[\frac{1}{2};1\right]$ $\left(f\left(\frac{1}{2}\right)\simeq0,057$ et $f(1)\simeq-0,099$).

3. Déterminer le signe de f(x) sur l'intervalle $\left]-\frac{1}{2}\;;\;+\infty\right[.$

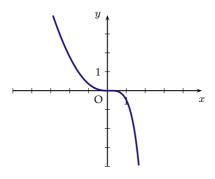
Exercice 5 _

_(D'après sujet bac Amérique du Sud 2010)

On considère la fonction numérique f définie et dérivable sur \mathbb{R} telle que, pour tout réel x, on ait :

$$f(x) = \frac{x^2}{2} - x^2 e^{x-1}.$$

On note f' sa fonction dérivée sur \mathbb{R} . Le graphique ci-après est la courbe représentative de cette fonction telle que l'affiche une calculatrice dans un repère orthogonal.



1. Quelle conjecture pourrait-on faire concernant le sens de variation de f sur l'intervalle [-3; 2] en observant cette courbe ?

Dans la suite du problème, on va s'intéresser à la validité de cette conjecture.

2. Calculer f'(x) et vérifier que f'(x)=xg(x) où $g(x)=1-(x+2)e^{x-1}$ pour tout x de $\mathbb R$.

Pour la suite, on admet que g est dérivable sur \mathbb{R} et on note g' sa fonction dérivée.

3. Étude du signe de g(x) suivant les valeurs de x.

(a) Calculer les limites respectives de g(x) quand x tend vers $+\infty$ et quand x tend vers $-\infty$. On pourra utiliser (en la démontrant) l'égalité : $g(x) = 1 - \frac{xe^x + 2e^x}{e}$.

(b) Calculer g'(x) et étudier son signe suivant les valeurs du nombre réel x.

- (c) En déduire le sens de variation de la fonction g puis dresser son tableau de variation en y reportant les limites déterminées précédemment.
- (d) Montrer que l'équation g(x)=0 possède une unique solution dans $\mathbb R$. On note α cette solution. On admet que $0,20<\alpha<0,21$.
- (e) Déterminer le signe de g(x) suivant les valeurs de x.
- 4. Sens de variation de la fonction f
 - (a) Étudier le signe de f'(x) suivant les valeurs de x.
 - (b) En déduire le sens de variation de la fonction f.
 - (c) Que pensez-vous de la conjecture de la question 1?

Exercice 6 __

Soit f la fonction définie par $f(x) = \frac{3+x^4}{x}$.

- 1. Déterminer le domaine de définition de f.
- 2. Calculer les dérivées première et seconde de f.
- 3. Déterminer les extrema de f.
- 4. Construire le tableau de variations de f. Les extrema de f sont-ils globaux?
- 5. Que peut-on dire des extrema de f si on restreint l'étude de f à chaque intervalle du domaine de définition?

PREMIÈRE PARTIE

Soit f la fonction définie par $f(x) = \frac{3x^2 + 4x - 1}{x + 2}$ et soit \mathcal{C} sa représentation graphique dans un repère orthonormal (O, \vec{i}, \vec{j}) .

- 1. Étudier la fonction *f* (ensemble de définition, limites et asymptotes éventuelles, signe de la dérivée, tableau de variations).
- 2. En déduire les extrema de f. Les extrema de f sont-ils globaux?
- 3. Que peut-on dire des extrema de f si on restreint l'étude de f à chaque intervalle du domaine de définition?
- 4. Déterminer une équation de la tangente T à la courbe \mathcal{C} au point d'abscisse 1.
- 5. Effectuer la division euclidienne de $3x^2 + 4x 1$ par x + 2.
- 6. En déduire toutes les asymptotes de C.
- 7. Déterminer les points d'intersection de $\mathcal C$ avec l'axe des abscisses.
- 8. Montrer que l'équation f(x) = e admet une unique solution α dans l'intervalle $[1; +\infty[$ (on donne $e \approx 2, 7)$.

DEUXIÈME PARTIE

Soit g la fonction définie par $g(x) = \ln(f(x))$.

- 1. Déterminer le domaine de définition de g. On donne $\frac{-2-\sqrt{7}}{3}\approx -1, 5$ et $\frac{-2+\sqrt{7}}{3}\approx 0, 2$.
- 2. Étudier les variations de g sur l'intervalle $[1; +\infty[$.
- 3. Résoudre l'équation g(x) = 1 sur $[1; +\infty[$.

On considère une fonction f définie sur $]0; +\infty[$ par

$$f(x) = x^2 + ax + b + c\ln(x),$$

où a,b et c sont trois réels, et $\mathcal C$ sa courbe représentative dans le plan muni d'un repère $(O;\overrightarrow{i},\overrightarrow{j})$.

1. On suppose que $\mathcal C$ admet des tangentes parallèles à l'axe des abscisses aux points d'abscisse 1 et 4 et qu'elle passe par le point de coordonnées (1;0). En déduire que le triplet de paramètres (a;b;c) satisfait le système d'équations

$$\begin{cases} a+c = -2 \\ a+\frac{c}{4} = -8 \\ a+b = -1 \end{cases}.$$

Résoudre ce système d'équations.

On suppose dans la suite que le triplet (a; b; c) satisfait le système ci-dessus, soit

$$f(x) = x^2 - 10x + 9 + 8\ln(x)$$
, pour tout $x > 0$.

- 2. Déterminer les limites de f aux bornes de son domaine de définition. En déduire l'équation d'éventuelles asymptotes à C.
- 3. (a) Calculer la dérivée f' de f sur $]0; +\infty[$.
 - (b) Étudier le signe de f' sur $]0; +\infty[$ et dresser le tableau de variations de f sur $]0; +\infty[$.
 - (c) Justifier que *f* admet deux extrema locaux en 1 et 4. Quelles sont leurs valeurs ? Sont-ils globaux (justifier votre réponse) ?
- 4. (a) Montrer que l'équation f(x)=0 admet exactement une solution notée α sur l'intervalle]1; $+\infty$ [, où $\alpha>4$. On donne $\ln(2)\simeq 0,69$.
 - (b) Déterminer le signe de f sur son domaine de définition.