Strong edge-colouring of graphs

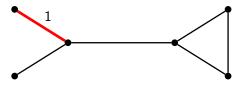
H. Hocquard

June 30th 2015

Université de Dijon, Le2i

- every two edges sharing a vertex have different colours (proper edge-colouring)
- every two edges joined by an edge are assigned distinct colours (distance 2 edge-colouring).

- every two edges sharing a vertex have different colours (proper edge-colouring)
- every two edges joined by an edge are assigned distinct colours (distance 2 edge-colouring).



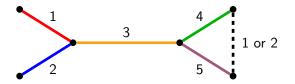
- every two edges sharing a vertex have different colours (proper edge-colouring)
- every two edges joined by an edge are assigned distinct colours (distance 2 edge-colouring).

- every two edges sharing a vertex have different colours (proper edge-colouring)
- every two edges joined by an edge are assigned distinct colours (distance 2 edge-colouring).

- every two edges sharing a vertex have different colours (proper edge-colouring)
- every two edges joined by an edge are assigned distinct colours (distance 2 edge-colouring).

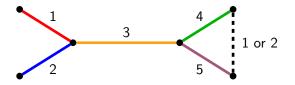
- every two edges sharing a vertex have different colours (proper edge-colouring)
- every two edges joined by an edge are assigned distinct colours (distance 2 edge-colouring).

- every two edges sharing a vertex have different colours (proper edge-colouring)
- every two edges joined by an edge are assigned distinct colours (distance 2 edge-colouring).



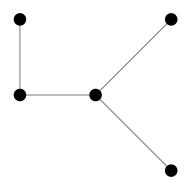
Strong edge-colouring (distance 2 edge-colouring) is an assignment of colours to edges of graph such that:

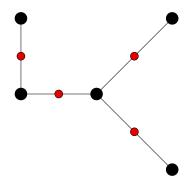
- every two edges sharing a vertex have different colours (proper edge-colouring)
- every two edges joined by an edge are assigned distinct colours (distance 2 edge-colouring).



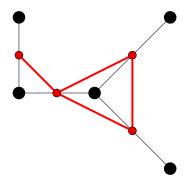
 $\chi_s'(G)$ - minimum number of colours needed to obtain a strong edge-colouring of G

It can be seen as a proper vertex-colouring of the **square of the line graph**.

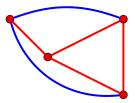


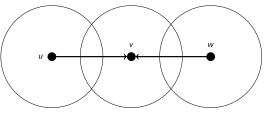


Vertex coloring of the line graph.

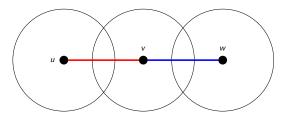


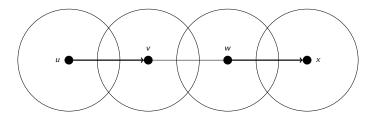
Vertex coloring of the square of the line graph.

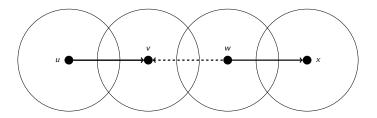


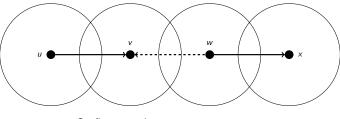


Conflict at node v

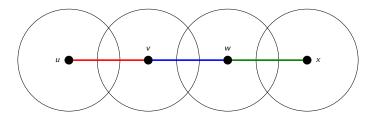


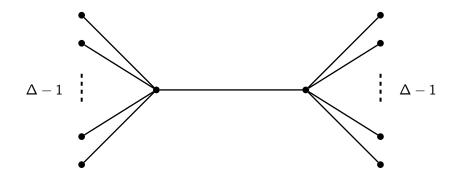


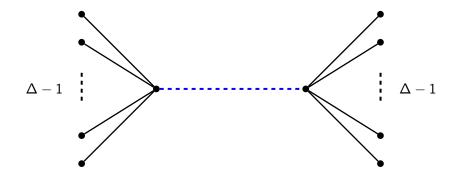


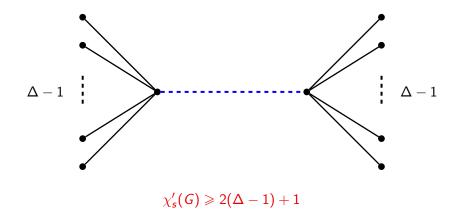


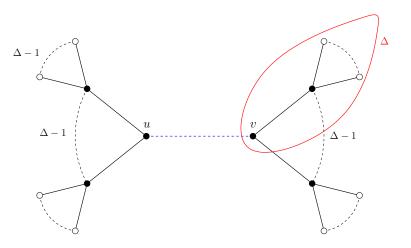
Conflict at node v

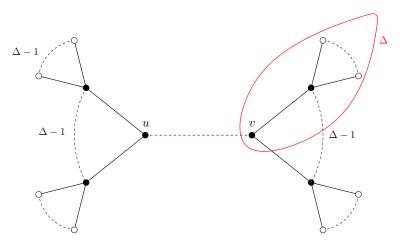












$\chi'_{s}(G) \leq 2\Delta(\Delta-1)+1$

Starting point

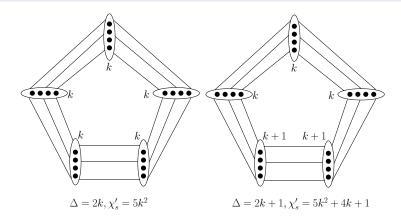
Conjecture [Erdős and Nešetřil, 1985]

For a graph *G*,
$$\chi'_{s}(G) \leq \begin{cases} \frac{5}{4}\Delta^{2}, \Delta \text{ even} \\ \frac{1}{4}(5\Delta^{2} - 2\Delta + 1), \Delta \text{ odd} \end{cases}$$

Starting point

Conjecture [Erdős and Nešetřil, 1985]

For a graph *G*,
$$\chi'_{s}(G) \leq \begin{cases} \frac{5}{4}\Delta^{2}, \Delta \text{ even} \\ \frac{1}{4}(5\Delta^{2} - 2\Delta + 1), \Delta \text{ odd} \end{cases}$$



To summarize

- Greedy algorithm : $\chi'_s(G) \simeq 2\Delta^2$.
- Erdős and Nešetřil Conjecture : $\chi'_{s}(G) \simeq \frac{5}{4}\Delta^{2}$.

To summarize

- Greedy algorithm : $\chi'_s(G) \simeq 2\Delta^2$.
- Erdős and Nešetřil Conjecture : $\chi'_s(G) \simeq \frac{5}{4}\Delta^2$.

Theorem [Molloy and Reed, 1997]

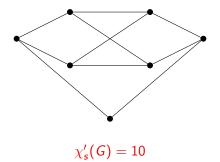
If Δ is large enough, then $\chi'_{s}(G) \leq 1.998\Delta^{2}$.

Theorem [Andersen, Horák et al., 1992]

If G is a subcubic graph, $\chi'_s(G) \leq 10$.

Theorem [Andersen, Horák et al., 1992]

If G is a subcubic graph, $\chi'_s(G) \leq 10$.



Theorem [Cranston, 2006]

If G is a graph with maximum degree 4, then $\chi'_{s}(G) \leq 22$.

Theorem [Cranston, 2006]

If G is a graph with maximum degree 4, then $\chi'_{s}(G) \leq 22$.

 $\chi'_{s}(G) \leq 20$ by Erdős and Nešetřil Conjecture.

Other graph classes

Conjecture [Faudree et al., 1990]

If G is bipartite, then $\chi'_s(G) \leq \Delta^2$.

Reached for any complete bipartite graph $K_{\Delta,\Delta}$.

Other graph classes

Conjecture [Faudree et al., 1990]

If G is bipartite, then $\chi'_s(G) \leq \Delta^2$.

Reached for any complete bipartite graph $K_{\Delta,\Delta}$.

Theorem [Steger and Yu, 1993]

For every (3,3)-bipartite graph G, we have $\chi'_s(G) \leq 9$.

Other graph classes

Conjecture [Faudree et al., 1990]

If G is bipartite, then $\chi'_s(G) \leq \Delta^2$.

Reached for any complete bipartite graph $K_{\Delta,\Delta}$.

Theorem [Steger and Yu, 1993]

For every (3,3)-bipartite graph G, we have $\chi'_s(G) \leq 9$.

Conjecture [Brualdi and Quinn Massey, 1993]

If G is bipartite with parts X and Y, then $\chi'_{s}(G) \leq \Delta(X)\Delta(Y)$.

Other graph classes

Conjecture [Faudree et al., 1990]

If G is bipartite, then $\chi'_s(G) \leq \Delta^2$.

Reached for any complete bipartite graph $K_{\Delta,\Delta}$.

Theorem [Steger and Yu, 1993]

For every (3,3)-bipartite graph G, we have $\chi'_s(G) \leq 9$.

Conjecture [Brualdi and Quinn Massey, 1993]

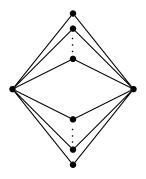
If G is bipartite with parts X and Y, then $\chi'_s(G) \leq \Delta(X)\Delta(Y)$.

Theorem [Bensmail, Lagoutte and Valicov, 2014]

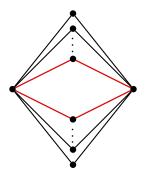
For every $(3, \Delta)$ -bipartite graph G, we have $\chi'_{s}(G) \leq 4\Delta$.

Theorem [Faudree et al., 1990]

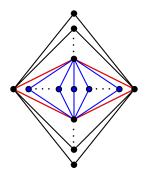
Theorem [Faudree et al., 1990]



Theorem [Faudree et al., 1990]

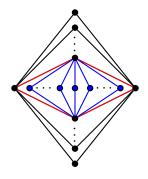


Theorem [Faudree et al., 1990]



Theorem [Faudree et al., 1990]

If G is a planar graph with maximum degree Δ , then $\chi'_s(G) \leq 4\Delta + 4$.



 $\chi_s'(G) = 4\Delta - 4$

g : girth = minimum length of a cycle.

g : girth = minimum length of a cycle.

Theorem [Hudák et al., 2013]

If G is planar with $g \ge 6$, then $\chi'_s(G) \le 3\Delta + 5$.

g : girth = minimum length of a cycle.

Theorem [Hudák et al., 2013]

If G is planar with $g \ge 6$, then $\chi'_s(G) \le 3\Delta + 5$.

Theorem [Bensmail, Harutyunyan, H. and Valicov, 2013+]

If G is planar with $g \ge 6$, then $\chi'_s(G) \le 3\Delta + 1$.

Theorem [Faudree et al., 1990]

If G is planar, then $\chi'_s(G) \leq 4\Delta + 4$.

Theorem [Faudree et al., 1990]

If G is planar, then $\chi'_s(G) \leq 4\Delta + 4$.

Observation (Grötzsch + Vizing)

If G is planar with $g \ge 7$, then $\chi'_s(G) \le 3\Delta + 3$.

Theorem [Faudree et al., 1990]

If G is planar, then $\chi'_s(G) \leq 4\Delta + 4$.

Observation (Grötzsch + Vizing)

If G is planar with $g \ge 7$, then $\chi'_s(G) \le 3\Delta + 3$.

Theorem [Vizing, 1965]

If G is planar with $\Delta \ge 8$, then G is Class 1.

Theorem [Faudree et al., 1990]

If G is planar, then $\chi'_s(G) \leq 4\Delta + 4$.

Observation (Grötzsch + Vizing)

If G is planar with $g \ge 7$, then $\chi'_s(G) \le 3\Delta + 3$.

Theorem [Vizing, 1965]

If G is planar with $\Delta \ge 8$, then G is Class 1.

Conjecture [Vizing, 1965]

If G is planar with $\Delta \ge 6$, then G is Class 1.

Theorem [Faudree et al., 1990]

If G is planar, then $\chi'_s(G) \leq 4\Delta + 4$.

Observation (Grötzsch + Vizing)

If G is planar with $g \ge 7$, then $\chi'_s(G) \le 3\Delta + 3$.

Theorem [Vizing, 1965]

If G is planar with $\Delta \ge 8$, then G is Class 1.

Conjecture [Vizing, 1965]

If G is planar with $\Delta \ge 6$, then G is Class 1.

proved for $\Delta = 7$ (Sanders and Zhao, 2001)

Theorem [Faudree et al., 1990]

If G is planar, then $\chi'_s(G) \leq 4\Delta + 4$.

Observation (Grötzsch + Vizing)

If G is planar with $g \ge 7$, then $\chi'_s(G) \le 3\Delta + 3$.

Corollary

If G is planar with $\Delta \ge 7$, then $\chi'_{s}(G) \le 4\Delta$.

Theorem [Faudree et al., 1990]

If G is planar, then $\chi'_s(G) \leq 4\Delta + 4$.

Observation (Grötzsch + Vizing)

If G is planar with $g \ge 7$, then $\chi'_s(G) \le 3\Delta + 3$.

Corollary

If G is planar with $\Delta \ge 7$, then $\chi'_{s}(G) \le 4\Delta$.

what about remaining values of Δ ? what for specific g?

Theorem [Faudree et al., 1990]

If G is planar, then $\chi'_s(G) \leq 4\Delta + 4$.

Observation (Grötzsch + Vizing)

If G is planar with $g \ge 7$, then $\chi'_s(G) \le 3\Delta + 3$.

Corollary

If G is planar with $\Delta \ge 7$, then $\chi'_{s}(G) \le 4\Delta$.

what about remaining values of Δ ? what for specific g?

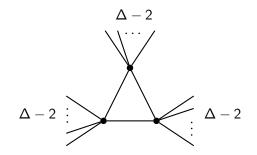
Question

If $\Delta = g = 4$, then can G be Class 1?

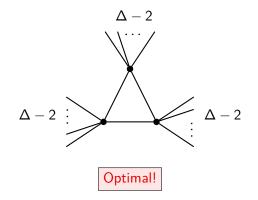
	$\Delta \ge 7$	$\Delta \in \{5,6\}$	$\Delta = 4$	$\Delta = 3$
no girth restriction	4Δ	$4\Delta + 4$	$4\Delta + 4$	$3\Delta + 1$
$g \ge 4$	4Δ	4Δ	$4\Delta + 4$	$3\Delta + 1$
$g \ge 5$	4Δ	4Δ	4Δ	$3\Delta + 1$
$g \ge 6$	$3\Delta + 1$	3Δ +1	$3\Delta + 1$	3Δ
$g \geqslant 7$	3Δ	3Δ	3Δ	3Δ

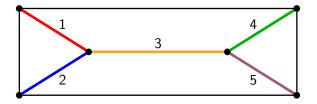
Theorem [H., Ochem and Valicov, 2011]

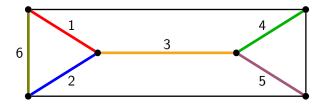
Theorem [H., Ochem and Valicov, 2011]



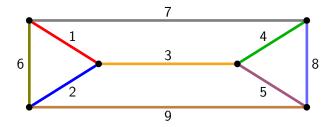
Theorem [H.,Ochem and Valicov, 2011]









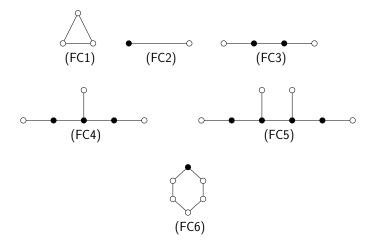


Theorem

Let G be a planar subcubic graph with no induced cycles of length 4 nor 5. Then $\chi'_{s}(G) \leq 9$.

Proof by minimum counterexample and using planarity.

Let H be a smallest counterexample. H does not contain:



Sketch of the proof

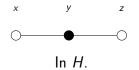
Let H be a smallest counterexample.

```
H has no triangle.
H does not contain C_4 and C_5.
```

 $\left. \begin{array}{l} H \text{ has no triangle.} \\ H \text{ does not contain } \mathcal{C}_4 \text{ and } \mathcal{C}_5. \end{array} \right\} \ \Rightarrow g(H) \geqslant 6.$

 $\left. \begin{array}{l} H \text{ has no triangle.} \\ H \text{ does not contain } \mathcal{C}_4 \text{ and } \mathcal{C}_5. \end{array} \right\} \ \Rightarrow g(H) \geqslant 6.$

Build a new graph H_1 from H:



 $\left. \begin{array}{l} H \text{ has no triangle.} \\ H \text{ does not contain } \mathcal{C}_4 \text{ and } \mathcal{C}_5. \end{array} \right\} \ \Rightarrow g(H) \geqslant 6.$

Build a new graph H_1 from H:

H has no triangle. H does not contain C_4 and C_5 . $\Rightarrow g(H) \ge 6$.

Build a new graph H_1 from H:

Clearly, H_1 is planar.

Sketch of the proof

Let H be a smallest counterexample.

Let H be a smallest counterexample.

```
H has no triangle.
H has no cycle C_4.
```

Let H be a smallest counterexample.

$$H$$
 has no triangle.
 H has no cycle C_4 . $\Rightarrow H_1$ is simple.

$$H$$
 has no triangle.
 H has no cycle $\mathcal{C}_4.$ $\bigg\} \Rightarrow H_1$ is simple.

H has no 1-vertices. H has no two adjacent 2-vertices.

$$H$$
 has no triangle.
 H has no cycle C_4 . $\} \Rightarrow H_1$ is simple.

H has no 1-vertices. H has no two adjacent 2-vertices. $\Rightarrow H_1$ is 3-regular.

$$H$$
 has no triangle.
 H has no cycle C_4 . $\Rightarrow H_1$ is simple.

H has no 1-vertices. H has no two adjacent 2-vertices. $\Rightarrow H_1$ is 3-regular.

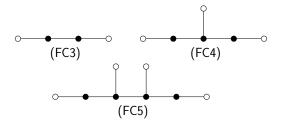
 $\left. \begin{array}{l} H_1 \text{ is planar.} \\ H_1 \text{ is simple.} \\ H_1 \text{ is 3-regular.} \end{array} \right\}$

$$H$$
 has no triangle.
 H has no cycle C_4 . $\Rightarrow H_1$ is simple.

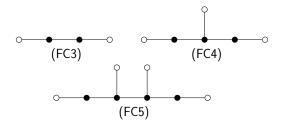
H has no 1-vertices. H has no two adjacent 2-vertices. $\Rightarrow H_1$ is 3-regular.

 $\left. \begin{array}{l} H_1 \text{ is planar.} \\ H_1 \text{ is simple.} \\ H_1 \text{ is 3-regular.} \end{array} \right\} \Rightarrow H_1 \text{ must contain a face } \mathcal{C}' \text{ of length at most 5.} \end{array}$

Recall that H does not contain:

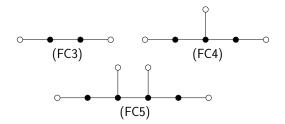


Recall that H does not contain:



and that $g(H) \ge 6$.

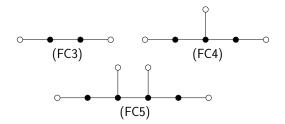
Recall that H does not contain:



and that $g(H) \ge 6$.

 \Rightarrow C' cannot be obtained from a cycle of H of length $l \ge 7$.

Recall that H does not contain:



and that $g(H) \ge 6$.

⇒ C' cannot be obtained from a cycle of H of length $l \ge 7$. ⇒ g(H) = 6.

In H there exists a cycle C of length 6 having a vertex of degree 2 on its boundary.

In *H* there exists a cycle C of length 6 having a vertex of degree 2 on its boundary. Impossible by (FC6).

In *H* there exists a cycle C of length 6 having a vertex of degree 2 on its boundary. Impossible by (FC6). \Rightarrow *H* cannot exist.

MAD parameter

Definition

The maximal average degree of a graph G, denoted mad(G), is the maximal of the average degrees of all the subgraphs of G:

$$\mathsf{mad}(G) = \mathsf{max}\left\{rac{2|E(H)|}{|V(H)|}, H \subseteq G
ight\}$$

Definition

The maximal average degree of a graph G, denoted mad(G), is the maximal of the average degrees of all the subgraphs of G:

$$\mathsf{mad}(\mathsf{G}) = \mathsf{max}\left\{rac{2|\mathsf{E}(\mathsf{H})|}{|\mathsf{V}(\mathsf{H})|}, \mathsf{H}\subseteq\mathsf{G}
ight\}$$

The mad parameter is computable in polynomial time.

Definition

The maximal average degree of a graph G, denoted mad(G), is the maximal of the average degrees of all the subgraphs of G:

$$\mathsf{mad}(\mathsf{G}) = \mathsf{max}\left\{rac{2|\mathsf{E}(\mathsf{H})|}{|\mathsf{V}(\mathsf{H})|}, \mathsf{H} \subseteq \mathsf{G}
ight\}$$

The mad parameter is computable in polynomial time.

Theorem

Let G be a subcubic graph:

If mad(G)
$$< \frac{15}{7}$$
, then $\chi'_s(G) \leq 6$.

3 If mad(G)
$$< \frac{27}{11}$$
, then $\chi'_{s}(G) \leqslant 7$.

3 If mad
$$(G) < rac{13}{5}$$
, then $\chi_{s}'(G) \leqslant 8$.

• If mad(G) $< \frac{20}{7}$, then $\chi'_{s}(G) \leq 9$.

Lemma (Derived from Euler's Formula)

Every planar graph of girth g satisfies:

$$\mathsf{mad}(G) < rac{2g}{g-2}$$

Lemma (Derived from Euler's Formula)

Every planar graph of girth g satisfies:

$$\mathsf{mad}(G) < \frac{2g}{g-2}$$

Corollary

Let G be a planar subcubic graph with girth g:

- 1 If $g \ge 30$, then $\chi'_s(G) \le 6$ (can be improved to $g \ge 16$).
- 2 If $g \ge 11$, then $\chi'_s(G) \le 7$.
- 3 If $g \ge 9$, then $\chi'_{s}(G) \le 8$.
- If $g \ge 7$, then $\chi'_{s}(G) \le 9$.

Introduced by Wernicke in 1904.

Introduced by Wernicke in 1904.

Introduced by Wernicke in 1904.

$$1 + 2 + 3 + 4 + 5 + 6$$

Introduced by Wernicke in 1904.

Introduced by Wernicke in 1904.

$$0 + 0 + 0 + 7 + 7 + 7$$

Suppose there exists a smallest (edges+vertices) counterexample H with mad(H) < $\frac{15}{7}$ which is not strong edge 6-colorable.

Suppose there exists a smallest (edges+vertices) counterexample H with mad(H) < $\frac{15}{7}$ which is not strong edge 6-colorable.

1. Structural properties of H.

Suppose there exists a smallest (edges+vertices) counterexample H with mad(H) < $\frac{15}{7}$ which is not strong edge 6-colorable.

- 1. Structural properties of H.
- 2. Discharging procedure.

Suppose there exists a smallest (edges+vertices) counterexample H with mad(H) < $\frac{15}{7}$ which is not strong edge 6-colorable.

- 1. Structural properties of H.
- 2. Discharging procedure.

2.1 A weight function
$$\omega$$
 with $\omega(x) = d(x) - \frac{15}{7}, x \in V(H)$, such that
$$\sum_{x \in V(H)} \omega(x) < 0.$$

Suppose there exists a smallest (edges+vertices) counterexample H with mad(H) < $\frac{15}{7}$ which is not strong edge 6-colorable.

- 1. Structural properties of H.
- 2. Discharging procedure.
 - 2.1 A weight function ω with $\omega(x) = d(x) \frac{15}{7}, x \in V(H)$, such that $\sum_{x \in V(X)} \omega(x) < 0$

$$\sum_{x \in V(H)} \omega(x) < 0$$

2.2 Discharging rules.

Suppose there exists a smallest (edges+vertices) counterexample H with mad(H) < $\frac{15}{7}$ which is not strong edge 6-colorable.

- 1. Structural properties of H.
- 2. Discharging procedure.

2.1 A weight function ω with $\omega(x) = d(x) - \frac{15}{7}, x \in V(H)$, such that $\sum_{x \in V(H)} \omega(x) < 0.$

2.2 Discharging rules.

2.3 A new weight function ω^* such that $\sum_{x \in V(H)} \omega(x) = \sum_{x \in V(H)} \omega^*(x)$.

Suppose there exists a smallest (edges+vertices) counterexample H with mad(H) < $\frac{15}{7}$ which is not strong edge 6-colorable.

- 1. Structural properties of H.
- 2. Discharging procedure.

2.1 A weight function ω with $\omega(x) = d(x) - \frac{15}{7}, x \in V(H)$, such that $\sum_{x \in V(H)} \omega(x) < 0.$

2.2 Discharging rules.

2.3 A new weight function
$$\omega^*$$
 such that $\sum_{x \in V(H)} \omega(x) = \sum_{x \in V(H)} \omega^*(x)$.

3. By using the hypothesis on mad parameter and the structural properties of H, we obtain a contradiction:

$$0 \leq \sum_{x \in V(H)} \omega^*(x) = \sum_{x \in V(H)} \omega(x) < 0$$

Suppose there exists a smallest (edges+vertices) counterexample H with mad(H) < $\frac{15}{7}$ which is not strong edge 6-colorable.

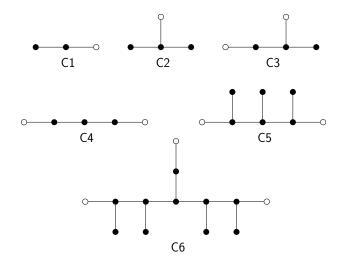
- 1. Structural properties of H.
- 2. Discharging procedure.
 - 2.1 A weight function ω with $\omega(x) = d(x) \frac{15}{7}, x \in V(H)$, such that $\sum_{x \in V(H)} \omega(x) < 0.$
 - 2.2 Discharging rules.
 - 2.3 A new weight function ω^* such that $\sum_{x \in V(H)} \omega(x) = \sum_{x \in V(H)} \omega^*(x)$.
- 3. By using the hypothesis on mad parameter and the structural properties of H, we obtain a contradiction:

$$0 \leq \sum_{x \in V(H)} \omega^*(x) = \sum_{x \in V(H)} \omega(x) < 0$$

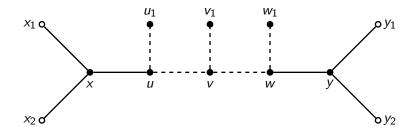
Therefore, the counterexample cannot exist.

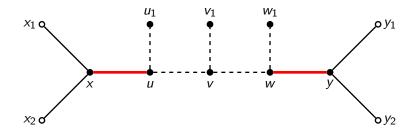
Reducible configurations (Theorem 1.1)

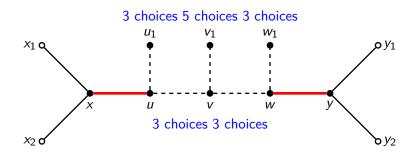
Let H be a smallest counterexample. H does not contain:

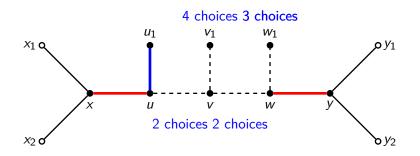


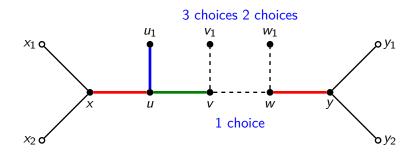
Proof of configuration (C5)

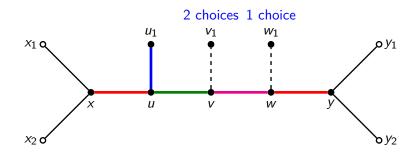


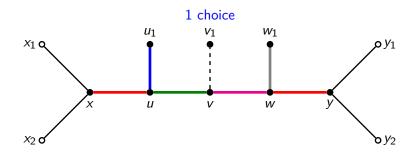




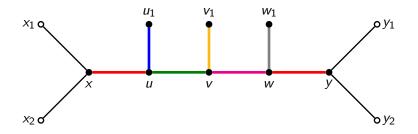


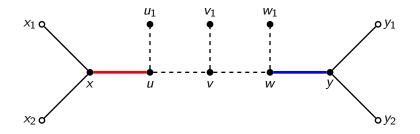


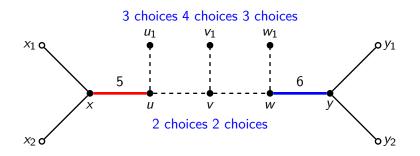


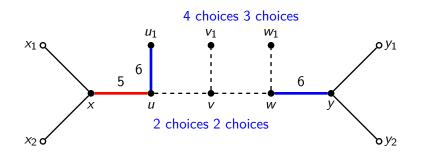


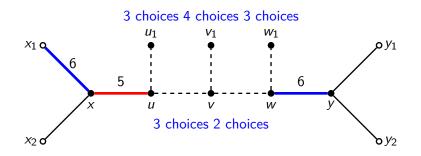
First case : c(xu) = c(wy)

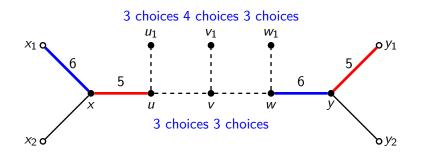


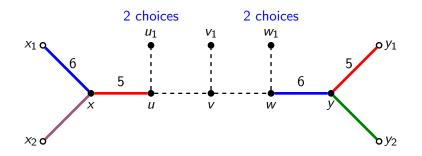


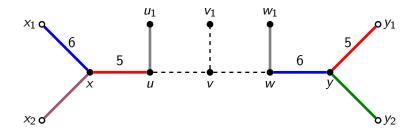


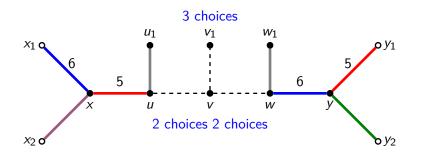


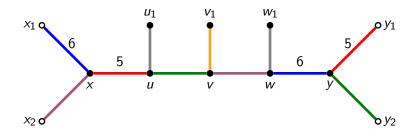












Discharging procedure

Recall that $mad(H) < \frac{15}{7}!$

Discharging procedure

Recall that $mad(H) < \frac{15}{7}!$

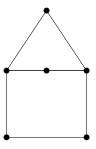
- Every 3-vertex not adjacent to a 1-vertex gives ²/₇ to each of its adjacent 3-vertices having a 1-vertex in its neighbourhood and ¹/₇ to each of its adjacent 2-vertices.
- By (C3) every 3-vertex has at most one 1-vertex in its neighbourhood and it gives to this vertex ⁸/₇.

At the end of the discharging procedure, we have:

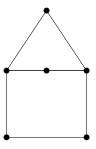
- The total sum of weights did not change.
- **2** For every $x \in V(H)$, $\omega^*(x) \ge 0$.

Hence,
$$0 \leq \sum_{x \in V(H)} \omega^*(x) = \sum_{x \in V(H)} \omega(x) < 0$$

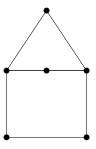
Contradiction!



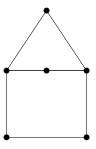
A graph G with
$$mad(G) = \frac{7}{3}$$
 and $\chi'_s(G) > 6$.



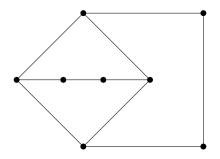
A graph G with
$$mad(G) = \frac{7}{3}$$
 and $\chi'_s(G) > 6$.
If $mad(G) < \frac{15}{7}$ then $\chi'_s(G) \leqslant 6$.

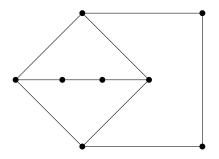


A graph G with
$$mad(G) = \frac{7}{3}$$
 and $\chi'_s(G) > 6$.
If $mad(G) < \frac{\sqrt{5}}{4}$ then $\chi'_s(G) \leqslant 6$.



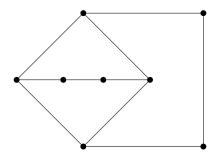
A graph G with
$$mad(G) = \frac{7}{3}$$
 and $\chi'_s(G) > 6$.
If $mad(G) < \frac{7}{3}$ then $\chi'_s(G) \leqslant 6$.





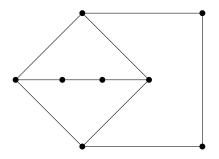
A graph G with $mad(G) = \frac{5}{2}$ and $\chi'_{\mathfrak{s}}(G) > 7$.

If
$$mad(G) < \frac{27}{11}$$
 then $\chi'_s(G) \leq 7$.

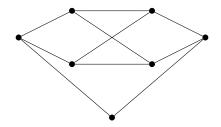


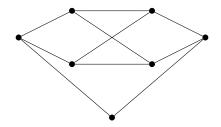
A graph G with $mad(G) = \frac{5}{2}$ and $\chi'_{\mathfrak{s}}(G) > 7$.

If
$$mad(G) < \chi$$
 then $\chi'_s(G) \leq 7$.

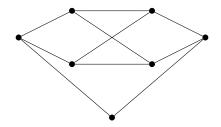


If
$$mad(G) < \frac{5}{2}$$
 then $\chi'_s(G) \leq 7$.

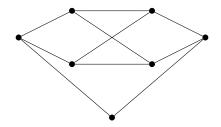




If $mad(G) < \frac{36}{13}$ then $\chi'_s(G) \leq 9$.



If $mad(G) < \frac{36}{13}$ then $\chi'_s(G) \leq 9$.



If $mad(G) < \frac{20}{7}$ then $\chi'_s(G) \leq 9$.

Let $f(n) = inf\{mad(G) \mid \chi'_{s}(G) > n\}$. $f(6) = \frac{7}{3}$ $f(7) = \frac{5}{2}$ $\frac{56}{21} = \frac{8}{3} < f(8) \le \frac{20}{7} = \frac{60}{21}$ $f(9) = \frac{20}{7}$ • The conjecture of Faudree *et al....*

- The conjecture of Faudree et al....
- Does there exist a subcubic graph G with $mad(G) < \frac{20}{7}$ and having $\chi'_s(G) = 9$?

- The conjecture of Faudree *et al....*
- Does there exist a subcubic graph G with $mad(G) < \frac{20}{7}$ and having $\chi'_s(G) = 9$?
- Could we reach the bound proposed by the conjecture of Erdős and Nešetřil for graphs with maximum degree 4?

- The conjecture of Faudree *et al....*
- Does there exist a subcubic graph G with $mad(G) < \frac{20}{7}$ and having $\chi'_s(G) = 9$?
- Could we reach the bound proposed by the conjecture of Erdős and Nešetřil for graphs with maximum degree 4?
- Bigger challenge: the conjecture of Erdős and Nešetřil.

Thank you for your attention

INSTANCE: A graph G.

INSTANCE: A graph *G*.

QUESTION: Does G have a strong edge-colouring with k colours?

• Polynomial for chordal graphs (Cameron, 1989)

INSTANCE: A graph *G*.

- Polynomial for chordal graphs (Cameron, 1989)
- Polynomial for graphs with bounded treewidth (Salavatipour, 2004)

INSTANCE: A graph *G*.

- Polynomial for chordal graphs (Cameron, 1989)
- Polynomial for graphs with bounded treewidth (Salavatipour, 2004)
- NP-complete for bipartite graphs with girth g (for every fixed g) and $\forall k \ge 4$ (Mahdian, 2002)

INSTANCE: A graph *G*.

- Polynomial for chordal graphs (Cameron, 1989)
- Polynomial for graphs with bounded treewidth (Salavatipour, 2004)
- NP-complete for bipartite graphs with girth g (for every fixed g) and $\forall k \ge 4$ (Mahdian, 2002)
- NP-complete for bipartite 2-degenerate graphs of degree 3 and girth 6 when k = 5 (Erickson *et al.*, 2002)

INSTANCE: A graph *G*.

- Polynomial for chordal graphs (Cameron, 1989)
- Polynomial for graphs with bounded treewidth (Salavatipour, 2004)
- NP-complete for bipartite graphs with girth g (for every fixed g) and $\forall k \ge 4$ (Mahdian, 2002)
- NP-complete for bipartite 2-degenerate graphs of degree 3 and girth 6 when k = 5 (Erickson *et al.*, 2002)
- And what about planar graphs?

4-SEC is NP-complete even when restricted to planar subcubic bipartite graphs with arbitrarily large girth.

4-SEC is NP-complete even when restricted to planar subcubic bipartite graphs with arbitrarily large girth.

3-COLOURING

INSTANCE: A graph *G*. QUESTION: Does *G* admit a proper vertex-colouring with 3 colours?

4-SEC is NP-complete even when restricted to planar subcubic bipartite graphs with arbitrarily large girth.

3-COLOURING

INSTANCE: A graph *G*. QUESTION: Does *G* admit a proper vertex-colouring with 3 colours?

3-COLOURING is NP-complete even when restricted to planar graphs with degree 4.

4-SEC is NP-complete even when restricted to planar subcubic bipartite graphs with arbitrarily large girth.

3-COLOURING

INSTANCE: A graph *G*. QUESTION: Does *G* admit a proper vertex-colouring with 3 colours?

3-COLOURING is NP-complete even when restricted to planar graphs with degree 4.

```
3-COLOURING \leq_P 4-SEC.
```

By reducing 3-COLOURING of planar graphs of maximum degree 4 we also proved:

- 5-SEC is NP-complete for planar bipartite graphs of maximum degree 3 and girth g = 8.
- 6-SEC is NP-complete for planar graphs of maximum degree 3, with girth g = 4.