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Abstract

An acyclic k-coloring of a graph= is a proper vertex coloring aff, which uses at mosk
colors, such that the graph induced by the union of every two coloredass forest. In this note,
we prove that every graph with maximum degree six is acyclically 11-abler thus improving
the main result of [12].

1 Introduction

A proper vertex coloring of a graphG = (V, E) is an assignment of colors to the vertices(of
such that two adjacent vertices do not use the same color.opepivertex coloring of a grap&¥

is acyclic if G contains no bicolored cycles; in other words, the graphdedwby every two color
classes is a forest. Thaeyclic chromatic number of G, denoted byy,(G), is the smallest integer
k such that is acyclicallyk-colorable. Acyclic colorings were introduced by Griinbajfj who
proved that every planar graph is acyclically 9-coloralsid eonjectured that 5 colors are enough.
Mitchem [9] reduced the number of colors to 8, Albertson amdnBan [2] to 7 colors and Kos-
tochka [8] to 6 colors. Finally, in 1979, Borodin [3] provethat 5 colors are enough. This bound is
tight since there exist 4-regular planar graphs [6] whi@hraot acyclically 4-colorable. Concerning
graphs with bounded maximum degree, Aktiral. [1] proved that asymptotically every graph with
maximum degree\ is acyclically colorable with Q&*/3) colors; moreover they exhibited graphs
with maximum degree\ with acyclic chromatic number at lea® A*/3 /(log A)'/3). For small
maximum degrees, it was proved by Skulrattanakulchai [A8] 4 colors are enough to acyclically
color graphs with maximum degree 3 (this bound is tight beeafiK',, wherek,, denotes the com-
plete graph with vertices). In 1979, Burstein [4] proved that every grapthwitaximum degree 4
is acyclically 5-colorable (this bound is tight becausd@j). It was proved by Fertin and Raspaud
[5] that every graph of maximum degree 5 can be acyclicallgred with 9 colors. Recently, this
result was improved by Yada al. [11] who reduced the number of colors to 8, then by Kostochka
(personal communication) who proved that 7 colors are eimoigdavet al. [11] also proved that
every graph of maximum degree 6 can be acyclically coloreal &2 colors [12]. Here we improve
this last result by proving that:

Theorem 1 Every graph with maximum degree six is acyclically 11-colorable.

The proof of this result is based on Lemma 1 (see below) anexiséence of a certain kind of
spanning trees in regular graphs that we call “good sparnées”.

Lemmal Every graph G with maximum degree at most 6 and minimum degree strictly less than 6
isacyclically 11-colorable.

We now introduce some notations. The following terminolegs introduced in [5]. A partial
acyclic coloring ofG is a coloringy of a subsetS of V' such thaty is an acyclic coloring of
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Figure 1: The listL,, = (2,1,1,1)

G|[S] (the subgraph induced b). A partial acyclic coloring using at mostcolors is said to be a
partial acyclick-coloring of G. Let v be a partial acyclié-coloring of G and letv be an uncolored
vertex of G. We say that a color for v allows us to extendg if the partial coloringy’ defined by
¢ (u) = p(u) foranyu € S and byy'(v) = cis a partial acyclid-coloring of G. For a vertex
u € V\S, we denote the set of colored neighborsidfy N.(u) = N(u) NS (whereN(u) is the
set of the neighbors af, i.e. N(u) = {v € V(G) : wv € E(G)}) and#cn(u) = |N.(u)|. We
denote bySC(N.(u)) the set of colors used by vertices ¥.(u) and#den(u) = |SC(N.(u))].
Given a vertex: and a color, letn.(u) be the number of vertices iN..(u) colored with the color
c. For each vertex, we setL,, = (ni,ns2,...,Nu4cn(u)) Where eacm; denotes the number of
times that a color appears in the neighborhood ahdn; > ny > ... > nugen ). FOr example
in Figure 1, we have: all the neighbors wfare colored (thustcn(u) = 5 and No(u) = N(u)),
SC(N.(u)) = {c1,c2,c3,¢c4}, #den(u) =4 andL, = (2,1,1,1) (two neighbors colored;, one
colored with respc,, ¢3, ¢4). Finally, we denote byA(G) andd(G), the maximum and the minimum
degree of the grap@¥, respectively. We usfl; n] to denote the set of integefs, 2, ..., n}.

Section 2 is dedicated to the proofs of our results. In Se@jave conclude with some questions
related to the acyclic coloring of graphs with maximum deggix.

2 Proofs

The proof of Theorem 1 is divided in two cases depending omtindmum degree of the graph:
(1) Eithero(G) < 6 and thus Lemma 1 allows us to find an acyclic coloring-ofSection 2.1),

(2) ord(G) = 6 and thus the existence of a “good spanning tree” (Sectionp2i2nits us to find
an ordering of the vertices that allows to color the wholggréSection 2.3).

Note that most of the proof techniques appears in [5, 10,4]L, 1

2.1 Proof of Lemma 1l
In this section, we prove that:
If G is connected witt\A (G) < 6 andd(G) < 6, thenG is acyclically 11-colorable.

Letv be a vertex of degreé(v) < 6. LetT be a spanning tree @f rooted at. We first define a
post order walk orY", denoted by<, and then we color the vertices @faccording to this ordek.
Letz,,...,, be the vertices ofy such that for every, j, 1 <i < j <n, z; < z; andz,, = v.
Observe that for all < i < n, x; has at most five neighbors with j < i. We will color thex;’s
successively using Lemmas 2, 3 and 4. The obtained colorithpevan acyclic 11-coloring ofs.

We begin by an observation which is a follow-up of Observatidn [5]:



Observation 1 Let G be a graph of maximum degree 6 and let ¢ be a partial acyclic 11-coloring
of G. Suppose v is an uncolored vertex of G. If all the neighbors of v use distinct colors, then by
coloring v properly we extend ¢. If a color ¢ in SC(N.(v)) appears n.(v) > 1 times among the
neighbors of v, then, in order to color v, we need to avoid at most |5n.(v)/2] distinct colors to
prevent the creation of bicolored cycles going through v and the vertices colored with c.

Lemma 2 Let G be a graph of maximum degree 6 and let ¢ be a partial acyclic 11-coloring of G.
Then, for any uncolored vertex u such that #cn(u) < 3, there exists a color for « that allows us to
extend .

Pr oof
First, suppose that no color is repeated among the neiglobersthusZ,, = (1), L, = (1,1), or
L, = (1,1,1). By Observation 1y only needs to avoid the colors used by its neighbors, thee the
remains at least eight colors to colar

Now, suppose that a color appears (at least) twice amongdlghlvors ofu. Then, since
#en(u) < 3, we have exactly three cased;, = (2), L, = (2,1), or L, = (3). When
L, = (2), L, = (2,1) (resp. L, = (3)), then, by Observation %, needs to forbid five colors
(resp. seven colors) in order to avoid the possible creatidnmcolored cycles and at most two more
colors (resp. one more color) in order to maintain the praoéoring. In each case, at least three
choices remain to colar.

a

Lemma 3 Let G be a graph of maximum degree 6 and let ¢ be a partial acyclic 11-coloring of G.
Then, for any uncolored vertex u such that #cn(u) = 4, there exists a color for « that allows us to
extend .

Proof
Let G be a graph withA(G) < 6, ¢ be a partial acyclic 11-coloring @, andu be an uncolored
vertexu such thatfcn(u) = 4. Letwvy, vy, v3, vy be its four colored neighbors.

1. If no color is repeated among the neighborsuafe. L, = (1,1,1,1), then there remains
seven colors to colat, sinceu needs to avoid only the colors used by its four neighbors.

2. If exactly one color is repeated among the neighbors,dhen we have three casés =
(2,1,1), L, = (3,1)andL,, = (4).

2.1 Case., = (2,1,1).
By Observation 1y needs to forbid five colors to avoid the possible creationaflbred
cycles and three more colors to maintain the proper colofiingn, three choices remain
to coloru.

2.2 Case., = (3,1).
By Observation 1 needs to forbid seven colors to avoid the possible creatidsi-o
colored cycles and two more colors to maintain the propesraad. Then, two choices
remain to colonu.

2.3 Casd., = (4).
W.l.o.g. suppose that(vi) = p(ve) = p(v3) = p(vs) = 1. Observe that if one of the
v;'s has#dcen(v;) = 5, saywv;, then we can recolar; with a color different from 1 and
those inSC(N.(v1)). We obtainL,, = (3,1), a case that is solved in 2.2. So suppose
that forl < i < 4, #den(v;) < 4. Then,u needs to avoid at most eight(¢ x 4)/2])
colors to maintain the acyclic coloring and one more coloitlie proper coloring. Then,
two choices remain to colar.

3. If two colors are repeated among the neighbors,ofhenZ,, = (2,2). W.L.o.g. suppose
that p(v1) = p(v2) = 1 andp(vs) = p(vs) = 2. Observe that if one of the;’s has
#den(v;) = 5, saywvy, then we can recolor; with a color different from 1 and 2 and those



in SC(N.(v1)). We obtainL,, = (2,1,1), a case that is solved in 2.1. So suppose that for
1 < <4, #den(v;) < 4. Then,u needs to avoid at most eight(@ x 4)/2] + [(2 x 4)/2])
colors to maintain the acyclic coloring and two colors foe hroper coloring. Then, one
choice remains to colar.

O

Lemma4 Let G be a graph of maximum degree 6 and let ¢ be a partial acyclic 11-coloring of G.
Then, for any uncolored vertex u such that #cn(u) = 5, there exists a color for « that allows us to
extend .

Let G be a graph withA(G) < 6, ¢ be a partial acyclic 11-coloring @, andu be an uncolored
vertexu such that#cn(u) = 5. Letvy, va, v, v4, v5 be its five colored neighbors, and for< 7 < 5
andl < j <5, letv! be the five neighbors af; distinct fromu.

1. If no color is repeated among the neighbors ¢thusZ,, = (1, 1,1, 1, 1)), then there remains

six colors to colon..

2. If exactly one color is repeated among the neighbors,ahen we have four casds, =

(2,1,1,1), L, = (3,1,1) L, = (4,1), andL,, = (5).

2.1 Casd., = (2,1,1,1).
By Observation 1y needs to forbid five colors to avoid the possible creationiadlbred
cycles and four more colors to maintain the proper colorifigen, two choices remain to
coloru.

2.2 Casd., = (3,1,1).
By Observation 1 needs to forbid seven colors to avoid the possible creatidsi-o
colored cycles and three more colors to maintain the propleriag. Then, one choice
remains to colot.

2.3 Case., = (4,1).
W.l.o.g. assume that(v1) = ¢(v2) = ¢(v3) = @(v4) = 1 andp(vs) = 2. Observe that
if one of thew;’s (1 < i < 4) has#dcn(v;) = 5, sayv;, then we can recolar; with a
color different from 1 and 2 and those §C(N.(v1)). We obtainL,, = (3,1,1), a case
that is solved in 2.2. So suppose that foK i < 4, #dcn(v;) < 4. Then,u needs to
avoid at most eight|(4 x 4)/2]) colors to maintain the acyclic coloring and two colors
for the proper coloring. Then, one choice remains to calor

2.4 Case., = (5).
W.l.o.g. suppose that(vi) = ¢(v2) = p(vs) = w(vs) = @(vs) = 1. Observe that if
one of thev;'s has#dcn(v;) = 5, sayvi, then we can recolos; with a color different
from 1 and those i®C(N.(v1)). We obtainL,, = (4,1), a case that is solved in 2.3. So
suppose that fot < i < 5, #den(v;) < 4. Suppose there exists a colored neighigor
(1 < i < 5) of u, sayvy, such that the colored neighbors«@gfuse at most three distinct
colors. Thusy needs to forbid at most ning( + 4 x 4)/2]) colors to avoid the possible
creation of bicolored cycles and one more color to maintaeggroper coloring. Then,
one choice remains to colar Suppose now, that for all < i < 5, #den(v;) = 4. We
focus onvy. If #en(vy) =4 (i.e L,, = (1,1,1,1)), then we can recolar; with a color
cin [1; TIJ\{1}\SC(N.(v1)) (there remains at least six colors). Henfg,is modified
and becomed., = (4,1), a case that is solved in 2.3. So assume #hat(v;) = 5
(i.e L,, = (2,1,1,1)), and w.l.o.g. p(v1) = p(v}) = 2, p(v3) = 3, p(v}) = 4,
andp(vy) = 5. We recolorv; with a color different from 1, 2, 3, 4, 5 and those of
SC(N.(vi)). Hence,L, is modified and becomes, = (4, 1), a case that is solved in
2.3.

3. Iftwo colors are repeated among the neighbors efe have two cases, = (2,2,1)orL,, =

(3,2).



Figure 2: The listL,, = (2,2,1)

3.1 Case., = (2,2,1).

W.l.0.g. suppose that(vi) = p(v2) = 1; p(vs) = ¢(vs) = 2 andp(vs) = 3.

Observe that if one of the;'s (1 < i < 4) has#dcn(v;) = 5, sayv;, then we can
recoloruv; with a color different from 1, 2, 3 and those §C(N.(v1)). We obtainL,, =
(2,1,1,1), a case that is solved in 2.1. So suppose that fer i < 4, #den(v;) < 4.
Suppose there exists a colored neighlaofl < i < 4) of u, saywvy, such that the colored
neighbors ofv; use at most three distinct colors. Thusneeds to forbid at most seven
([(3+4)/2] + [ (2 x 4)/2]) colors to avoid the possible creation of bicolored cycles a
three more colors to maintain the proper coloring. Then, dr@ce remains to colai.
Suppose now, that for all < ¢ < 4, #dcn(v;) = 4, thenforalll < < 4, we haveL,, =
(2,1,1,1) or L,, = (1,1,1,1). W.l.o.g. SC(N.(v1)) = SC(N.(v2)) = {4, 5,6, 7}
and SC(N.(v3)) = SC(N.(v4)) = {8, 9, 10, 11} (SC(N.(v1)) andSC(N,.(v3)) are
distinct, otherwise there exits a color that extend® u). See Figure 2. We focus on
vy and its neighborhood. We will try to recoles with a color different from 1 and 3:
if we succeed, then we will obtain a nely, solved previously (in 2.1 or 2.2); if not,
then we will show that there exists a color ferthat extendsp. If #cn(vy) = 4 (i.e
L,, = (1,1,1,1)), then we recolor, with a color different from[1; 7] and we are done.
So assume thatcen(v) = 5 (i.e L,, = (2,1,1,1)), and w.l.o.g.p(v]) = p(v}) = 4,
©(v3) =5, p(v}) = 6, andp(vy) = 7. We try to recolor; with a color different from 1,
4,5, 6,7 and those #C (N, (v1)). If there is a choice different from 3, then we are done.
Otherwise this means th&C (N..(vi)\ {v1}) = {2, 8, 9, 10, 11}. By applying the same
reasoning on?, either we can recolar;, or SC(N.(v?) \ v1) = {2, 8, 9, 10, 11}. In
that case, we can colarwith 4.

3.2 Casel, = (3,2).

W.l.0.9. suppose thai(v1) = p(v2) = p(vs) = 1 andp(vs) = ¢(vs) = 2. Observe that
if one of thev;’s has#dcn(v;) = 5, sayv;, then we can recolar; with a color different
from 1, 2 and those i§C(N.(v1)). We obtainL,, = (2,2,1), a case that is solved in 3.1.
Hence forl <14 <5, we have#dcen(v;) < 4.

3.2.1 Suppose, has#dcn(vy) = 4.

3.2.1.1 IfL,, = (1,1,1,1), then we can recolos, with a color different from 1, 2
and those i C'(N.(v4)). We obtain a new partial acyclic coloring 6fwhere
L, = (3,1,1), a case solved previously.



3.2.1.2 IfL,, = (2,1,1,1), then we can recolor, with a color different from 2, and
those inSC(N.(vy4)) andSC (N, (v})) (Where we suppose that the colorain
appears twice ihC(N.(v4))). We obtain a new partial acyclic coloring 6f
whereL, = (3,1,1) or (4, 1), cases solved previously.
The same argument holds fog. Hence, we assume thgtden(vy) < 3 and
#den(vs) < 3.

3.2.2 We claim thatden(v;) = 4 for 1 <4 < 3. To see this, suppose by contradiction,
that#dcn(v;) = 4 for at most twov; (1 < ¢ < 3) (recall that#den(v;) < 3 for
the others). Theny needs to forbid at most eightt(@ x 4 + 3)/2] + | (2 x 3)/2])
colors to avoid the possible creation of bicolored cycled samo more colors to
maintain the proper coloring. Then, one choice remains torea Hence, as-
sume that#dcen(v1) = #den(ve) = Fden(vs) = 4. If one cannot find a
choice of color foru, then there must be six bicolored cycles going through
and vy, vg, vs3. Also three bicolored cycles going throughand vy, vs. Thus,
w.l.o.g. we may assume th&C(N.(v1)) U SC(Ne(v2)) U SC(Ne(vs)) =
{3,4,5,6, 7,8}, SC(Ne(v1)) = {3, 4,5, 6}, SC(Ne(va)) = SC(Ne(vs)) =
{9, 10, 11} and each coloi with 3 < i < 8 (resp. 9 < ¢ < 11) appears at
least once in exactly two different colored neighborhoodofvith 1 < i < 3
(resp. 4 < i < 5). See Figure 3. We focus an and its neighborhood. We
will try to recolor vy with a color different from 1 and 2: if we succeed, then we
will obtain a newL,, solved previously; if not, then we will show that there ex-
ists a color foru that extendsp. If #cn(v1) = 4 (i.e. L,, = (1,1,1,1)), then
we recolorv; with a color different from[1; 6] and we are done. So assume that
#en(vy) =5 (.6 Ly, = (2,1,1,1)), and w.l.o.gp(vl) = o(v?) = 3, p(vi) = 4,
o(v) = 5, andp(v?) = 6. We try to recolorv; with a color different from 1,
3, 4, 5, 6 and those FC(N,.(v1)). If there is a choice different from 2, then we
are done. Otherwise we ha# (N, (v1) \ {v1}) = {7,8,9,10,11} and we try
to recolorv; with a color different from 1, 3, 4, 5, 6 and those $€(N.(v?)).

If there is a choice different from 2, then we are done. If ribgn we are sure
that SC(N.(v})) = SC(N.(v})) = {7, 8,9, 10, 11}, then we coloru with 3,
since 3 cannot appear BC(N,.(v4)) U SC(N.(vs)), and 3 cannot appear in both
SC(N.(v2)) and SC(N.(vs3)) (recall that each colorwith 3 < i < 8 appears at
least once in exactly two distiné{.(v,) with 1 < j < 3).

This completes the proof of Lemma 1. ]

2.2 Good spanning trees

Let G be aA-regular connected graph. good spanning tree of G is a spanning tre@ such thatl’
contains a vertex adjacent o — 1 leaves. We prove now the following:

Theorem 2 Every regular connected graph admits a good spanning tree.

Proof

Let G be aA-regular connected graph. Letbe a vertex oG and letu be a vertex at maximum
distance fromv, say distancé. Assumeu is chosen such that it has the least number of neighbors
which are at distancgé — 1 from v. Letu; be a neighbor of: at distancek — 1 from v and let

ug, ..., un be the other neighbors af Then we claim tha€&; = G\ (N (u) \ {u1}) is connected.

By contradiction, supposé’ is a connected component G, that contains neither noru (noting
thatu andv are connected id7;). Then every vertex ofy’ is at distance, iz, exactlyk from v.
Let = be any vertex o€7’. Every neighbor of: at distance (irG) & — 1 from v is also a neighbor of

u. Butz is not adjacent ta; because otherwise it would be in the same connected compasen
Thenz has less neighbors at distance @k — 1 from v thanu. This contradicts the choice af

Now we construct a good spanning tfEef GG as follows: first take any spanning trée of G,
and add tdl'; the edgesius, . . ., uua that cover the verticess, . .., ua. O
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Figure 3: The listZ,, = (3, 2)

2.3 Proof of Theorem 1
In this section we prove that:
Every graph with maximum degree six is acyclically 11-calde.

Let G be a graph with maximum degree six.jlfG) < 6, then Lemma 1 completes the proof.
Consider in the following thatr is a 6-regular connected graph.

Let 7" be a good spanning tree 6f (such a tree exists due to Theorem 2). kgtbe a vertex
adjacent to five leaves ifi. We order the vertices @¥ from x; to x,, according to a post order walk
of T rooted atr,, wherex1, w2, w3, x4, x5 are five leaves. First, we colar, zo, 3, 14, x5
with distinct colors and then we will successively colqy, z7, ..., x,. In order to colorx; with
6 <i<n-—1,weuse Lemmas 2, 3 and 4, but we never recolor the vertices, xs3, 4, r5.

In Lemma 2, no recoloring is used. In the cdse= (4) of Lemma 3, cannot bery, xo, x3, 24
or 5 sincev; has five colored neighbors ands notx,,. Similarly in the casd.,, = (2,2) of Lemma
3 and in the casé,, = (4, 1) of Lemma 4,0, cannot bery, x5, 23,24 Or z5. In the case.,, = (5)
(resp.L,, = (2,2,1)) of Lemma 4, observe that if one of thgs has#dcn(v;) = 5forl1 <i <5
(resp. 1 < i < 4), then we can recolor this; becausey; cannot bery, x5, x3, x4 Or x5 Sincewv;
has five colored neighbors andis notz,,. Hence forl < i < 5 (resp. 1 < ¢ < 4), we have
#den(v;) < 4. We focus first orvy. If vy is, sayzy, then we just focus on, instead ofy; (sincev;
andv, have the same color, we are sure thais notxzs, x3, x4, x5).

Consider now the cade, = (3, 2) of Lemma 4. Observe that if one of thgs has#den(v;) = 5
for 1 <14 < 5, then we can recolor this; because; cannot ber, x5, 3, x4 Or x5 sincev; has five
colored neighbors andis notx,,. Hence forl < i < 5, we have#dcn(v;) < 4. We focus first on
vg andvs. If one of them, say, is such that#den(vs) = 4 andwy is not anz; (with 1 < i < 5),
then we apply 3.2.1. Otherwise, either (a) one of them is;asayv, = x2, and#den(vs) < 3, or
(b) #£den(vy) < 3 and#tden(vs) < 3.

(a) Assume that, = x5 and#den(vs) < 3. We claim that#den(v;) = 4for1 < i < 3. To see this,
suppose by contradiction, thgticn(v;) = 4 for at most twow; (1 < 4 < 3). Then,u needs to forbid

at most eight|((2 x4+ 3)/2] 4 [ (44 3)/2]) colors to avoid the possible creation of bicolored cycles
and two more colors to maintain the proper coloring. Therg dmoice remains to colar. Thus,
w.l.o.g. we may assume tha{v,) = p(v2) = ¢(v3) = 1, p(va) = @(vs) = 2, SC(N.(v1)) U
SC(N.(v2)) U SC(N.(v3)) = {3,4,5,6,7, 8}, SC(N.(v1)) = {3,4,5, 6}, SC(N(vg)) 2



{9, 10, 11}, SC(N.(vs)) = {9, 10, 11} and each colorwith 3 < i < 8 (resp.9 < i < 11) appears
at least once in exactly two different colored neighborhobd; with 1 < ¢ < 3 (resp.4 < i < 5).
We focus onv; and its neighborhood. Note thatdf is, sayx;, then we just focus om, instead
of v (sincevy, vy andwvs have the same color, we are sure thats notxs, x4, z5). We will try to
recolorv; with a color different from 1 and 2: if we succeed, then we wBtain a newZ,, solved
previously; otherwise we will show that there exists a cdtoru that extendsp. If #cn(vy) = 4
(i.e L, = (1,1,1,1)), then we recolow; with a color different from[1; 6] and we are done. So
assume thagten(v1) = 5 (i.e. L, = (2,1,1,1)), and w.l.o.g.¢o(v]) = ¢(v?) = 3, p(v3) = 4,
o(v) = 5, andp(v]) = 6. We try to recolor; with a color different from 1, 3, 4, 5, 6 and those of
SC(N.(v})). If there is a choice different from 2, then we are done. Qi we try to recolow;
with a color different from 1, 3, 4, 5, 6 and those$f' (N.(v?)). If there is a choice different from
2, then we are done. Otherwise we are sure $tat N, (vi)) = SC(N.(v?)) = {7, 8, 9, 10, 11},
then we colomr with 3, since 3 can appear at most onc&'@(N.(vy)) USC(N.(vs)), and 3 cannot
appear in bottfC' (N, (v2)) andSC(N,(vs3)).

(b) Suppose now#den(vy) < 3 and#den(vs) < 3. We apply 3.2.2. We focus on . If v, is, say
x1, then we just focus on, instead ofv; (sincevy, v, andvs have the same color, we are sure that
Vg IS notxs, xs, x4, .1‘5).

At this point, we have an acyclic coloring 6f\{x,,} such thatry, x2, z3, 24, x5 use five
distinct colors. Finally, to colo#,, we have two cases:

Case L,, = (1,1,1,1,1,1). By Observation 1, it suffices to colat, properly (we have
at least five remaining colors).

Case L,, = (2,1,1,1,1). By Observation 1y, needs to forbid five colors to avoid the
possible creation of bicolored cycles and five more colors&intain the proper coloring.
Then, one choice remains to coloy.

That completes the proof of Theorem 1. |

3 Conclusion

In this paper, we improve the upper bound)of(G) for graphs with maximum degree six. Until
now, the best known lower bound is given By. It seems to be difficult to provide graphs that need
more colors. We conclude with the two following questions:

Question 1 Exhibit a graph G with A(G) = 6 and x,(G) > 7 (if such a graph exists).

Question 2 Prove that every graph with A(G) = 6 has x.(G) < 11.
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