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Abstract

An acyclick-coloring of a graphG is a proper vertex coloring ofG, which uses at mostk
colors, such that the graph induced by the union of every two color classes is a forest. In this note,
we prove that every graph with maximum degree six is acyclically 11-colorable, thus improving
the main result of [12].

1 Introduction

A proper vertex coloring of a graphG = (V,E) is an assignment of colors to the vertices ofG
such that two adjacent vertices do not use the same color. A proper vertex coloring of a graphG
is acyclic if G contains no bicolored cycles; in other words, the graph induced by every two color
classes is a forest. Theacyclic chromatic number of G, denoted byχa(G), is the smallest integer
k such thatG is acyclicallyk-colorable. Acyclic colorings were introduced by Grünbaum[6], who
proved that every planar graph is acyclically 9-colorable and conjectured that 5 colors are enough.
Mitchem [9] reduced the number of colors to 8, Albertson and Berman [2] to 7 colors and Kos-
tochka [8] to 6 colors. Finally, in 1979, Borodin [3] proved that 5 colors are enough. This bound is
tight since there exist 4-regular planar graphs [6] which are not acyclically 4-colorable. Concerning
graphs with bounded maximum degree, Alonet al. [1] proved that asymptotically every graph with
maximum degree∆ is acyclically colorable with O(∆4/3) colors; moreover they exhibited graphs
with maximum degree∆ with acyclic chromatic number at leastΩ(∆4/3/(log∆)1/3). For small
maximum degrees, it was proved by Skulrattanakulchai [10] that 4 colors are enough to acyclically
color graphs with maximum degree 3 (this bound is tight because ofK4, whereKn denotes the com-
plete graph withn vertices). In 1979, Burstein [4] proved that every graph with maximum degree 4
is acyclically 5-colorable (this bound is tight because ofK5). It was proved by Fertin and Raspaud
[5] that every graph of maximum degree 5 can be acyclically colored with 9 colors. Recently, this
result was improved by Yadavet al. [11] who reduced the number of colors to 8, then by Kostochka
(personal communication) who proved that 7 colors are enough. Yadavet al. [11] also proved that
every graph of maximum degree 6 can be acyclically colored with 12 colors [12]. Here we improve
this last result by proving that:

Theorem 1 Every graph with maximum degree six is acyclically 11-colorable.

The proof of this result is based on Lemma 1 (see below) and theexistence of a certain kind of
spanning trees in regular graphs that we call “good spanningtrees”.

Lemma 1 Every graph G with maximum degree at most 6 and minimum degree strictly less than 6
is acyclically 11-colorable.

We now introduce some notations. The following terminologywas introduced in [5]. A partial
acyclic coloring ofG is a coloringϕ of a subsetS of V such thatϕ is an acyclic coloring of
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Figure 1: The listLu = (2, 1, 1, 1)

G[S] (the subgraph induced byS). A partial acyclic coloring using at mostk colors is said to be a
partial acyclick-coloring ofG. Letϕ be a partial acyclick-coloring ofG and letv be an uncolored
vertex ofG. We say that a colorc for v allows us to extendϕ if the partial coloringϕ′ defined by
ϕ′(u) = ϕ(u) for anyu ∈ S and byϕ′(v) = c is a partial acyclick-coloring ofG. For a vertex
u ∈ V \S, we denote the set of colored neighbors ofu by Nc(u) = N(u) ∩ S (whereN(u) is the
set of the neighbors ofu, i.e. N(u) = {v ∈ V (G) : uv ∈ E(G)}) and#cn(u) = |Nc(u)|. We
denote bySC(Nc(u)) the set of colors used by vertices inNc(u) and#dcn(u) = |SC(Nc(u))|.
Given a vertexu and a colorc, let nc(u) be the number of vertices inNc(u) colored with the color
c. For each vertexu, we setLu = (n1, n2, . . . , n#dcn(u)) where eachni denotes the number of
times that a color appears in the neighborhood ofu andn1 ≥ n2 ≥ . . . ≥ n#dcn(u). For example
in Figure 1, we have: all the neighbors ofu are colored (thus#cn(u) = 5 andNc(u) = N(u)),
SC(Nc(u)) = {c1, c2, c3, c4}, #dcn(u) = 4 andLu = (2, 1, 1, 1) (two neighbors coloredc1, one
colored with resp.c2, c3, c4). Finally, we denote by∆(G) andδ(G), the maximum and the minimum
degree of the graphG, respectively. We useJ1;nK to denote the set of integers{1, 2, . . . , n}.

Section 2 is dedicated to the proofs of our results. In Section 3, we conclude with some questions
related to the acyclic coloring of graphs with maximum degree six.

2 Proofs

The proof of Theorem 1 is divided in two cases depending on theminimum degree of the graphG:

(1) Eitherδ(G) < 6 and thus Lemma 1 allows us to find an acyclic coloring ofG (Section 2.1),

(2) or δ(G) = 6 and thus the existence of a “good spanning tree” (Section 2.2) permits us to find
an ordering of the vertices that allows to color the whole graph (Section 2.3).

Note that most of the proof techniques appears in [5, 10, 11, 12].

2.1 Proof of Lemma 1

In this section, we prove that:

If G is connected with∆(G) ≤ 6 andδ(G) < 6, thenG is acyclically 11-colorable.

Let v be a vertex of degreed(v) < 6. LetT be a spanning tree ofG rooted atv. We first define a
post order walk onT , denoted by≺, and then we color the vertices ofG according to this order≺.
Let x1, . . . , xn be the vertices ofG such that for everyi, j, 1 ≤ i < j ≤ n, xi ≺ xj andxn = v.
Observe that for all1 ≤ i ≤ n, xi has at most five neighborsxj with j < i. We will color thexi’s
successively using Lemmas 2, 3 and 4. The obtained coloring will be an acyclic 11-coloring ofG.

We begin by an observation which is a follow-up of Observation 1 in [5]:

2



Observation 1 Let G be a graph of maximum degree 6 and let ϕ be a partial acyclic 11-coloring
of G. Suppose v is an uncolored vertex of G. If all the neighbors of v use distinct colors, then by
coloring v properly we extend ϕ. If a color c in SC(Nc(v)) appears nc(v) > 1 times among the
neighbors of v, then, in order to color v, we need to avoid at most ⌊5nc(v)/2⌋ distinct colors to
prevent the creation of bicolored cycles going through v and the vertices colored with c.

Lemma 2 Let G be a graph of maximum degree 6 and let ϕ be a partial acyclic 11-coloring of G.
Then, for any uncolored vertex u such that #cn(u) ≤ 3, there exists a color for u that allows us to
extend ϕ.

Proof
First, suppose that no color is repeated among the neighborsof u, thusLu = (1), Lu = (1, 1), or
Lu = (1, 1, 1). By Observation 1,u only needs to avoid the colors used by its neighbors, then there
remains at least eight colors to coloru.

Now, suppose that a color appears (at least) twice among the neighbors ofu. Then, since
#cn(u) ≤ 3, we have exactly three cases:Lu = (2), Lu = (2, 1), or Lu = (3). When
Lu = (2), Lu = (2, 1) (resp. Lu = (3)), then, by Observation 1,u needs to forbid five colors
(resp. seven colors) in order to avoid the possible creationof bicolored cycles and at most two more
colors (resp. one more color) in order to maintain the propercoloring. In each case, at least three
choices remain to coloru.
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Lemma 3 Let G be a graph of maximum degree 6 and let ϕ be a partial acyclic 11-coloring of G.
Then, for any uncolored vertex u such that #cn(u) = 4, there exists a color for u that allows us to
extend ϕ.

Proof
Let G be a graph with∆(G) ≤ 6, ϕ be a partial acyclic 11-coloring ofG, andu be an uncolored
vertexu such that#cn(u) = 4. Let v1, v2, v3, v4 be its four colored neighbors.

1. If no color is repeated among the neighbors ofu i.e. Lu = (1, 1, 1, 1), then there remains
seven colors to coloru, sinceu needs to avoid only the colors used by its four neighbors.

2. If exactly one color is repeated among the neighbors ofu, then we have three casesLu =
(2, 1, 1), Lu = (3, 1)andLu = (4).

2.1 CaseLu = (2, 1, 1).
By Observation 1,u needs to forbid five colors to avoid the possible creation of bicolored
cycles and three more colors to maintain the proper coloring. Then, three choices remain
to coloru.

2.2 CaseLu = (3, 1).
By Observation 1,u needs to forbid seven colors to avoid the possible creation of bi-
colored cycles and two more colors to maintain the proper coloring. Then, two choices
remain to coloru.

2.3 CaseLu = (4).
W.l.o.g. suppose thatϕ(v1) = ϕ(v2) = ϕ(v3) = ϕ(v4) = 1. Observe that if one of the
vi’s has#dcn(vi) = 5, sayv1, then we can recolorv1 with a color different from 1 and
those inSC(Nc(v1)). We obtainLu = (3, 1), a case that is solved in 2.2. So suppose
that for1 ≤ i ≤ 4, #dcn(vi) ≤ 4. Then,u needs to avoid at most eight (⌊(4 × 4)/2⌋)
colors to maintain the acyclic coloring and one more color for the proper coloring. Then,
two choices remain to coloru.

3. If two colors are repeated among the neighbors ofu, thenLu = (2, 2). W.l.o.g. suppose
that ϕ(v1) = ϕ(v2) = 1 andϕ(v3) = ϕ(v4) = 2. Observe that if one of thevi’s has
#dcn(vi) = 5, sayv1, then we can recolorv1 with a color different from 1 and 2 and those
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in SC(Nc(v1)). We obtainLu = (2, 1, 1), a case that is solved in 2.1. So suppose that for
1 ≤ i ≤ 4, #dcn(vi) ≤ 4. Then,u needs to avoid at most eight (⌊(2× 4)/2⌋+ ⌊(2× 4)/2⌋)
colors to maintain the acyclic coloring and two colors for the proper coloring. Then, one
choice remains to coloru.

2

Lemma 4 Let G be a graph of maximum degree 6 and let ϕ be a partial acyclic 11-coloring of G.
Then, for any uncolored vertex u such that #cn(u) = 5, there exists a color for u that allows us to
extend ϕ.

Proof
Let G be a graph with∆(G) ≤ 6, ϕ be a partial acyclic 11-coloring ofG, andu be an uncolored
vertexu such that#cn(u) = 5. Letv1, v2, v3, v4, v5 be its five colored neighbors, and for1 ≤ i ≤ 5
and1 ≤ j ≤ 5, let vji be the five neighbors ofvi distinct fromu.

1. If no color is repeated among the neighbors ofu (thusLu = (1, 1, 1, 1, 1)), then there remains
six colors to coloru.

2. If exactly one color is repeated among the neighbors ofu, then we have four casesLu =
(2, 1, 1, 1), Lu = (3, 1, 1)Lu = (4, 1), andLu = (5).

2.1 CaseLu = (2, 1, 1, 1).
By Observation 1,u needs to forbid five colors to avoid the possible creation of bicolored
cycles and four more colors to maintain the proper coloring.Then, two choices remain to
coloru.

2.2 CaseLu = (3, 1, 1).
By Observation 1,u needs to forbid seven colors to avoid the possible creation of bi-
colored cycles and three more colors to maintain the proper coloring. Then, one choice
remains to coloru.

2.3 CaseLu = (4, 1).
W.l.o.g. assume thatϕ(v1) = ϕ(v2) = ϕ(v3) = ϕ(v4) = 1 andϕ(v5) = 2. Observe that
if one of thevi’s (1 ≤ i ≤ 4) has#dcn(vi) = 5, sayv1, then we can recolorv1 with a
color different from 1 and 2 and those inSC(Nc(v1)). We obtainLu = (3, 1, 1), a case
that is solved in 2.2. So suppose that for1 ≤ i ≤ 4, #dcn(vi) ≤ 4. Then,u needs to
avoid at most eight (⌊(4 × 4)/2⌋) colors to maintain the acyclic coloring and two colors
for the proper coloring. Then, one choice remains to coloru.

2.4 CaseLu = (5).
W.l.o.g. suppose thatϕ(v1) = ϕ(v2) = ϕ(v3) = ϕ(v4) = ϕ(v5) = 1. Observe that if
one of thevi’s has#dcn(vi) = 5, sayv1, then we can recolorv1 with a color different
from 1 and those inSC(Nc(v1)). We obtainLu = (4, 1), a case that is solved in 2.3. So
suppose that for1 ≤ i ≤ 5, #dcn(vi) ≤ 4. Suppose there exists a colored neighborvi
(1 ≤ i ≤ 5) of u, sayv1, such that the colored neighbors ofv1 use at most three distinct
colors. Thus,u needs to forbid at most nine (⌊(3+4× 4)/2⌋) colors to avoid the possible
creation of bicolored cycles and one more color to maintain the proper coloring. Then,
one choice remains to coloru. Suppose now, that for all1 ≤ i ≤ 5, #dcn(vi) = 4. We
focus onv1. If #cn(v1) = 4 (i.e. Lv1

= (1, 1, 1, 1)), then we can recolorv1 with a color
c in J1; 11K\{1}\SC(Nc(v1)) (there remains at least six colors). Hence,Lu is modified
and becomesLu = (4, 1), a case that is solved in 2.3. So assume that#cn(v1) = 5
(i.e. Lv1

= (2, 1, 1, 1)), and w.l.o.g. ϕ(v11) = ϕ(v21) = 2, ϕ(v31) = 3, ϕ(v41) = 4,
andϕ(v51) = 5. We recolorv1 with a color different from 1, 2, 3, 4, 5 and those of
SC(Nc(v

1
1)). Hence,Lu is modified and becomesLu = (4, 1), a case that is solved in

2.3.

3. If two colors are repeated among the neighbors ofu, we have two casesLu = (2, 2, 1)orLu =
(3, 2).
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Figure 2: The listLu = (2, 2, 1)

3.1 CaseLu = (2, 2, 1).

W.l.o.g. suppose thatϕ(v1) = ϕ(v2) = 1; ϕ(v3) = ϕ(v4) = 2 andϕ(v5) = 3.

Observe that if one of thevi’s (1 ≤ i ≤ 4) has#dcn(vi) = 5, sayv1, then we can
recolorv1 with a color different from 1, 2, 3 and those inSC(Nc(v1)). We obtainLu =
(2, 1, 1, 1), a case that is solved in 2.1. So suppose that for1 ≤ i ≤ 4, #dcn(vi) ≤ 4.
Suppose there exists a colored neighborvi (1 ≤ i ≤ 4) of u, sayv1, such that the colored
neighbors ofv1 use at most three distinct colors. Thus,u needs to forbid at most seven
(⌊(3 + 4)/2⌋+ ⌊(2× 4)/2⌋) colors to avoid the possible creation of bicolored cycles and
three more colors to maintain the proper coloring. Then, onechoice remains to coloru.
Suppose now, that for all1 ≤ i ≤ 4,#dcn(vi) = 4, then for all1 ≤ i ≤ 4, we haveLvi

=
(2, 1, 1, 1) or Lvi

= (1, 1, 1, 1). W.l.o.g. SC(Nc(v1)) = SC(Nc(v2)) = {4, 5, 6, 7}
andSC(Nc(v3)) = SC(Nc(v4)) = {8, 9, 10, 11} (SC(Nc(v1)) andSC(Nc(v3)) are
distinct, otherwise there exits a color that extendsϕ to u). See Figure 2. We focus on
v1 and its neighborhood. We will try to recolorv1 with a color different from 1 and 3:
if we succeed, then we will obtain a newLu solved previously (in 2.1 or 2.2); if not,
then we will show that there exists a color foru that extendsϕ. If #cn(v1) = 4 (i.e.
Lv1

= (1, 1, 1, 1)), then we recolorv1 with a color different fromJ1; 7K and we are done.
So assume that#cn(v1) = 5 (i.e. Lv1

= (2, 1, 1, 1)), and w.l.o.g.ϕ(v11) = ϕ(v21) = 4,
ϕ(v31) = 5, ϕ(v41) = 6, andϕ(v51) = 7. We try to recolorv1 with a color different from 1,
4, 5, 6, 7 and those ofSC(Nc(v

1
1)). If there is a choice different from 3, then we are done.

Otherwise this means thatSC(Nc(v
1
1)\{v1}) = {2, 8, 9, 10, 11}. By applying the same

reasoning onv21 , either we can recolorv1, or SC(Nc(v
2
1) \ v1) = {2, 8, 9, 10, 11}. In

that case, we can coloru with 4.

3.2 CaseLu = (3, 2).
W.l.o.g. suppose thatϕ(v1) = ϕ(v2) = ϕ(v3) = 1 andϕ(v4) = ϕ(v5) = 2. Observe that
if one of thevi’s has#dcn(vi) = 5, sayv1, then we can recolorv1 with a color different
from 1, 2 and those inSC(Nc(v1)). We obtainLu = (2, 2, 1), a case that is solved in 3.1.
Hence for1 ≤ i ≤ 5, we have#dcn(vi) ≤ 4.

3.2.1 Supposev4 has#dcn(v4) = 4.

3.2.1.1 IfLv4
= (1, 1, 1, 1), then we can recolorv4 with a color different from 1, 2

and those inSC(Nc(v4)). We obtain a new partial acyclic coloring ofG where
Lu = (3, 1, 1), a case solved previously.
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3.2.1.2 IfLv4
= (2, 1, 1, 1), then we can recolorv4 with a color different from 2, and

those inSC(Nc(v4)) andSC(Nc(v
1
4)) (where we suppose that the color onv14

appears twice inSC(Nc(v4))). We obtain a new partial acyclic coloring ofG
whereLu = (3, 1, 1) or (4, 1), cases solved previously.

The same argument holds forv5. Hence, we assume that#dcn(v4) ≤ 3 and
#dcn(v5) ≤ 3.

3.2.2 We claim that#dcn(vi) = 4 for 1 ≤ i ≤ 3. To see this, suppose by contradiction,
that#dcn(vi) = 4 for at most twovi (1 ≤ i ≤ 3) (recall that#dcn(vi) ≤ 3 for
the others). Then,u needs to forbid at most eight (⌊(2× 4 + 3)/2⌋+ ⌊(2× 3)/2⌋)
colors to avoid the possible creation of bicolored cycles and two more colors to
maintain the proper coloring. Then, one choice remains to color u. Hence, as-
sume that#dcn(v1) = #dcn(v2) = #dcn(v3) = 4. If one cannot find a
choice of color foru, then there must be six bicolored cycles going throughu,
and v1, v2, v3. Also three bicolored cycles going throughu and v4, v5. Thus,
w.l.o.g. we may assume thatSC(Nc(v1)) ∪ SC(Nc(v2)) ∪ SC(Nc(v3)) =
{3, 4, 5, 6, 7, 8}, SC(Nc(v1)) = {3, 4, 5, 6}, SC(Nc(v4)) = SC(Nc(v5)) =
{9, 10, 11} and each colori with 3 ≤ i ≤ 8 (resp. 9 ≤ i ≤ 11) appears at
least once in exactly two different colored neighborhood ofvi with 1 ≤ i ≤ 3
(resp. 4 ≤ i ≤ 5). See Figure 3. We focus onv1 and its neighborhood. We
will try to recolor v1 with a color different from 1 and 2: if we succeed, then we
will obtain a newLu solved previously; if not, then we will show that there ex-
ists a color foru that extendsϕ. If #cn(v1) = 4 (i.e. Lv1

= (1, 1, 1, 1)), then
we recolorv1 with a color different fromJ1; 6K and we are done. So assume that
#cn(v1) = 5 (i.e. Lv1

= (2, 1, 1, 1)), and w.l.o.g.ϕ(v11) = ϕ(v21) = 3, ϕ(v31) = 4,
ϕ(v41) = 5, andϕ(v51) = 6. We try to recolorv1 with a color different from 1,
3, 4, 5, 6 and those ofSC(Nc(v

1
1)). If there is a choice different from 2, then we

are done. Otherwise we haveSC(Nc(v
1
1) \ {v1}) = {7, 8, 9, 10, 11} and we try

to recolorv1 with a color different from 1, 3, 4, 5, 6 and those ofSC(Nc(v
2
1)).

If there is a choice different from 2, then we are done. If not,then we are sure
that SC(Nc(v

1
1)) = SC(Nc(v

2
1)) = {7, 8, 9, 10, 11}, then we coloru with 3,

since 3 cannot appear inSC(Nc(v4)) ∪ SC(Nc(v5)), and 3 cannot appear in both
SC(Nc(v2)) andSC(Nc(v3)) (recall that each colori with 3 ≤ i ≤ 8 appears at
least once in exactly two distinctNc(vj) with 1 ≤ j ≤ 3).

This completes the proof of Lemma 1. 2

2.2 Good spanning trees

Let G be a∆-regular connected graph. Agood spanning tree of G is a spanning treeT such thatT
contains a vertex adjacent to∆− 1 leaves. We prove now the following:

Theorem 2 Every regular connected graph admits a good spanning tree.

Proof
Let G be a∆-regular connected graph. Letv be a vertex ofG and letu be a vertex at maximum
distance fromv, say distancek. Assumeu is chosen such that it has the least number of neighbors
which are at distancek − 1 from v. Let u1 be a neighbor ofu at distancek − 1 from v and let
u2, . . . , u∆ be the other neighbors ofu. Then we claim thatG1 = G \ (N(u) \ {u1}) is connected.
By contradiction, supposeG′ is a connected component ofG1 that contains neitherv noru (noting
thatu andv are connected inG1). Then every vertex ofG′ is at distance, inG, exactlyk from v.
Let x be any vertex ofG′. Every neighbor ofx at distance (inG) k − 1 from v is also a neighbor of
u. Butx is not adjacent tou1 because otherwise it would be in the same connected component asu.
Thenx has less neighbors at distance (inG) k − 1 from v thanu. This contradicts the choice ofu.

Now we construct a good spanning treeT of G as follows: first take any spanning treeT1 of G1,
and add toT1 the edgesuu2, . . . , uu∆ that cover the verticesu2, . . . , u∆. 2
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2.3 Proof of Theorem 1

In this section we prove that:

Every graph with maximum degree six is acyclically 11-colorable.

Let G be a graph with maximum degree six. Ifδ(G) < 6, then Lemma 1 completes the proof.
Consider in the following thatG is a 6-regular connected graph.

Let T be a good spanning tree ofG (such a tree exists due to Theorem 2). Letxn be a vertex
adjacent to five leaves inT . We order the vertices ofG from x1 to xn according to a post order walk
of T rooted atxn wherex1, x2, x3, x4, x5 are five leaves. First, we colorx1, x2, x3, x4, x5

with distinct colors and then we will successively colorx6, x7, . . . , xn. In order to colorxi with
6 ≤ i ≤ n− 1, we use Lemmas 2, 3 and 4, but we never recolor the verticesx1, x2, x3, x4, x5.

In Lemma 2, no recoloring is used. In the caseLu = (4) of Lemma 3,v1 cannot bex1, x2, x3, x4

orx5 sincev1 has five colored neighbors andu is notxn. Similarly in the caseLu = (2, 2) of Lemma
3 and in the caseLu = (4, 1) of Lemma 4,v1 cannot bex1, x2, x3, x4 or x5. In the caseLu = (5)
(resp.Lu = (2, 2, 1)) of Lemma 4, observe that if one of thevi’s has#dcn(vi) = 5 for 1 ≤ i ≤ 5
(resp. 1 ≤ i ≤ 4), then we can recolor thisvi becausevi cannot bex1, x2, x3, x4 or x5 sincevi
has five colored neighbors andu is not xn. Hence for1 ≤ i ≤ 5 (resp. 1 ≤ i ≤ 4), we have
#dcn(vi) ≤ 4. We focus first onv1. If v1 is, sayx1, then we just focus onv2 instead ofv1 (sincev1
andv2 have the same color, we are sure thatv2 is notx2, x3, x4, x5).

Consider now the caseLu = (3, 2) of Lemma 4. Observe that if one of thevi’s has#dcn(vi) = 5
for 1 ≤ i ≤ 5, then we can recolor thisvi becausevi cannot bex1, x2, x3, x4 or x5 sincevi has five
colored neighbors andu is notxn. Hence for1 ≤ i ≤ 5, we have#dcn(vi) ≤ 4. We focus first on
v4 andv5. If one of them, sayv4, is such that#dcn(v4) = 4 andv4 is not anxi (with 1 ≤ i ≤ 5),
then we apply 3.2.1. Otherwise, either (a) one of them is anxi, sayv4 = x2, and#dcn(v5) ≤ 3, or
(b)#dcn(v4) ≤ 3 and#dcn(v5) ≤ 3.

(a) Assume thatv4 = x2 and#dcn(v5) ≤ 3. We claim that#dcn(vi) = 4 for 1 ≤ i ≤ 3. To see this,
suppose by contradiction, that#dcn(vi) = 4 for at most twovi (1 ≤ i ≤ 3). Then,u needs to forbid
at most eight (⌊(2×4+3)/2⌋+⌊(4+3)/2⌋) colors to avoid the possible creation of bicolored cycles
and two more colors to maintain the proper coloring. Then, one choice remains to coloru. Thus,
w.l.o.g. we may assume thatϕ(v1) = ϕ(v2) = ϕ(v3) = 1, ϕ(v4) = ϕ(v5) = 2, SC(Nc(v1)) ∪
SC(Nc(v2)) ∪ SC(Nc(v3)) = {3, 4, 5, 6, 7, 8}, SC(Nc(v1)) = {3, 4, 5, 6}, SC(Nc(v4)) ⊇
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{9, 10, 11}, SC(Nc(v5)) = {9, 10, 11} and each coloriwith 3 ≤ i ≤ 8 (resp.9 ≤ i ≤ 11) appears
at least once in exactly two different colored neighborhoodof vi with 1 ≤ i ≤ 3 (resp.4 ≤ i ≤ 5).
We focus onv1 and its neighborhood. Note that ifv1 is, sayx1, then we just focus onv2 instead
of v1 (sincev1, v2 andv3 have the same color, we are sure thatv2 is notx3, x4, x5). We will try to
recolorv1 with a color different from 1 and 2: if we succeed, then we willobtain a newLu solved
previously; otherwise we will show that there exists a colorfor u that extendsϕ. If #cn(v1) = 4
(i.e. Lv1

= (1, 1, 1, 1)), then we recolorv1 with a color different fromJ1; 6K and we are done. So
assume that#cn(v1) = 5 (i.e. Lv1

= (2, 1, 1, 1)), and w.l.o.g.ϕ(v11) = ϕ(v21) = 3, ϕ(v31) = 4,
ϕ(v41) = 5, andϕ(v51) = 6. We try to recolorv1 with a color different from 1, 3, 4, 5, 6 and those of
SC(Nc(v

1
1)). If there is a choice different from 2, then we are done. Otherwise we try to recolorv1

with a color different from 1, 3, 4, 5, 6 and those ofSC(Nc(v
2
1)). If there is a choice different from

2, then we are done. Otherwise we are sure thatSC(Nc(v
1
1)) = SC(Nc(v

2
1)) = {7, 8, 9, 10, 11},

then we coloru with 3, since 3 can appear at most once inSC(Nc(v4))∪SC(Nc(v5)), and 3 cannot
appear in bothSC(Nc(v2)) andSC(Nc(v3)).

(b) Suppose now,#dcn(v4) ≤ 3 and#dcn(v5) ≤ 3. We apply 3.2.2. We focus onv1. If v1 is, say
x1, then we just focus onv2 instead ofv1 (sincev1, v2 andv3 have the same color, we are sure that
v2 is notx2, x3, x4, x5).

At this point, we have an acyclic coloring ofG\{xn} such thatx1, x2, x3, x4, x5 use five
distinct colors. Finally, to colorxn we have two cases:

Case Lxn
= (1, 1, 1, 1, 1, 1). By Observation 1, it suffices to colorxn properly (we have

at least five remaining colors).

Case Lxn
= (2, 1, 1, 1, 1). By Observation 1,xn needs to forbid five colors to avoid the

possible creation of bicolored cycles and five more colors tomaintain the proper coloring.
Then, one choice remains to colorxn.

That completes the proof of Theorem 1. 2

3 Conclusion

In this paper, we improve the upper bound ofχa(G) for graphs with maximum degree six. Until
now, the best known lower bound is given byK7. It seems to be difficult to provide graphs that need
more colors. We conclude with the two following questions:

Question 1 Exhibit a graph G with ∆(G) = 6 and χa(G) > 7 (if such a graph exists).

Question 2 Prove that every graph with ∆(G) = 6 has χa(G) < 11.
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