Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ^*

Hervé Hocquard and Mickaël Montassier LaBRI, Université Bordeaux I, 33405 Talence Cedex, France

November 27, 2011

Abstract

An adjacent vertex-distinguishing edge coloring, or avd-coloring, of a graph G is a proper edge coloring of G such that no pair of adjacent vertices meets the same set of colors. Let $\operatorname{mad}(G)$ and $\Delta(G)$ denote the maximum average degree and the maximum degree of a graph G, respectively. In this paper, we prove that every graph G with $\Delta(G) \ge 5$ and $\operatorname{mad}(G) < 3 - \frac{2}{\Delta}$ can be avd-colored with $\Delta(G) + 1$ colors. This completes a result of Wang and Wang [10].

1 Introduction

A proper edge coloring of a graph G = (V, E) is an assignment of colors to the edges of the graph such that two adjacent edges do not use the same color. An adjacent vertex-distinguishing k-edge coloring, or k-avd-coloring for short, of a graph G is a proper edge coloring of G using at most k colors such that, for every pair of adjacent vertices u, v, the set of colors of the edges incident to u differs from the set of colors of the edges incident to v. We denote by $\chi'_{avd}(G)$ the avd-chromatic number of G which is the smallest integer k such that G can be k-avd-colored. In the following we consider graphs with no isolated edges. Adjacent vertex-distinguishing colorings are also known as adjacent strong edge coloring [11] and 1-strong edge coloring [1]. Zhang et al. completely determined the avd-chromatic number for paths, cycles, trees, complete graphs, and complete bipartite graphs [11]. For example, they proved that:

Theorem 1 [11] For cycle C_p , we have :

$$\chi'_{avd}(C_p) = \begin{cases} 3 & \text{if } p \equiv 0 \pmod{3} \\ 4 & \text{if } p \not\equiv 0 \pmod{3} & \text{and } p \neq 5 \\ 5 & \text{if } p = 5 \end{cases}$$

Moreover, they proposed the following conjecture [11]:

Conjecture 1 If G is a connected graph with at least 6 vertices, then $\chi'_{avd}(G) \leq \Delta(G) + 2$.

where $\Delta(G)$ denotes the maximum degree of G.

In [2], Balister *et al.* proved Conjecture 1 for graphs with maximum degree three and for bipartite graphs.

Note that the notion of avd-coloring is an extension of the notion of *vertex-distinguishing proper* edge coloring, which is a proper edge coloring such that for any vertices $u, v \ (u \neq v)$, the set of colors assigned to the edges incident to u differs from the set of colors assigned to the edges incident to v. The smallest integer k such that G can be vertex-distinguishing proper edge colored

^{*}This research is supported by ANR Project GRATOS - GRAphs through Topological Structures ANR-09-JCJC-0041-01 (2009-2012)

with at most k colors is called the *observability* of G and was studied for different families of graphs [3, 4, 5, 6, 7, 8, 9].

Let $\operatorname{mad}(G) = \max\left\{\frac{2|E(H)|}{|V(H)|}, H \subseteq G\right\}$ be the maximum average degree of the graph G, where V(H) and E(H) are the sets of vertices and edges of H, respectively.

In [10], Wang and Wang made the link between maximum average degree and avd-colorings and proved:

Theorem 2 [10] Let G be a connected graph with maximum degree $\Delta(G)$ and maximum average degree mad(G).

- 1. If mad(G) < 3 and $\Delta(G) \ge 3$, then $\chi'_{avd}(G) \le \Delta(G) + 2$.
- 2. If $mad(G) < \frac{5}{2}$ and $\Delta(G) \ge 4$, or $mad(G) < \frac{7}{3}$ and $\Delta(G) = 3$, then $\chi'_{avd}(G) \le \Delta(G) + 1$.
- 3. If $mad(G) < \frac{5}{2}$ and $\Delta(G) \ge 5$, then $\chi'_{avd}(G) = \Delta(G) + 1$ if and only if G contains adjacent vertices of maximum degree.

In this paper, we generalize Theorem 2.2 proving that:

Theorem 3 Let G be a graph of maximum degree $\Delta(G) \geq 5$ and $\operatorname{mad}(G) < 3 - \frac{2}{\Delta(G)}$, then $\chi'_{avd}(G) \leq \Delta(G) + 1$.

One can observe that Theorem 3 holds for $\Delta(G) = 3$ and $\Delta(G) = 4$ [10].

Notations Let G be a graph. Let $d_G(v)$ denote the degree of a vertex v in G. A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp. k^+ -vertex, k^- -vertex). A 2-vertex is called bad if it is adjacent to a 2-vertex, otherwise we call it good. Finally, we use [n] to denote the set of integers $\{1, 2, ..., n\}$.

Let ϕ be a k-avd-coloring of a graph G. We denote by $C_{\phi}(v) = \{\phi(uv) | uv \in E(G)\}$ the set of colors assigned to edges incident to the vertex v. We recall that a proper edge coloring of a graph is adjacent vertex-distinguishing if $C_{\phi}(u) \neq C_{\phi}(v)$ for any pair of adjacent vertices u and v.

In Section 2, we give the proof of Theorem 3 by using the method of reducible configurations and the discharging technique, that is inspired from the proof of [10].

2 **Proof of Theorem 3**

Let G be a counterexample to Theorem 3 minimizing |E(G)| + |V(G)|. Set $\Delta = \Delta(G)$.

First, we prove that G is connected. By contradiction, consider G_1 and G_2 two connected components of $G \pmod{(G_1)} < 3 - \frac{2}{\Delta}$ and $\max(G_2) < 3 - \frac{2}{\Delta}$). Without loss of generality suppose there exists one vertex, say x, in $V(G_1)$ such that $d_G(x) = \Delta$. By minimality of G, G_1 admits a $(\Delta + 1)$ -avd-coloring. If there exists a vertex y in G_2 such that $d_G(y) = \Delta$, then by minimality of G, G_2 admits also a $(\Delta + 1)$ -avd-coloring. Otherwise, suppose that every vertex of G_2 has a degree strictly less than Δ . If $\Delta(G_2) \geq 3$ then by Theorem 2.1 (recall that $\max(G_2) < 3 - \frac{2}{\Delta} < 3$), $\chi'_{avd}(G_2) \leq \Delta(G_2) + 2 \leq \Delta(G) + 1$. If $\Delta(G_2) = 2$, then by Theorem 1, $\chi'_{avd}(G_2) \leq 5 \leq \Delta(G) + 1$. In each case we obtain a contradiction, thus G is connected.

Let *H* be the graph obtained from *G* by removing all 1-vertices of *G*, *i.e.* $H = G \setminus \{v \in V(G), d_G(v) = 1\}$. Clearly, *H* is connected. Moreover $mad(H) < 3 - \frac{2}{\Lambda}$.

2.1 Structural properties of H

In this section, we give some structural properties of H.

Claim 1 *H* has the following properties:

- 1. $\delta(H) \geq 2$, where $\delta(H)$ is the minimum degree of H.
- 2. Let $v \in V(H)$ such that $d_H(v) = 2$, then $d_G(v) = 2$.
- 3. Let uvwx be a path in H such that $d_H(v) = d_H(w) = 2$, then $d_G(u) = d_H(u)$ and $d_G(x) = d_H(x)$.

Proof

The proofs of Claims 1.1 and 1.2 are based on Claims 1 and 2 of [10].

1. By contradiction suppose $\delta(H) \leq 1$. We have two cases:

If $\delta(H) = 0$, then G is the star $K_{1,\Delta(G)}$ and $\chi'_{avd}(G) = \Delta(G)$, a contradiction.

Suppose now $\delta(H) = 1$. Let u be a 1-vertex in H adjacent to a vertex v. One can observe that $d_G(u) = k \ge 2$. In G, call u_1, \ldots, u_{k-1} the (k-1) 1-vertices adjacent to u distinct from v. Consider $G' = G \setminus \{u_1\}$.

If $\Delta(G') < \Delta(G)$, then G' admits a $(\Delta(G') + 2)$ -avd-coloring ϕ by Theorem 2.1 (recall that $\operatorname{mad}(G') \leq \operatorname{mad}(G) < 3 - \frac{2}{\Delta} < 3$). This coloring ϕ is a partial $(\Delta(G) + 1)$ -avd-coloring of G. Coloring uu_1 properly (*i.e.* with a color distinct from those assigned to the adjacent edges) extends ϕ to G (since $|C_{\phi}(u)| = \Delta(G)$, $|C_{\phi}(v)| < \Delta(G)$, and $|C_{\phi}(u_1)| = 1$), a contradiction.

If $\Delta(G') = \Delta(G)$, then, by minimality of G, G' admits a $(\Delta(G) + 1)$ -avd-coloring ϕ . Without loss of generality suppose that $\phi(uv) = 1$ and $\phi(uu_i) = i$ for $2 \le i \le k - 1$. We color uu_1 with the color k: either we are done $(C_{\phi}(u) \ne C_{\phi}(v))$ or v verifies $C_{\phi}(v) = \{1, 2, \dots, k - 1, k\}$. In that case, we color uu_1 with the color k + 1. This extends the coloring to G, a contradiction.

Let v be a 2-vertex in H adjacent to two vertices x and y. By contradiction suppose d_G(v) = k > 2. In G, call v₁,..., v_{k-2} the (k − 2) 1-vertices adjacent to v distinct from x and y. Consider G' = G \ {v₁}.

If $\Delta(G') < \Delta(G)$, then G' admits a $(\Delta(G') + 2)$ -avd-coloring ϕ by Theorem 2.1. This coloring ϕ is a partial $(\Delta(G) + 1)$ -avd-coloring of G that we can extend to G by coloring vv_1 properly $(|C_{\phi}(v)| = \Delta(G), |C_{\phi}(x)| < \Delta(G), |C_{\phi}(y)| < \Delta(G)$ and $|C_{\phi}(v_1)| = 1$), a contradiction.

If $\Delta(G') = \Delta(G)$, then, by minimality of G, G' admits a $(\Delta(G) + 1)$ -avd-coloring ϕ . Without loss of generality suppose that $\phi(vx) = 1$, $\phi(vy) = 2$, and $\phi(vv_i) = i+1$ for $2 \le i \le k-2$ when k > 3. Suppose first k = 3. We color vv_1 with the color 3: either we are done $(C_{\phi}(v) \ne C_{\phi}(x)$ and $C_{\phi}(v) \ne C_{\phi}(y)$) or a neighbor of v, say x, verifies $C_{\phi}(x) = \{1, 2, 3\}$. We recolor vv_1 with the color 4: again, either we are done or y verifies $C_{\phi}(y) = \{1, 2, 4\}$. Finally we recolor vv_1 with 6 (recall that $\Delta(G) \ge 5$); this extends the coloring to G, a contradiction. Assume now $k \ge 4$. We color vv_1 with the color k. Either the obtained coloring is an avd-coloring of G, or a neighbor of v, say x, verifies $C_{\phi}(x) = \{1, 2, 3, \dots, k-1, k\}$. Again we recolor vv_1 with k + 1. Either we are done or $C_{\phi}(y) = \{1, 2, 3, \dots, k-1, k+1\}$. In that case, we recolor vv_2 with k (v_2 exists because $k \ge 4$). This extends the coloring to G, a contradiction.

3. Let uvwx be a path in H such that d_H(v) = d_H(w) = 2. By Claim 1.2, d_G(v) = d_G(w) = 2. By contradiction suppose d_G(u) ≠ d_H(u) (it follows from Claims 1.1, 1.2 and construction of H that d_G(u) ≥ 3). Hence there exists at least one 1-vertex adjacent to u in G, say u₁. Consider G' = G \{vw}. By minimality of G, G' admits a (Δ(G)+1)-avd-coloring φ. If φ(uv) ≠ φ(wx), then we color vw (1) properly if d_G(x) ≥ 3, or (2) with a color distinct from those assigned to the edges incident to v and x if d_G(x) = 2. The obtained coloring is an avd-coloring of G ((1) |C_φ(u)| ≥ 3, |C_φ(x)| ≥ 3, |C_φ(v)| = |C_φ(w)| = 2 and C_φ(v) ≠ C_φ(w), (2) |C_φ(u)| ≥ 3, |C_φ(u)| = 2, C_φ(v) ≠ C_φ(w), and C_φ(w) ≠ C_φ(x)). Otherwise, we permute the colors assigned to uu₁ and uv. The obtained coloring is still an avd-coloring of G'. We then extend the coloring to G as previously.

Claim 2 The graph H does not contain

- 1. a path uvw such that $d_H(u) = d_H(v) = d_H(w) = 2$ [10],
- 2. a 3-vertex adjacent to a 2-vertex,
- 3. a 4-vertex adjacent to three 2-vertices,
- 4. a k-vertex adjacent to a bad 2-vertex for $3 \le k \le \lfloor \frac{\Delta}{2} \rfloor$,
- 5. a k-vertex adjacent to (k-2) bad 2-vertices for $\left\lceil \frac{\Delta}{2} \right\rceil + 1 \le k \le \Delta 1$,
- 6. *a* k-vertex adjacent to k 2-vertices for $k \ge 5$.

Proof

- 1. This case was proven in [10].
- 2. Let u be a 3-vertex in H. In H, call u_1, u_2 and u_3 the three neighbors of u. Moreover, suppose that $d_H(u_1) = 2$. By Claim 1.2, $d_H(u_1) = 2 = d_G(u_1)$. Call v the second neighbor of u_1 distinct from u. We consider two cases:
 - (1) Suppose first d_H(v) = 2. By Claims 1.2 and 1.3, d_H(v) = 2 = d_G(v) and d_H(u) = 3 = d_G(u). Call w the second neighbor of v distinct from u₁. Consider G' = G \ {u₁v}. By minimality of G, G' admits an (Δ(G) + 1)-avd-coloring φ. If φ(uu₁) ≠ φ(vw), then we color u₁v properly, and we obtain an extension of φ to G which is a contradiction. Note that if u = w, we have immediatly φ(uu₁) ≠ φ(vw). Without loss of generality suppose now u ≠ w, φ(uu₁) = φ(vw) = 1, φ(uu₂) = 2 and φ(uu₃) = 3. We recolor uu₁ with 4. If the obtained coloring is still an avd-coloring, then we extend the coloring to G as previously. Otherwise this means that a neighbor of u, say u₂, verifies C_φ(u₂) = {2,3,4}. We recolor uu₁ with 5: either we are done, or u₃ verifies C_φ(u₃) = {2,3,5}. Finally, we can color uu₁ with 6 (recall that Δ(G) ≥ 5) and we can extend the coloring to G, a contradiction.
 - (2) Suppose now d_H(v) > 2. If d_G(u) = d_H(u) = 3, then we consider G' = G \ {uu₁}. By minimality of G, G' admits a (Δ(G) + 1)-avd-coloring φ. Without loss of generality suppose that φ(u₁v) = α ≤ 3, φ(uu₂) = 2 and φ(uu₃) = 3. We color uu₁ with 4, either we are done or a neighbor of u, say u₂, verifies C_φ(u₂) = {2, 3, 4}. We color uu₁ with 5: either we are done, or u₃ verifies C_φ(u₃) = {2, 3, 5}. Finally, we can color uu₁ with 6 and we can extend the coloring to G, a contradiction.

Assume $d_G(u) = k > 3$ $(k \le \Delta(G))$. In G, call u_4, \ldots, u_k the (k-3) 1-vertices adjacent to u. Consider $G' = G \setminus \{uu_k\}$. If $\Delta(G') < \Delta(G)$, then G' admits a $(\Delta(G') + 2)$ -avd-coloring ϕ by Theorem 2.1 (recall that $\operatorname{mad}(G') \le \operatorname{mad}(G) < 3 - \frac{2}{\Delta} < 3$). This coloring ϕ is a partial $(\Delta(G) + 1)$ -avd-coloring of G that we can extend to G by coloring uu_k properly $(|C_{\phi}(u)| = \Delta(G), |C_{\phi}(u_2)| < \Delta(G), |C_{\phi}(u_3)| < \Delta(G), |C_{\phi}(u_1)| = 2$ and $|C_{\phi}(u_k)| = 1$), a contradiction.

If $\Delta(G') = \Delta(G)$, then, by minimality of G, G' admits a $(\Delta(G) + 1)$ -avd-coloring ϕ . Without loss of generality suppose that $\phi(uu_i) = i$ for all $i \in [k-1]$ (with $4 \leq k \leq \Delta(G)$). Suppose first k > 4. We color uu_k with k. If the obtained coloring is an avd-coloring of G', then this extends the coloring to G. Otherwise this means that a neighbor of u, say u_2 , verifies $C_{\phi}(u_2) = \{1, 2, 3, \ldots, k-1, k\}$. We color uu_k with k + 1. Either we are done, or $C_{\phi}(u_3) = \{1, 2, 3, \ldots, k-1, k+1\}$. In that case, we recolor uu_{k-1} with k. This extends the coloring to G, a contradiction. Assume now k = 4. We color uu_4 with 4, either we are done or a neighbor of u (distinct from u_1), say u_2 , verifies $C_{\phi}(u_2) = \{1, 2, 3, 4\}$. We color uu_4 with 5, either we are done or u_3 verifies $C_{\phi}(u_3) = \{1, 2, 3, 5\}$. Then we color uu_4 with 6 (recall that $\Delta(G) \geq 5$), this extends the coloring to G, a contradiction.

- 3. Let u be a 4-vertex in H. In H, call u_1 , u_2 , u_3 and u_4 the four neighbors of u. Moreover, suppose that $d_H(u_1) = d_H(u_2) = d_H(u_3) = 2$. By Claim 1.2, $d_G(u_1) = d_G(u_2) = d_G(u_3) = 2$. For $i \in \{1, 2, 3\}$, call v_i the second neighbor of u_i (distinct from u). We consider two cases:
 - (1) Suppose one of the u_i 's is a bad 2-vertex, say u_1 . Call w the second neighbor of v_1 distinct from u_1 . Then, by Claim 1.3, $d_H(w) = d_G(w)$ and $d_H(u) = d_G(u) = 4$. Moreover, by Claim 2.1, $d_H(w) > 2$. Consider $G' = G \setminus \{u_1v_1\}$. By minimality of G, G' admits an $(\Delta(G) + 1)$ -avd-coloring ϕ . Without loss of generality suppose that $\phi(uu_i) = i$ for all $i \in [4]$. If $\phi(uu_1) \neq \phi(v_1w)$, then we color u_1v_1 properly. This extends ϕ to G, a contradiction. Suppose now $\phi(uu_1) = \phi(v_1w) = 1$. We recolor uu_1 with 5, either we are done or u_4 verifies $C_{\phi}(u_4) = \{2, 3, 4, 5\}$. Then we recolor uu_1 with 6 and we color u_1v_1 properly, this extends the coloring to G, a contradiction.
 - (2) Assume that u_1, \ldots, u_3 are three good 2-vertices. If $d_G(u) = d_H(u) = 4$, then we consider $G' = G \setminus \{uu_1\}$. By minimality of G, G' admits a $(\Delta(G) + 1)$ -avd-coloring ϕ . Without loss of generality suppose that $\phi(u_1v_1) = \alpha \leq 4$ and $\phi(u_{i+1}) = i+1$ for all $i \in [3]$. We color uu_1 with 5, either we are done or u_4 verifies $C_{\phi}(u_4) = \{2, 3, 4, 5\}$. Then we recolor uu_1 with 6, this extends the coloring to G, a contradiction. Assume $d_G(u) = k > 4$ ($k \le \Delta(G)$). In G, call u_5, \ldots, u_k the (k-4) 1-vertices adjacent to u. Consider $G' = G \setminus \{uu_k\}$. If $\Delta(G') < \Delta(G)$, then G' admits a $(\Delta(G')+2)$ -avd-coloring ϕ by Theorem 2.1 (recall that $mad(G') \leq mad(G) < 3 - \frac{2}{\Delta} < 3$). This coloring ϕ is a partial $(\Delta(G) + 1)$ -avd-coloring of G that we can extend to G by coloring uu_k properly $(|C_{\phi}(u)| = \Delta(G), |C_{\phi}(u_4)| < \Delta(G), |C_{\phi}(u_1)| = |C_{\phi}(u_2)| = |C_{\phi}(u_3)| = 2$ and $|C_{\phi}(u_k)| = 1$), a contradiction. If $\Delta(G') = \Delta(G)$, then, by minimality of G, $G' = G \setminus \{uu_k\}$ admits a $(\Delta(G) + 1)$ -avd-coloring ϕ . Without loss of generality suppose that $\phi(uu_i) = i$ for all $i \in [k-1]$ (with $5 \le k \le \Delta(G)$). We color uu_k with k. If the obtained coloring is an avd-coloring of G, then we are done. Otherwise this means that u_4 verifies $C_{\phi}(u_4) = \{1, 2, 3, \dots, k-1, k\}$, then we color uu_k with k+1. This extends the coloring to G, a contradiction.
- 4. Let u be a k-vertex in H adjacent to a bad 2-vertex v with 3 ≤ k ≤ [Δ/2]. Let w be the second neighbor of v distinct from u and call x the second neighbor of w distinct from v. Call u₁,..., u_{k-1} the (k − 1) neighbors of u distinct from v. By Claims 1.2 and 1.3, d_H(w) = d_G(w) = 2 = d_G(v) = d_H(v) and d_G(u) = d_H(u) = k. By Claim 2.1, d_H(x) > 2. Consider G' = G \ {vw}. By minimality of G, G' admits an (Δ(G) + 1)-avd-coloring φ. Without loss of generality suppose that φ(uu_i) = i for all i ∈ [k − 1] and φ(uv) = k. If φ(uv) ≠ φ(wx), then we color vw properly. This extends φ to G, a contradiction. Suppose now φ(uv) = φ(wx) = k. We try to recolor uv with each color c ∈ {k + 1,..., 2k − 1}. If we succeed, then we are done; otherwise this means that for all c ∈ {k + 1,..., 2k − 1} there exists i ∈ [k − 1] such that C_φ(u) \ {k} ∪ {c} = C_φ(u_i). In that case we can recolor uv with 2k which is possible because 3 ≤ k ≤ [Δ/2]. The obtained coloring is still an avd-coloring of G'. We then extend the coloring to G as previously.
- 5. Let u be a k-vertex in H. Consider (k-2) paths in H, $uv_j^1v_j^2v_j^3$ with $j \in [k-2]$, such that $d_H(v_j^1) = d_H(v_j^2) = 2$ and $d_H(v_j^3) > 2$ (by Claim 2.1). By Claim 1.2, $d_G(v_j^1) = d_G(v_j^2) = 2$ and by Claim 1.3, $d_G(u) = d_H(u) = k$. Call x and y the two neighbors of u distinct from the v_j^1 's. Consider $G' = G \setminus \{v_1^1v_1^2\}$. By minimality of G, G' admits an $(\Delta(G) + 1)$ -avd-coloring ϕ . We consider two cases:
 - (1) $\phi(uv_1^1) \neq \phi(v_1^2v_1^3)$. We color $v_1^1v_1^2$ properly. This extends ϕ to G, a contradiction.
 - (2) Without loss of generality assume $\phi(uv_1^1) = 1 = \phi(v_1^2v_1^3)$, for all $j \in [k-2]$, $\phi(uv_j^1) = j$, $\phi(ux) = k 1$ and $\phi(uy) = k$. If one of the $v_j^2v_j^3$ ($j \in [k-2]$), say $v_2^2v_2^3$, is such that $\phi(v_2^2v_2^3) \neq 1$, then we uncolor $v_2^1v_2^2$, we permute the colors of uv_1^1 and uv_2^1 , and finally we color properly $v_1^1v_1^2$ and $v_2^1v_2^2$. The obtained coloring is an ($\Delta(G) + 1$)-avd-coloring

of G. Consider now that for all $j \in [k-2]$, $\phi(v_j^2 v_j^3) = 1$. We recolor uv_1^1 with k+1. If the obtained coloring is still an avd-coloring of G', then we extend the coloring to G by coloring $v_1^1 v_1^2$ properly. Otherwise this means that a neighbor of u (x or y), say x, verifies $C_{\phi}(x) = \{2, 3, 4, \ldots, k-1, k, k+1\}$. Then we recolor uv_1^1 with k+2 (which is possible because $k \leq \Delta(G) - 1$). Either we are done, or $C_{\phi}(y) = \{2, 3, \ldots, k-1, k, k+2\}$. In that case, we uncolor $v_2^1 v_2^2$, we recolor uv_2^1 with k+1. Then we color properly $v_1^1 v_1^2$ and $v_2^1 v_2^2$. This extends the coloring to G, a contradiction.

- 6. Let u be a k-vertex in H adjacent to k 2-vertices u_1, \ldots, u_k , with $k \ge 5$. For all $i \in [k]$, call v_i the second neighbor of u_i (distinct from u). By Claim 1.2, $d_G(u_i) = 2$ for all $i \in [k]$. We consider two cases:
 - (1) Suppose one of the u_i's is a bad 2-vertex, say u₁. Call w the second neighbor of v₁ distinct from u₁. Then, by Claim 1.3, d_H(w) = d_G(w) and d_H(u) = d_G(u) = k. Moreover, by Claim 2.1, d_H(w) > 2. Consider G' = G \ {u₁v₁}. By minimality of G, G' admits an (Δ(G) + 1)-avd-coloring φ. Without loss of generality suppose that φ(uu_i) = i for all i ∈ [k]. If φ(uu₁) ≠ φ(v₁w), then we color u₁v₁ properly. This extends φ to G, a contradiction. Suppose now φ(uu₁) = φ(v₁w) = 1. We recolor uu₁ with k + 1 and we color u₁v₁ properly, this extends the coloring to G, a contradiction.
 - (2) Assume now u₁,..., u_k are k good 2-vertices. Suppose first d_G(u) = d_H(u). Consider G' = G \ {uu₁}. By minimality of G or Theorem 2.1, G' admits an (Δ(G) + 1)-avd-coloring φ. Without loss of generality suppose φ(uu_{i+1}) = i + 1 for all i ∈ [k 1] and φ(u₁v₁) = α ≤ k 1. We color uu₁ with a color of [Δ(G) + 1] \ ({2,...,k} ∪ {α}). This extends the coloring to G, a contradiction. Suppose now d_G(u) = l > d_H(u) such that l ≤ Δ(G). In G, call u_{k+1},..., u_l the (l k) 1-vertices adjacent to u (with k < l ≤ Δ(G)). Consider G' = G \ {uu_l}. If Δ(G') < Δ(G), then G' admits a (Δ(G') + 2)-avd-coloring φ by Theorem 2.1 (recall that mad(G') ≤ mad(G) < 3 ²/_Δ < 3). This coloring φ is a partial (Δ(G) + 1)-avd-coloring of G that we can extend to G by coloring uu_l properly, a contradiction. If Δ(G') = Δ(G), then by minimality of G, G' admits an (Δ(G) + 1)-avd-coloring φ. Without loss of generality suppose that φ(uu_i) = i for all i ∈ [l 1]. We color uu_l with l. This extends the coloring to G, a contradiction.

2.2 Discharging procedure

In this section we use discharging technique on the vertices of the graph H by defining the weight function $\omega : V(H) \to \mathbb{R}$ with $\omega(x) = d_H(x)$. It follows from the hypothesis on the maximum average degree $(\operatorname{mad}(H) < 3 - \frac{2}{\Delta})$ that the total sum of weights is strictly less than $(3 - \frac{2}{\Delta})|V(H)|$. Then we define discharging rules to redistribute weights, and once the discharging is finished, a new weight function ω^* will be produced such that during the discharging process the total sum of weights is kept fixed. This leads to the following contradiction:

$$\left(3 - \frac{2}{\Delta}\right)|V(H)| \le \sum_{x \in V(H)} \omega^*(x) = \sum_{x \in V(H)} \omega(x) < \left(3 - \frac{2}{\Delta}\right)|V(H)|$$

and hence, this counterexample cannot exist.

The discharging rules are defined as follows:

(R1) Every $\left(\left\lceil \frac{\Delta}{2} \right\rceil + 1\right)^+$ -vertex gives $1 - \frac{2}{\Delta}$ to each adjacent bad 2-vertex.

(R2) Every 4⁺-vertex gives $\frac{1}{2} - \frac{1}{\Lambda}$ to each adjacent good 2-vertex.

Let $v \in V(H)$ be a k-vertex. By Claim 1.1, $k \ge 2$. Consider the following cases:

Case k = 2. Observe that $\omega(v) = 2$. By Claim 2.1, v is adjacent to at most one 2-vertex. Moreover by Claim 2.2, v is not adjacent to a 3-vertex. Suppose v is a good 2-vertex. Hence, by (R2), $\omega^*(v) \ge 2 + 2 \times (\frac{1}{2} - \frac{1}{\Delta}) = 3 - \frac{2}{\Delta}$. Suppose v is bad. By Claim 2.4, v is adjacent to a $(\lceil \frac{\Delta}{2} \rceil + 1)^+$ -vertex. Hence, by (R1), $\omega^*(v) = 2 + 1 \times (1 - \frac{2}{\Delta}) = 3 - \frac{2}{\Delta}$.

Case k = 3. By (R1) and (R2), $\omega(v) = 3 = \omega^*(v) > 3 - \frac{2}{\Delta}$.

Case k = 4. Observe that $\omega(v) = 4$. Suppose first $5 \le \Delta(G) \le 6$. If v is not adjacent to a bad 2-vertex, then by Claim 2.3, v is adjacent to at most two good 2-vertices. Hence, by (R2), $\omega^*(v) \ge 4 - 2 \times (\frac{1}{2} - \frac{1}{\Delta}) > 3 - \frac{2}{\Delta}$. Otherwise, by Claims 2.3 and 2.5, v is adjacent to at most one bad 2-vertex and one good 2-vertex. Hence, by (R1) and (R2), $\omega^*(v) \ge 4 - 1 \times (1 - \frac{2}{\Delta}) - 1 \times (\frac{1}{2} - \frac{1}{\Delta}) > 3 - \frac{2}{\Delta}$. Suppose now $\Delta(G) \ge 7$. Then, by Claims 2.3 and 2.4, v is adjacent to at most two good 2-vertices. Hence, by (R2), $\omega^*(v) \ge 4 - 2 \times (\frac{1}{2} - \frac{1}{\Delta}) > 3 - \frac{2}{\Delta}$.

Case 5 $\leq k \leq \lceil \frac{\Delta}{2} \rceil$. Observe that $\omega(v) = k$. By Claims 2.4 and 2.6, v is adjacent to at most (k-1) good 2-vertices. Hence, by (R2), $\omega^*(v) \geq k - (k-1) \times (\frac{1}{2} - \frac{1}{\Delta}) > 3 - \frac{2}{\Delta}$ for $k \geq 5$.

Case $\lceil \frac{\Delta}{2} \rceil + 1 \leq k \leq \Delta - 1$. By Claims 2.5 and 2.6, v is adjacent to at most (k-3) bad 2-vertices and two good 2-vertices. Hence, by (R1) and (R2), $\omega^*(v) \geq k - (k-3) \times (1 - \frac{2}{\Delta}) - 2 \times (\frac{1}{2} - \frac{1}{\Delta}) \geq 3 - \frac{2}{\Delta}$ for $k \geq \lceil \frac{\Delta}{2} \rceil + 1$.

Case $k = \Delta$. Observe that $\omega(v) = \Delta$. By Claim 2.6, v is adjacent to at most $(\Delta - 1)$ 2-vertices. It follows by (R1), $\omega^*(v) \ge \Delta - (\Delta - 1) \times (1 - \frac{2}{\Delta}) = 3 - \frac{2}{\Delta}$.

This completes the proof.

References

- S. Akbari, H. Bidkhori, and N. Nosrati, r-strong edge colorings of graphs, Discrete Math., 306:3005-3010, 2006.
- [2] P. N. Balister, E. Győri, J. Lehel, and R. H. Schelp, Adjacent vertex distinguishing edgecolorings, SIAM J. Discrete Math., 21:237-250, 2007.
- [3] P.N. Balister, O.M. Riordan, and R.H. Schelp, Vertex-distinguishing edge-colorings of graphs, Journal of graph theory, 42:95-109, 2003.
- [4] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, Journal of graph theory, 26:73-83, 1997.
- [5] J. Cerný, M. Horňák, and R. Soták, Observability of a graph, Mathematica Slovaca, 46(1):21-31, 1996.
- [6] E. Dedó, D. Torri, and N. Zagaglia Salvi, The observability of the fibonacci and the lucas cubes, Discrete Math., 255:55-63, 2002.
- [7] O. Favaron, H. Li, and R.H. Schelp, Strong edge coloring of graphs. Discrete Math., 159:103-109, 1996.
- [8] M. Horňák and R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combinatoria, 41:289-301, 1995.
- [9] M. Horňák, Asymptotic behaviour of the observability of Q_n , Discrete Math., 176:139-148, 1997.
- [10] W. Wang and Y. Wang, Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree, J. Comb. Optim., 19:471-485, 2010.
- [11] Z. Zhang, L. Liu, and J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett., 15:623-626, 2002.