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Abstract

An adjacent vertex-distinguishing edge coloring, or aetbdng, of a graphG is a proper
edge coloring of7 such that no pair of adjacent vertices meets the same sdbo$ cbetmad(G)
and A(G) denote the maximum average degree and the maximum degregraplac, respec-
tively. In this paper, we prove that every graptwith A(G) > 5 andmad(G) < 3 — % can be
avd-colored withA(G) + 1 colors. This completes a result of Wang and Wang [10].

1 Introduction

A proper edge coloring of a grap@ = (V, F) is an assignment of colors to the edges of the
graph such that two adjacent edges do not use the same caloadjacent vertex-distinguishing
k-edge coloring, ofk-avd-coloring for short, of a grap¥ is a proper edge coloring @ using

at mostk colors such that, for every pair of adjacent vertiees, the set of colors of the edges
incident tou differs from the set of colors of the edges incidenttoWe denote by, ,(G) the
avd-chromatic number of G which is the smallest integér such thatz can bek-avd-colored. In
the following we consider graphs with no isolated edges.adélt vertex-distinguishing colorings
are also known aadjacent strong edge coloring [11] and 1-strong edge coloring [1]. Zhanget

al. completely determined the avd-chromatic number for pathdes, trees, complete graphs, and
complete bipartite graphs [11]. For example, they provett th

Theorem 1 [11] For cycle C,, we have :

3if p=0 (mod 3)
Xawd(Cp) = 4 if p#Z0 (mod 3) and p#5
5if p=5

Moreover, they proposed the following conjecture [11]:
Conjecturel If G isa connected graph with at least 6 vertices, then x/, ,(G) < A(G) + 2.

whereA(G) denotes the maximum degree@f

In [2], Balisteret al. proved Conjecture 1 for graphs with maximum degree thredarpartite
graphs.

Note that the notion of avd-coloring is an extension of théamoof vertex-distinguishing proper
edge coloring, which is a proper edge coloring such that for any vertiees (u # v), the set
of colors assigned to the edges incidenttdiffers from the set of colors assigned to the edges
incident tov. The smallest integéf such thatz can be vertex-distinguishing proper edge colored
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with at mostk colors is called thebservability of G and was studied for different families of graphs
[3,4,5,6,7,8,09].

Letmad(G) = max { ﬁkf(%ﬂl , HC G} be the maximum average degree of the gri@ptvhere
V(H) andE(H) are the sets of vertices and edgegffrespectively.

In [10], Wang and Wang made the link between maximum averages@ and avd-colorings and
proved:

Theorem 2 [10] Let G be a connected graph with maximum degree A(G) and maximum average
degree mad(QG).

1. If mad(G) < 3and A(G) > 3, then \,,,(G) < A(G) + 2.
2. If mad(G) < 2 and A(G) > 4, or mad(G) < £ and A(G) = 3,thenx,,,,(G) < A(G) + 1.

3. Ifmad(G) < 2 and A(G) > 5,then \/,, ,(G) = A(G) + Lif and only if G contains adjacent
vertices of maximum degree.

In this paper, we generalize Theorem 2.2 proving that:

Theorem 3 Let G be a graph of maximum degree A(G) > 5 and mad(G) < 3 — x7=, then
X:zvd(G) S A(G) + L

One can observe that Theorem 3 holdsAq(7) = 3 andA(G) = 4 [10].

Notations LetG be a graph. Letfs(v) denote the degree of a vertedin G. A vertex of degree
k (resp. at least, at mostk) is called ak-vertex (resp. k' -vertex, k~-vertex). A 2-vertex is called
bad if it is adjacent to &-vertex, otherwise we call good. Finally, we usdn] to denote the set of
integers{1,2,...,n}.

Let ¢ be ak-avd-coloring of a grapli. We denote by’ (v) = {¢(uv)|uv € E(G)} the set of
colors assigned to edges incident to the verteWe recall that a proper edge coloring of a graph is
adjacent vertex-distinguishing@, (u) # C,(v) for any pair of adjacent verticesandv.

In Section 2, we give the proof of Theorem 3 by using the mettfagéducible configurations
and the discharging technique, that is inspired from thefwb[10].

2 Proof of Theorem 3

Let G be a counterexample to Theorem 3 minimizjaifG)| + |V (G)]. SetA = A(G).

First, we prove tha€ is connected. By contradiction, considér andGs two connected com-
ponents ofG' (madG1) < 3 — £ and madG;) < 3 — %). Without loss of generality suppose
there exists one vertex, say in V(G1) such thatdg(z) = A. By minimality of G, G; admits a
(A + 1)-avd-coloring. If there exists a vertexin G such thatdg(y) = A, then by minimality
of G, G, admits also A + 1)-avd-coloring. Otherwise, suppose that every vertexothas a
degree strictly less thafy. If A(G3) > 3 then by Theorem 2.1 (recall that m@eh) < 3 — £ < 3),
Xowa(G2) < A(G2)+2 < A(G)+1. If A(G2) = 2,thenby Theorem I/, .(G2) < 5 < A(G)+1.

In each case we obtain a contradiction, s connected.

Let H be the graph obtained fro® by removing alll-vertices ofG, i.e. H = G\ {v €
V(G), dg(v) = 1}. Clearly,H is connected. Moreovenad(H) < 3 — %.

2.1 Structural propertiesof H

In this section, we give some structural propertiegiof

Claim 1 H hasthe following properties:



1. §(H) > 2, where §(H) isthe minimum degree of H.
2. Letv € V(H) suchthat dg (v) = 2, thendg(v) = 2.

3. Let wowz be apath in H such that dy (v) = dg(w) = 2, then dg(u) = di(u) and dg(z) =
dH(m)

Pr oof
The proofs of Claims 1.1 and 1.2 are based on Claims 1 and Dpf [1

1. By contradiction suppos¥H) < 1. We have two cases:
If 5(H) = 0, thenG is the stark; A (@) andx;,,,(G) = A(G), a contradiction.

Suppose now(H) = 1. Letw be al-vertex in H adjacent to a vertex. One can observe that
dg(u) =k > 2. InG, calluy,...,ux_1 the (k — 1) 1-vertices adjacent ta distinct fromw.
ConsiderG’ = G \ {u1}.

If A(G') < A(G), thenG’ admits a(A(G") + 2)-avd-colorings by Theorem 2.1 (recall that
mad(G’) < mad(G) < 3 — £ < 3). This colorings is a partial(A(G) + 1)-avd-coloring of
G. Coloringuu; properly {.e. with a color distinct from those assigned to the adjacenesjig
extendsp to G (since|Cy (u)| = A(G), |Cy(v)] < A(G), and|Cy(u1)| = 1), a contradiction.

If A(G’) = A(G), then, by minimality ofG, G’ admits a(A(G) + 1)-avd-coloringg. Without
loss of generality suppose thatuv) = 1 andg(uu;) =i for2 < i < k — 1. We coloruu, with
the colork: either we are donefy(u) # Cy(v)) orv verifiesCy(v) = {1,2,...,k — 1,k}. In
that case, we colaru; with the colork + 1. This extends the coloring 1@, a contradiction.

2. Letwv be a2-vertexinH adjacent to two verticesandy. By contradiction supposé; (v) = k >
2. In G, callvy,...,v_o the (k — 2) 1-vertices adjacent to distinct fromz andy. Consider
G' =G\ {v}.

If A(G") < A(G), thenG’ admits a(A(G") + 2)-avd-coloringp by Theorem 2.1. This coloring
¢ is a partial(A(G) + 1)-avd-coloring ofG that we can extend t&' by coloringvv;, properly
(ICs(v)] = A(G), |Cy(x)] < A(G), |Cy(y)| < A(G) and|Cy(v1)| = 1), a contradiction.

If A(G') = A(G), then, by minimality ofG, G’ admits a(A(G) + 1)-avd-coloringg. Without
loss of generality suppose thatvz) = 1, ¢(vy) = 2, andp(vv;) = i+1for2 < i < k—2when
k > 3. Suppose firsk = 3. We colorvv, with the color3: either we are done{;(v) # Cy(z)
andCy(v) # Cy(y)) or a neighbor of, sayz, verifiesCy(z) = {1, 2, 3}. We recolorvv; with
the color4: again, either we are done grerifiesCy(y) = {1, 2,4}. Finally we recolowv; with
6 (recall thatA(G) > 5); this extends the coloring 16, a contradiction. Assume nokv> 4. We
colorvv; with the colork. Either the obtained coloring is an avd-coloringl@for a neighbor of
v, sayx, verifiesCy(z) = {1,2,3,...,k — 1,k}. Again we recolonv; with & + 1. Either we
are done oCy(y) = {1,2,3,...,k — 1,k + 1}. In that case, we recolam, with k (v, exists
becausé: > 4). This extends the coloring G, a contradiction.

3. Letuvwz be a path inH such thatly (v) = dgy(w) = 2. By Claim 1.2,d¢(v) = dg(w) = 2.
By contradiction supposég (u) # dg(u) (it follows from Claims 1.1, 1.2 and construction of
H thatdg(u) > 3). Hence there exists at least oheertex adjacent ta in G, sayu;. Consider
G’ = G\ {vw}. By minimality of G, G’ admits a(A(G)+1)-avd-coloringp. If ¢(uv) # ¢(wz),
then we coloww (1) properly ifde(z) > 3, or (2) with a color distinct from those assigned to
the edges incident to andz if dg(«) = 2. The obtained coloring is an avd-coloring Gf((1)
Colw)] > 3, [Co()] > 3, |Cy(v)] = |Co(w)] = 2andCy(v) # Cy(w), (2) |Cylu)| > 3,
Co(v)] = [Co(w)] = [Cy(x)] = 2, Co(v) # Cy(w), andCy(w) # Cy(x)). Otherwise, we
permute the colors assignedda; anduv. The obtained coloring is still an avd-coloring Gf.
We then extend the coloring t8 as previously.



Claim 2 The graph H does not contain

1. apath uvw suchthat dg (u) = dg(v) = dg(w) = 2[10],

. a 3-vertex adjacent to a 2-vertex,

. a4-vertex adjacent to three 2-vertices,

. ak-vertex adjacent to (k — 2) bad 2-verticesfor [$]+1 <k <A -1,

2
3
4. ak-vertex adjacent to a bad 2-vertex for 3 < k < [5],
5
6

. a k-vertex adjacent to k 2-verticesfor k > 5.

1. This case was proven in [10].

2. Letu be a3-vertexinH. In H, callu,, us andus the three neighbors af. Moreover, suppose
thatdy (u1) = 2. By Claim 1.2,dg(u1) = 2 = dg(uq). Call v the second neighbor af;
distinct fromu. We consider two cases:

1)

)

Suppose firsty (v) = 2. By Claims 1.2 and 1.3]y(v) = 2 = dg(v) anddg (u) =
3 = dg(u). Callw the second neighbor ofdistinct fromu, . ConsideiG’ = G\ {uv}.
By minimality of G, G’ admits an(A(G) + 1)-avd-coloringp. If ¢p(uu1) # ¢(vw), then
we coloru,v properly, and we obtain an extensiong@to G which is a contradiction.
Note that ifu = w, we have immediatly)(uuy) # ¢(vw). Without loss of generality
suppose now # w, ¢(uuy) = ¢lvw) = 1, ¢p(uuz) = 2 and p(uuz) = 3. We
recoloruu; with 4. If the obtained coloring is still an avd-coloring,etih we extend
the coloring toG as previously. Otherwise this means that a neighbou,afay u.,
verifiesCy(u2) = {2, 3,4}. We recoloruu; with 5: either we are done, ar; verifies
Cy(us) = {2, 3,5}. Finally, we can colofiu; with 6 (recall thatA(G) > 5) and we can
extend the coloring t@-, a contradiction.

Suppose nowly (v) > 2. If dg(u) = dg(u) = 3, then we conside&’ = G \ {uuq}.
By minimality of G, G’ admits a(A(G) + 1)-avd-coloringp. Without loss of generality
suppose thab(u1v) = a < 3, ¢(uuz) = 2 andp(uug) = 3. We coloruu; with 4,
either we are done or a neighborfsayus, verifiesCy(u2) = {2, 3,4}. We coloruu,
with 5: either we are done, ar; verifiesCy (u3) = {2, 3,5}. Finally, we can colotu;
with 6 and we can extend the coloring@ a contradiction.

Assumedg(u) = k > 3 (kK < A(G)). In G, call ug,...,u; the (k — 3) 1-vertices
adjacentta:. ConsidelG’ = G\ {uug}. If A(G") < A(G), thenG’ admits a(A(G') +
2)-avd-coloringp by Theorem 2.1 (recall thatad(G’) < mad(G) < 3— % < 3). This
coloring¢ is a partial( A(G) 4 1)-avd-coloring ofG that we can extend t@ by coloring
wuy, properly (Cy(u)| = A(G), [Cy(u2)] < A(G), |[Coluz)| < A(G), [Co(ur)| = 2
and|Cy(ug)| = 1), a contradiction.

If A(G") = A(G), then, by minimality ofG, G’ admits a(A(G) + 1)-avd-coloring
¢. Without loss of generality suppose thatuu;) = i forall i € [k — 1] (with 4 <
k < A(G)). Suppose firsk > 4. We coloruuy with k. If the obtained coloring is
an avd-coloring ofG’, then this extends the coloring &. Otherwise this means that
a neighbor ofu, sayus, verifiesCy(uz2) = {1,2,3,...,k — 1, k}. We coloruuy, with
k + 1. Either we are done, af'y(us) = {1,2,3,...,k — 1,k + 1}. In that case, we
recoloruuy_; with k. This extends the coloring t&, a contradiction. Assume now
k = 4. We coloruuy with 4, either we are done or a neighborw{distinct fromw;),
sayus, verifiesCy(u2) = {1,2,3,4}. We coloruuys with 5, either we are done ar;
verifiesCy(u3) = {1,2,3,5}. Then we colotu, with 6 (recall thatA(G) > 5), this
extends the coloring t&', a contradiction.
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3. Letu be a4-vertex inH. In H, call uy, us, ug anduy the four neighbors ofi. Moreover,
suppose thatly (u1) = dg(u2) = dg(us) = 2. By Claim 1.2,d¢(u1) = dg(u2) =
da(ug) = 2. Fori € {1,2,3}, call v; the second neighbor af; (distinct fromw). We
consider two cases:

(1) Suppose one of the;'s is a bad2-vertex, sayu;. Call w the second neighbor af;
distinct fromw;. Then, by Claim 1.3dy(w) = dg(w) anddy(u) = dg(u) = 4.
Moreover, by Claim 2.1dy(w) > 2. ConsiderG’ = G \ {ujv1}. By minimality of
G, G’ admits an(A(G) + 1)-avd-coloringe. Without loss of generality suppose that
d(uu;) = i foralli € [4]. If ¢p(uur) # ¢(viw), then we color, vy properly. This
extendsp to G, a contradiction. Suppose naWuu,) = ¢(viw) = 1. We recoloruu,
with 5, either we are done ar, verifiesCy(us) = {2,3,4,5}. Then we recolowu;
with 6 and we colot:,v; properly, this extends the coloring @, a contradiction.

(2) Assume that,...,us are three goo@-vertices. Ifdg(u) = dy(u) = 4, then we
considerG’ = G \ {uw,}. By minimality of G, G’ admits a(A(G) + 1)-avd-coloring
¢. Without loss of generality suppose thet,v1) = a < 4 and¢(uui1) =i + 1 for
all i € [3]. We coloruu, with 5, either we are done ar, verifiesCy(u4) = {2, 3,4,5}.
Then we recolomu; with 6, this extends the coloring @, a contradiction. Assume
dag(u) =k >4k < A(G)). InG, callus, ..., uy the (k — 4) 1-vertices adjacent ta.
Considel’ = G\{uug}. If A(G') < A(G), thenG’ admits a A(G’)+2)-avd-coloring
¢ by Theorem 2.1 (recall thahad(G’) < mad(G) < 3 — £ < 3). This coloring
¢ is a partial(A(G) + 1)-avd-coloring ofG that we can extend t&' by coloringuuy,
properly (Cy(u)] = A(G), |Cy ()] < A(G), |Cy(ur)] = |Coluz)| = Co(uz)| = 2
and|Cy(ux)| = 1), a contradiction. IfA(G’) = A(G), then, by minimality ofG,
G' = G\ {uui} admits a(A(G) + 1)-avd-coloring¢. Without loss of generality
suppose thap(uu,;) =i foralli € [k — 1] (with 5 < k < A(G)). We coloruuy, with k.

If the obtained coloring is an avd-coloring 6f then we are done. Otherwise this means
thatuy verifiesCy(us) = {1,2,3,...,k — 1, k}, then we coloruy with k + 1. This
extends the coloring t&, a contradiction.

4. Letu be ak-vertex in H adjacent to a bad-vertexv with 3 < k£ < (%1. Let w be the
second neighbor af distinct fromu and callx the second neighbor af distinct fromw. Call
uq,...,ux—1 the (k — 1) neighbors ofu distinct fromv. By Claims 1.2 and 1.3/y (w) =
dg(w) = 2 = dg(v) = dyg(v) anddg(u) = dy(u) = k. By Claim 2.1,dg(z) > 2.
ConsiderG’ = G \ {vw}. By minimality of G, G’ admits an(A(G) + 1)-avd-coloringg.
Without loss of generality suppose thatuu;) = i forall i € [k — 1] andg(uv) = k. If
o(uv) # ¢(wz), then we coloww properly. This extends to G, a contradiction. Suppose
now ¢(uv) = ¢(wz) = k. We try to recolorw with each color € {k+1,...,2k — 1}. If
we succeed, then we are done; otherwise this means that foedlk + 1, ..., 2k — 1} there
existsi € [k — 1] such thatCy(u) \ {k} U {c} = Cy(u;) . In that case we can recolap with
2k which is possible because< k < [5]. The obtained coloring is still an avd-coloring of
G’. We then extend the coloring @ as previously.

5. Letu be ak-vertex inH. Consider(k — 2) paths inH, uwvjviv? with j € [k — 2], such that
d (v}) = dg(v}) = 2anddg (v}) > 2 (by Claim 2.1). By Claim 1.2J¢ (vj) = dg(v}) = 2
and by Claim 1.3d¢ (u) = di(u) = k. Callz andy the two neighbors of distinct from the
vi’s. ConsidelG’ = G'\ {vjv7}. By minimality of G, G" admits an(A(G) + 1)-avd-coloring
¢. We consider two cases:

(1) p(uv) # ¢(v¥v3). We colorviv? properly. This extends to G, a contradiction.

(2) Without loss of generality assuméuv;) = 1 = ¢(viv?), forallj € [k—2], ¢(uvj) =
J» ¢(ux) = k —1andg(uy) = k. If one of thev?v? (j € [k — 2]), sayv3v3, is such that
d(v3v3) # 1, then we uncolopiv3, we permute the colors afv} anduvi, and finally

we color properlyiv? andviv3. The obtained coloring is a\ (G) + 1)-avd-coloring



of G. Consider now that for aljl € [k — 2], ¢(vjv?) = 1. We recoloruwv] with & + 1. If
the obtained coloring is still an avd-coloring Gf, then we extend the coloring @ by
coloringviv? properly. Otherwise this means that a neighbar ¢f or y), sayz, verifies
Cy(z) ={2,3,4,...,k—1,k, k+1}. Then we recolorw{ with k-+2 (which is possible
becausé < A(G) — 1). Either we are done, @'y (y) = {2,3,...,k— 1.k, k+2}. In
that case, we uncolagv3, we recoloruvi with & + 1. Then we color properly}v? and
v3v3. This extends the coloring 1@, a contradiction.

6. Letu be ak-vertex inH adjacent to: 2-verticesuy, . . ., ux, with & > 5. For alli € [k], call
v; the second neighbor af; (distinct fromu). By Claim 1.2,dg(u;) = 2 for all i € [k]. We
consider two cases:

(1) Suppose one of the;'s is a bad2-vertex, sayu;. Call w the second neighbor af;
distinct fromw;. Then, by Claim 1.3dy(w) = dg(w) anddg(u) = dg(u) = k.
Moreover, by Claim 2.1dy(w) > 2. ConsiderG’ = G \ {ujv1}. By minimality of
G, G’ admits an(A(G) + 1)-avd-coloringy. Without loss of generality suppose that
d(uu;) = i foralli € [k]. If p(uuy) # ¢(viw), then we coloru vy properly. This
extendsp to G, a contradiction. Suppose naiuu,) = ¢(viw) = 1. We recoloruu,
with k£ + 1 and we colon; v, properly, this extends the coloring €&, a contradiction.

(2) Assume nowuy, ..., uy arek good2-vertices. Suppose firgt; (u) = dg (u). Consider
G’ = G\ {uu1}. By minimality of G or Theorem 2.1G’ admits an(A(G) + 1)-avd-
coloring¢. Without loss of generality suppogguu;.1) =i+ 1 forall i € [k — 1] and
d(urv1) = a < k — 1. We coloruu; with a color of[A(G) + 1]\ ({2, ..., k} U{a}).
This extends the coloring 16, a contradiction. Suppose naig: (u) = I > dg(u) such
that! < A(G). InG, callugy1, ..., u the(l— k) 1-vertices adjacent to (with k < [ <
A(Q@)). Consider’ = G\ {uw}. If A(G') < A(G), thenG’ admits a(A(G’) + 2)-
avd-coloringg by Theorem 2.1 (recall thahad(G’) < mad(G) < 3 — £ < 3). This
coloring¢ is a partial(A(G) + 1)-avd-coloring ofG that we can extend t@ by coloring
uuy properly, a contradiction. IA(G’) = A(G), then by minimality ofG, G’ admits an
(A(G) + 1)-avd-coloringy. Without loss of generality suppose thgt.u;) = ¢ for all
i € [l — 1]. We coloruw; with [. This extends the coloring 1@, a contradiction.

2.2 Discharging procedure

In this section we use discharging technique on the verti€#ise graphH by defining the weight
functionw : V(H) — R with w(z) = dg(z). It follows from the hypothesis on the maximum
average degreerad(H) < 3— %) that the total sum of weights is strictly less th@n- £ )|V (H)|.
Then we define discharging rules to redistribute weights, @mce the discharging is finished, a
new weight functionv* will be produced such that during the discharging procesddtal sum of
weights is kept fixed. This leads to the following contraidiat

2 . 2
-3V s ¥ ww= ¥ ww < (3-5) V)
z €V (H) zeV(H)
and hence, this counterexample cannot exist.

The discharging rules are defined as follows:

(R1) Every([%] + 1)*-vertex givesl — % to each adjacent bativertex.

(R2) Every4t-vertex gives% — % to each adjacent goadvertex.

Letv € V(H) be ak-vertex. By Claim 1.1k > 2. Consider the following cases:



Case k = 2. Observe that(v) = 2. By Claim 2.1,v is adjacent to at most orizvertex.
Moreover by Claim 2.2y is not adjacent to 8-vertex. Suppose is a good2-vertex. Hence,
by (R2),w*(v) >2+2x (3 — 1) =3 — £. Suppose is bad. By Claim 2.4y is adjacent
toa([£]+1)*-vertex. Hence, by (R1}*(v) =2+1x (1 - 2) =3 - £.

Casek = 3. By (R1) and (R2)w(v) = 3 = w*(v) >3 — %.

Case k = 4. Observe thatv(v) = 4. Suppose firsb < A(G) < 6. If v is not adjacent
to a bad2-vertex, then by Claim 2.3y is adjacent to at most two good 2-vertices. Hence,
by (R2),w*(v) > 4 —2 x (3 — x) > 3 — £. Otherwise, by Claims 2.3 and 2.5,is
adjacentto at most one badrertex and one goa2tvertex. Hence, by (R1) and (R2); (v) >
4—1x(1-%)—1x(3—%) > 3—%. Suppose nowA(G) > 7. Then, by Claims 2.3 and 2.4,

is adjacent to at most two good 2-vertices. Hence, by (@2)y) > 4—2x (3 — %) > 3— .

Caebs <k < [%1 . Observe that(v) = k. By Claims 2.4 and 2.6; is adjacent to at most

(k — 1) good2-vertices. Hence, by (R2)*(v) > k— (k—1) x (4 — %) > 3— % fork > 5.

Case [%1 4+ 1<k <A —1.ByClaims 2.5 and 2.6 is adjacent to at mogk — 3) bad
2-vertices and two goog-vertices. Hence, by (R1) and (R2);(v) > k — (k —3) x (1 —

2)y-2x(i-L)>3-Zfork>[5]+1

Case k = A. Observe thatv(v) = A. By Claim 2.6,v is adjacent to at mogtA — 1)
2-vertices. It follows by (R1)w*(v) > A— (A—-1)x (1-%)=3-%.

This completes the proof.
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