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Abstract

An incidence of an undirected graph G is a pair (v, e) where v is a vertex of G and e an edge of
G incident with v. Two incidences (v, e) and (w, f) are adjacent if one of the following holds: (i)
v = w, (ii) e = f or (iii) vw = e or f . An incidence coloring of G assigns a color to each incidence of
G in such a way that adjacent incidences get distinct colors. In 2012, Yang [15] proved that every
planar graph has an incidence coloring with at most ∆+ 5 colors, where ∆ denotes the maximum
degree of the graph. In this paper, we show that ∆ + 4 colors suffice if the graph is planar and
without a C3 adjacent to a C4. Moreover, we prove that every planar without C4 and C5 and
maximum degree at least 5 admits an incidence coloring with at most ∆+ 3 colors.
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1. Introduction

Let G be a graph without loops and multiple edges. Let V (G) and E(G) be its vertex and edge
set respectively. We denote by ∆(G) the maximum degree of G.
A proper edge-coloring of a graph G = (V,E) is an assignment of colors to the edges of the graph
such that no two adjacent edges use the same color. A strong edge-coloring (called also distance 2
edge-coloring) of G is a proper edge-coloring where each color class induces a matching. We denote
by χ′

s(G) the strong chromatic index of G which is the smallest integer k such that G can be strong
edge-colored with k colors.

An incidence in G is a pair (v, e) with v ∈ V (G) and e ∈ E(G), such that u and e are incident.
The set of all incidences in G is denoted by I(G), where

I(G) = {(v, e) ∈ V (G)× E(G) : edge e is incident to v}.

Two incidences (u, e) and (v, f) are adjacent if one of the following holds :

i) u = v, ii) e = f and iii) the edge uv = e or uv = f .

A k-incidence coloring of a graph G is defined as a function φ on I(G) into a set of colors
C = {1, 2, .., k}, such that adjacent incidence are assigned with distinct colors. The minimum
cardinality k for which G has a k-incidence coloring is the incidence chromatic number χi(G) of G.

An alternate way of looking at the incidence chromatic number of a graph G is to consider
the bipartite graph G′ = (X ∪ Y,E), obtained from G such that, X = V (G), Y = E(G) and
E(G′) = {(v, e), v ∈ V (G), e ∈ E(G), v is incident with e}. Each edge of G′ corresponds to an
incidence of G ; therefore, any incidence coloring of G corresponds to a strong edge coloring of G′.

χi(G) = χ′

s(G
′).

The notion of incidence coloring was introduced by Brualdi and Massey [3] in 1993. They
proved the following theorem :

Theorem 1 (Brualdi and Massey [3]). For every graph G, ∆(G) + 1 ≤ χi(G) ≤ 2∆(G).

And they posed the Incidence Coloring Conjecture, which states that :
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Conjecture 1 (Brualdi and Massey [3]). For every graph G, χi(G) ≤ ∆(G) + 2.

However, in 1997, by observing that the concept of incidence coloring is a particular case of
directed star arboricity introduced by Algor and Alon [1], Guiduli [6] disproved the Incidence
Coloring Conjecture showing that Paley graphs have an incidence chromatic number at least ∆+
Ω(log∆). He also improved the upper bound proposed by Brualdy and Massey in Theorem 1.

Theorem 2 (Guiduli [6]). For every graph G, χi(G) ≤ ∆(G) +O(log∆(G)).

The incidence coloring of graphs has been extensively studied. Most of authors consider the
values of χi(G) on particular classes of graphs (tree [3], cubic graphs [7, 10, 14], Halin graphs [12],
k-degenerated graphs [4], K4-minor free graph [4], outerplanar graphs [13], regular graphs and
complement graphs [11], pseudo-Halin graphs [8], the powers of cycles [9], graphs with maximum
degree 3 [7]).

In [4], Dolama, Sopena and Zhu give an upper bound of χi(G) for planar graph.

Theorem 3 (Dolama et al. [4]). For every planar graph G, χi(G) ≤ ∆(G) + 7.

This last result was improved by Yang in [15], (paper written in 2007) by using the link between
the incidence chromatic number, the star arboricity and the chromatic index of a graph :

Theorem 4 (Yang [15]). For every planar graph G, χi(G) ≤ ∆(G)+5, if ∆(G) 6= 6 and χi(G) ≤
12, if ∆(G) = 6

An interesting question is to see how the incidence chromatic number behaves for sparse pla-
nar graphs. Recall that the girth of a graph is the length of a shortest cycle in this graph. For
instance, we collect results concerning the incidence chromatic number of planar graphs in the
following lemma :

Lemma 1.

1. χi(G) ≤ ∆(G) + 4 for every triangle free planar graph G. [5]

2. χi(G) ≤ ∆(G) + 3 for every planar graph G with girth g ≥ 6. [5]

3. χi(G) ≤ ∆(G) + 2 for every planar graph G with girth g ≥ 6 and ∆(G) ≥ 5. [5]

4. χi(G) ≤ ∆(G) + 2 for every planar graph G with girth g ≥ 11. [5]

5. χi(G) = ∆(G) + 1 for every planar graph G with girth g ≥ 14 and ∆(G) ≥ 4. [2]

Our mains results in this paper improve the upper bound in Theorem 3 and in Theorem 4. We
denote by Ck a cycle of length k (k ∈ N, k ≥ 3). In particular, we show the following.

Theorem 5.

1. χi(G) ≤ ∆(G) + 4 for every planar graph G without a C3 adjacent to a C4.

2. χi(G) ≤ ∆(G) + 3 for every planar graph G without C4 and C5, if ∆(G) 6= 4 and χi(G) ≤ 8,
if ∆(G) = 4.

From this last result we deduce the following easy Corollary :

Corollary 1. χi(G) ≤ ∆(G) + 4 for every planar graph G without a C4.

Before proving our results we introduce some notation.
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Notation. Let G be a planar graph. We use V (G), E(G), and F (G) to denote, respectively, the
set of vertices, edges, and faces of G. Let d(v) denote the degree of a vertex v in G and r(f)
the degree of a face f in G. A vertex of degree k is called a k-vertex. A k+-vertex (respectively,
k−-vertex) is a vertex of degree at least k (respectively, at most k). We use the same notations
for faces : a k-face (respectively, k+-face, k−-face) is a face of degree k (respectively, at least k,
at most k). A k-face having the boundary vertices x1, x2, ..., xk in the cyclic order is denoted by
[x1x2...xk]. A (k1, k2, k3)-triangle is a 3-face [xyz] with d(x) = k1, d(y) = k2 and d(z) = k3. For a
vertex v ∈ V (G), let ni(v) denote the number of i-vertices adjacent to v for i ≥ 1, and mi(v) the
number of i-faces incident to v for i ≥ 1.

Definition 1 (Dolama et al. [4]). Let G be a graph.

1. A partial incidence coloring φ′ of G, is an incidence coloring only defined on some subset I

of I(G). For every uncolored incidence (u, uv) ∈ I(G) \ I, Fφ′

G (u, uv) is defined by the set of
forbidden colors of (u, uv), that is :

Fφ′

G (u, uv) = φ′(Au) ∪ φ′(Iu) ∪ φ′(Iv),

where Iu is the set of incidences of the form (u, uv) and Au is the set of incidences of the
form (v, vu).

2. A (k, l)-incidence coloring of a graph G is a k-incidence coloring φ of G such that for every
vertex v ∈ V (G), | φ(Av) |≤ l.

Remark 1. It is easy to see that every (k, l)-incidence coloring is also a (k′, l)-incidence coloring
for any k′ > k.

The following observation will be used implicitly throughout.

Observation 1. For every graph G with maximum degree ∆(G), by Theorem 1 and Definition
1.2, G admits a (2∆(G),∆(G))-incidence coloring.

2. Proof of Theorem 5.1

We will prove the following stronger version of Theorem 5.1 :

Theorem 6. Every planar graph G without a C3 adjacent to a C4 admits a (k + 4, 4)-incidence
coloring for every k ≥ ∆(G), k ∈ N. Therefore, χi(G) ≤ ∆(G) + 4.

Observation 2. We necessarily have k ≥ ∆(G) ≥ 5 since otherwise we obtain by Theorem 1
χi(G) ≤ 2∆(G) ≤ ∆(G) + 4 ≤ k + 4.

2.1. Structural properties

We proceed by contradiction. Let H be a counterexample to the theorem that minimizes
|E(H)| + |V (H)|. By hypothesis there exists k ≥ max{∆(G), 5} such that H does not admit a
(k + 4, 4)-incidence coloring. Let k ≥ max{∆(G), 5} be the smallest integer such that H does
not admit a (k + 4, 4)-incidence coloring. By using Remark 1, we must have k = max{∆(G), 5}.
Moreover by minimality it is easy to see that H is connected. H satisfies the following properties :

Lemma 2. H does not contain :

1. 1-vertices,

2. 2-vertices,

3. a 3-vertex adjacent to a 4−-vertex,

4. a (4−, 4−,∆−)-triangle,
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5. a (3, 3, 3, 3,∆−)-vertex.

For each of the parts of Lemma 2, we will suppose that the described configuration exists in
H. Then we construct a graph H ′ obtained from H by deleting a certain number of vertices and
edges. Due to the minimality of H, the graph H ′ admits a (k′ + 4, 4)-incidence coloring φ′ for any
k′ ≥ max{∆(H ′), 5}. Since ∆(H) ≥ ∆(H ′), the set of integers k′ contains the set of integers k.
Hence for the value k′ = k, H ′ admits a (k+4, 4)-incidence coloring φ′. Finally, for each cases, we
will prove a contradiction by extending φ′ to a (k + 4, 4)-incidence coloring φ of H.

Proof

We recall that k ≥ 5, its implies that the minimum number of colors we can use is 9.

1. Suppose H contains a 1-vertex u and let v be its unique neighbor in H. Consider H ′ =
H − {u}. Then by minimality of H, H ′ admits a (k + 4, 4)-incidence coloring φ′. We will
extend φ′ to a (k + 4, 4)-incidence coloring φ of H as follows.

Since for all v ∈ V (H), | φ′(Av) |≤ 4, we have | Fφ
H(v, vu) |=| φ′(Iv) ∪ φ′(Av) ∪ φ′(Iu) |≤

∆(H)− 1 + 4 + 0 = ∆(H) + 3 ≤ k + 3, then there exists at least one color, say α, such that

α /∈ Fφ
H(v, vu). Hence, we set φ(v, vu) = α and one can observe that | φ′(Au) |= 1 ≤ 4.

According to | φ′(Av) |≤ 4, it suffices to set φ(u, uv) = β for any color β in φ′(Av) and we
are done. We have extended the coloring, a contradiction.

2. Suppose H contains a 2-vertex v and let u, w be the two neighbors of v in H. Consider
H ′ = H − {uv}. Then by minimality of H, H ′ admits a (k + 4, 4)-incidence coloring φ′.
We will extend φ′ to a (k + 4, 4)-incidence coloring φ of H as follows. First, we uncolor the
incidence (v, vw) and assume that φ(w,wv) = β. By counting argument, there exists at least

one color α /∈ Fφ
H(u, uv). Then we color (u, uv) with α and | φ′(Av) |= 2 ≤ 4. For coloring

the incidence (v, vu), we consider the following cases :

(a) If | φ′(Au) |= 4 then we color (v, vu) with a color γ ∈ φ(Au) \ {β} (because α /∈ φ(Au)).

(b) If | φ′(Au) |≤ 3 then we color (v, vu) with a color γ /∈ Fφ
H(v, vu) (note that we have

three choices). One can observe that | φ′(Au) |≤ 4.

Now, we color the incidence (v, vw) as follow:

(a) If | φ′(Aw) |= 4 then we color (v, vw) with a color ζ ∈ φ(Aw) \ {α, γ} and we have
| φ′(Aw) |= 4.

(b) If | φ′(Aw) |≤ 3 then we color (v, vw) with a color ζ /∈ Fφ
H(v, vw) and we have | φ′(Aw) |≤

3 ≤ 4.

So, we have extended the coloring, a contradiction.

3. Suppose H contains a 3-vertex u adjacent to a 4−-vertex v. Consider H ′ = H − {uv}.
By minimality of H, H ′ admits a (k + 4, 4)-incidence coloring φ′. We will extend φ′ to a
(k+4, 4)-incidence coloring φ of H as follows. As above, by counting argument, it is easy to

see that there exists at least one color α /∈ Fφ
H(v, vu). Then we color the incidence (v, vu)

with α and | φ′(Au) |≤ 3 ≤ 4. Now we color the incidence (u, uv) with a color β /∈ Fφ′

H (u, uv)

(| Fφ′

H (u, uv) |≤ 7), we have | φ′(Au) |≤ 4 and we are done. We have extended the coloring,
a contradiction.

4. Suppose H contains a 3-face [uvw] such that d(u) ≤ 4, d(v) ≤ 4 and d(w) ≤ ∆. By minimality
of H, the graph H ′ = H − {uv} admits a (k + 4, 4)-incidence coloring. We will extend φ′ to
a (k + 4, 4)-incidence coloring φ of H as follows.
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Figure 1: | Fφ
H
(u, uv) |= 9

First we color (u, uv).
It is easy to see that

| Fφ′

H (u, uv) |=| φ′(Iu) ∪ φ′(Au) ∪ φ′(Iv) |≤ 3 + 3 + 3 = 9

• Assume that : | Fφ
H(u, uv) |= 9, then we are in the situation described in Figure 1. We

replace 2 by 7 and we color (u, uv) with 2 (7 /∈ φ(Iw)).
Now we consider φ′(Au) and φ′(Av). If there is a color a in φ′(Au) \ φ

′(Av). We color
(v, vu) with a. If φ′(Au) = φ′(Av), let b be the color of (w,wv), we interchange the
colors of (w,wu) and (w,wv). Then we color (v, vu) with the color b.

• We assume now that | Fφ
H(u, uv) |< 9 and | Fφ

H(v, vu) |< 9. If there are two free colors

for one of the two incidences, it is done. So we assume that | Fφ
H(u, uv) |= 8 and

| Fφ
H(v, vu) |= 8 and the two incidences have the same free color.

We have two cases :

Case 1: | φ′(Au) |= 2

Case 1.1 Without loss of generality. assume that φ′(u1, u1u) = φ′(u2, u2u) = 4,
and that the only free color is 5.

(a) If we can replace 7 by 2 (2 /∈ φ(Iw)), then we color (u, uv) with 7 and (v, vu) by
5, it is done. Hence we cannot replace 7 by 2, it means that 2 ∈ φ′(Av \(w,wv)).
Without loss of generality let φ′(v1, v1v) = 2.

(b) If we can color (v, vu) with 6, then we color (u, uv) with 5 and it is done. Hence
6 ∈ φ′(Av), the only possibility is φ′(v2, v2v) = 6.

(c) If we can color (v, vu) with 4, then we color (u, uv) with 5 and it is done. Hence
4 ∈ φ′(Av), then the only possibility is φ′(w,wv) = 4.
So now we permute 6 and 4 around w and we color (v, vu) with 4 and (u, uv)
with 5. It follows that we extend the coloring, a contradiction.

Case 1.2 If φ′(u1, u1u) 6= φ′(u2, u2u), Without loss of generality. we can assume
that φ′(w,wu) = 4 and that the only free color is 6.

(a) If we can replace 7 by 2 (2 /∈ φ(Iw)), then we color (u, uv) with 7 and (v, vu)
by 6, it is done. Hence ve cannot replace 7 by 2, it means that 2 ∈ φ′(Av).
Without loss of generality let φ′(v1, v1v) = 2.

(b) If we can color (v, vu) with 4, then we color (u, uv) with 6 and it is done. Hence
4 ∈ φ′(Av), let φ′(v2, v2v) = 4.

(c) If we can color (v, vu) with 5, then we color (u, uv) with 6 and it is done. Hence
5 ∈ φ′(Av), let φ′(w,wv) = 5.
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So now we permute 4 and 5 around w and we color (v, vu) with 5 and (u, uv) with
6. It follows that we extend the coloring, a contradiction.

Case 2: | φ′(Au) |= 3
In this case one of the colors of (u1, u1u) or (u2, u2u) must be in φ′(Iv) or the color
of (w,wu) is in φ′(Iv).

Case 2.1 One of the colors of (u1, u1u) or (u2, u2u) is in φ′(Iv). In our figure assume
that 4 is the color of (v, vv1). Then the free color is 8.

(a) If we can replace 7 by 2, then we color (u, uv) with 7 and (v, vu) by 8, it is
done. Hence ve cannot replace 7 by 2, it means that 2 ∈ φ′(Av). Without loss
of generality let φ′(v1, v1v) = 2.

(b) If we can color (v, vu) with 6, then we color (u, uv) with 8 and it is done. Hence
6 ∈ φ′(Av), let φ′(v2, v2v) = 6.

(c) If we can color (v, vu) with 5, then we color (u, uv) with 8 and it is done. Hence
5 ∈ φ′(Av), let φ′(w,wv) = 5.

So now we permute 6 and 5 around w and we color (v, vu) with 5 and (u, uv) with
8. It follows that we extend the coloring, a contradiction.

Case 2.2 The color of (w,wu) is in φ′(Iv). In our figure assume that 6 is the color
of (v, vv1). Then the free color is 8.

(a) If we can replace 7 by 2, then we color (u, uv) with 7 and (v, vu) by 8, it is
done. Hence we cannot replace 7 by 2, it means that 2 ∈ φ′(Av). Without loss
of generality let φ′(v1, v1v) = 2.

(b) If we can color (v, vu) with 4, then we color (u, uv) with 8 and it is done. Hence
4 ∈ φ′(Av), let φ′(v2, v2v) = 4.

(c) If we can color (v, vu) with 5, then we color (u, uv) with 8 and it is done. Hence
5 ∈ φ′(Av), let φ′(w,wv) = 5.

Now we replace 2 by 7 (7 /∈ φ(Iw)) then we color (u, uv) with 2 and (v, vu) by 8, it
is done. It completes the proof.

5. Suppose H contains a (3, 3, 3, 3,∆−)-vertex u. Let ui for i ∈ {1, 2, 3, 4} be the neighbors of
u having a degree equal to 3 and v be the neighbors such that d(v) ≤ ∆. By minimality of
H, the graph H ′ = H −{u} admits a (k+4, 4)-incidence coloring φ′. We will extend φ′ to a
(k + 4, 4)-incidence coloring φ of H as follows.

• We have | Fφ
H(v, vu) |=| φ′(Iv) ∪ φ′(Av) ∪ φ′(Iu) |≤ ∆(H)− 1 + 4 = ∆(H) + 3 ≤ k + 3

There is one free color for (v, vu). Without loss of generality. We set φ(v, vu) = 1. For
(u, uv) we have 4 free colors (φ′(Av)).

• We denote by Li the list of available colors of (ui, uiu) for i ∈ {1, 2, 3, 4} and by L′

i the
list of available colors of (u, uui) for i ∈ {1, 2, 3, 4}. We denote by Lv the list available
colors of (u, uv). By a computation as above it is easy to see that | L′

i |≥ k+ 2 ≥ 7 and
| Li |≥ k ≥ 5.

• Using a counting argument it is easy to see that there exists a color α belonging to at
least 3 lists among the lists Li, i ∈ {1, 2, 3, 4}. Without loss of generality. we assume
that α belongs to Li i ∈ {1, 2, 3}.

(a) If α = 1, first we set φ(ui, uiu) = 1 for i ∈ {1, 2, 3}. Next we color (u, uv) (we have
the 4 colors of φ(Av)) and (u4, u4u) from the list L4. Now we color (u, uui) for
i ∈ {1, 2, 3, 4} in this order one after the other. We have extended the coloring, a
contradiction.

(b) If α 6= 1. Without loss of generality. we assume that α = 2, we color (ui, uiu)
for i ∈ {1, 2, 3} by 2. Next we color (u, uv) with a color different from 2, we set
φ(u, uv) = 3. Then we color (u, uui) for i ∈ {1, 2, 3, 4} in this order one after the
other. We have enough colors in each list of each incidence (u, uui), i ∈ {1, 2, 3, 4}.
Without loss of generality. we set φ(u, uui) = i + 3 for i ∈ {1, 2, 3, 4}. If we can
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color properly the incidence (u4, u4u) we are done. So we cannot color (u4, u4u).
It means that L4 = {3, 4, 5, 6, 7}. Hence we can assume Without loss of generality.
φ′(Au4

) = {1, 2} and φ′(Iu4
) = {8, 9}. Assume that we can replace one of the colors

of (u, uui), i ∈ {1, 2, 3} by 8 or 9 without destroying the incidence coloring (let
say 8), then we color the corresponding incidence by 8 (let say φ(u, uu1) = 8), and
we color (u4, u4u) with 4. We are done. Hence φ(Iui

) = {2, 8, 9}. We recall that
| Li |≥ 5, by the previous argument, Li ⊂ {1, 2, 3, 4, 5, 6, 7}, for i ∈ {1, 2, 3}.

– If there exists an other color β /∈ {1, 2} belonging to ∩i=3
i=1Li, this color belongs

also to L4. Then we color (ui, uiu) for i ∈ {1, 2, 3, 4} with β, (u, uv) with a color
different from β. Next we color (u, uui), i ∈ {1, 2, 3, 4} one after the other, by
the way we extend the coloring a contradiction.

– If it is not the case , then it is easy to see that each element of {1, 3, 4, 5, 6, 7}
belongs to exactly two list Li. Without loss of generality. we assume that
1 ∈ L1 ∩ L2. We color (u1, u1u) and (u2, u2u) with 1. We recall that | Li |≥ 5,
we take any color of L3∩L4 to color (u3, u3u) and (u4, u4u), let say 3. Then we
color (u, uv) with a color different from 3. Next we color (u, uui), i ∈ {1, 2, 3, 4}
one after the other, by the way we extend the coloring, a contradiction. This
completes the proof.

�

2.2. Discharging procedure

Euler’s formula |V (H)| − |E(H)| + |F (H)| = 2 can be rewritten as (6|E(H)| − 10|V (H)|) +

(4|E(H)| − 10|F (H)|) = −20. Using the relation
∑

v∈V (H)

d(v) =
∑

f∈F (H)

r(f) = 2|E(H)|, we get

that:

∑

v∈V (H)

(3d(v)− 10) +
∑

f∈F (H)

(2r(f)− 10) = −20 (1)

We define the weight function ω : V (H) ∪ F (H) −→ R by ω(x) = 3d(x)−10 if x ∈ V (H) and
ω(x) = 2r(x)−10 if x ∈ F (H). It follows from Equation (1) that the total sum of weights is equal
to −20. In what follows, we will define discharging rules (R1) to (R8) and redistribute weights
accordingly. Once the discharging is finished, a new weight function ω∗ is produced. However, the
total sum of weights is kept fixed when the discharging is finished. Nevertheless, we will show that
ω∗(x) ≥ 0 for all x ∈ V (H) ∪ F (H). This will lead us to the following contradiction :

0 ≤
∑

x∈V (H)∪F (H)

ω∗(x) =
∑

x∈V (H)∪F (H)

ω(x) = −20 < 0

and hence will demonstrate that such a counterexample cannot exist.

The discharging rules are defined as follows:

(R1) Every k-vertex, for k ≥ 5, gives 1
3 to each adjacent 3-vertex.

(R2) Every 4-vertex gives 1 to each incident 3-face.

(R3) Every k-vertex, for k ≥ 5, gives 2 to each incident 3-face.

(R4) Every 4-vertex gives 1
2 to each incident 4-face.

(R5) Every k-vertex, for k ≥ 5, gives 1 to each incident 4-face : (5+, 3, 5+, 3).

(R6) Every k-vertex, for k ≥ 5, gives 3
4 to each incident 4-face : (5+, 3, 5+, 4).

(R7) Every k-vertex, for k ≥ 5, gives 2
3 to each incident 4-face : (5+, 5+, 5+, 3).

(R8) Every k-vertex, for k ≥ 5, gives 1
2 to each incident 4-face : (5+, 4+, 4+, 4+).
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Since H does not contain a C4 adjacent to a C3, by hypothesis, the following fact is easy to
observe and will be frequently used throughout the proof without further notice.

Observation 3. H does not contain the following structures:

1. adjacent 3-cycles,

2. a 4-cycle adjacent to a 3-cycle.

One can easily derive the following observation.

Observation 4. Let v be a k-vertex with k ≥ 3 then m3(v) ≤ ⌊k
2 ⌋ and we have the following cases

by Observation 3:

- If m3(v) = ⌊k
2 ⌋ then m4(v) = 0.

- If 1 ≤ m3(v) < ⌊k
2 ⌋ then m4(v) ≤ d(v)− 2×m3(v)− 1.

- If m3(v) = 0 then m4(v) ≤ d(v).

Let v ∈ V (H) be a k-vertex. By Lemma 2.1 and Lemma 2.2, k ≥ 3. Consider the following cases:

Case k = 3. Observe that ω(v) = −1. By Lemma 2.3, v has three neighbors both of degree
at least 5. Then, by (R1), we have: ω∗(v) = −1 + 3× 1

3 = 0.

Case k = 4. Observe that ω(v) = 2. By Lemma 2.3, v has four neighbors both of degree at
least 4. By Observation 4, we have the following cases :

- If m3(v) = 2 then m4(v) = 0. Hence, by (R2), we have: ω∗(v) ≥ 2− 2× 1 = 0.

- If m3(v) = 1 then m4(v) ≤ 1. Hence, by (R2) and (R4), we have: ω∗(v) ≥ 2−1×1−1× 1
2 >

0.

- If m3(v) = 0 then m4(v) ≤ 4. Hence, by (R4), we have: ω∗(v) ≥ 2− 4× 1
2 = 0.

Case k = 5. Observe that ω(v) = 5. By Lemma 2.5, v has at most 3 neighbors both of
degree 3. By Observation 4, we have the following cases:

- If m3(v) = 2 then m4(v) = 0. Hence, by (R1) and (R3), we have: ω∗(v) ≥ 5−2×2−3× 1
3 =

0.

- If m3(v) = 1 then m4(v) ≤ 2. In the worst-case v is incident to two (5, 3, 5+, 3)-faces Hence,
by (R1), (R3) and (R5), we have: ω∗(v) ≥ 5− 1× 2− 2× 1− 3× 1

3 = 0.

- If m3(v) = 0 then m4(v) ≤ 5. We have to consider several cases:

(a) If n3(v) = 3, then we have three cases :

(i) v is incident to two (5, 3, 5+, 3)-faces, two (5, 3, 5+, 4+)-faces and one (5, 4+, 4+, 4+)-
face. Hence, by (R1), (R5), (R6) and (R8), we have: ω∗(v) ≥ 5 − 2 × 1 − 2 ×
3
4 − 3× 1

3 − 1
2 = 0.

(ii) v is incident to two (5, 3, 5+, 3)-faces and three (5+, 5+, 5+, 3)-faces. Hence, by
(R1), (R5) and (R7), we have: ω∗(v) ≥ 5− 1× 2− 3× 2

3 − 3× 1
3 = 0.

(iii) v is incident to one (5, 3, 5+, 3)-face and four (5, 3, 5+, 4+)-faces. Hence, by (R1),
(R5) and (R6), we have: ω∗(v) ≥ 5− 1× 1− 4× 3

4 − 3× 1
3 = 0.

(b) If n3(v) = 2, then we have five cases:

(i) v is incident to one (5, 3, 5+, 3)-face, two (5, 3, 5+, 4+)-faces and two (5, 4+, 4+, 4+)-
faces. Hence, by (R1),(R5), (R6) and (R8), we have: ω∗(v) ≥ 5 − 1 × 1 − 2 ×
3
4 − 2× 1

2 − 2× 1
3 = 5

6 ≥ 0.

(ii) v is incident to four (5, 3, 5+, 4+)-faces and one (5, 4+, 4+, 4+)-face. Hence, by
(R1), (R6) and (R8), we have: ω∗(v) ≥ 5− 4× 3

4 − 1× 1
2 − 2× 1

3 = 5
6 ≥ 0.
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(iii) v is incident to two (5, 3, 5+, 4+)-faces and three (5, 5+, 5+, 3)-faces. Hence, by
(R1), (R6) and (R7), we have: ω∗(v) ≥ 5− 2× 3

4 − 3× 2
3 − 2× 1

3 = 5
6 ≥ 0.

(iv) v is incident to two (5, 3, 5+, 5+)-faces, one (5, 3, 5+, 3)-face, one (5, 5+, 4+, 4+)-
face and (5, 3, 5+, 4+)-face . Hence, by (R1), (R5), (R6), (R7) and (R8), we
have: ω∗(v) ≥ 5− 2× 1

3 − 2× 2
3 − 1× 1− 1× 1

2 − 1× 3
4 = 3

4 ≥ 0.

(v) v is incident to four (5, 3, 5+, 5+)-faces, one (5, 3, 5+, 3)-face. Hence, by (R1),
(R5) and (R7), we have: ω∗(v) ≥ 5− 2× 1

3 − 4× 2
3 − 1× 1 = 2

3 ≥ 0.

(c) If n3(v) = 1, then we have four cases:

(i) v is incident to five (5, 5+, 5+, 3)-faces. Hence by (R1) and (R7), we have:
ω∗(v) ≥ 5− 5× 2

3 − 1× 1
3 = 4

3 ≥ 0.

(ii) v is incident to two (5, 3, 5+, 4+)-faces, two (5, 4+, 5+, 4) and one (5, 5+, 5+, 3)-
face. Hence by (R1), (R6), (R7) and (R8), we have: ω∗(v) ≥ 5 − 2 × 3

4 − 2 ×
1
2 − 1× 2

3 − 1× 1
3 = 3

2 ≥ 0.

(iii) v is incident to three (5, 4+, 4+, 4+)-faces and two (5, 3, 5+, 4+)-faces . Hence by
(R1), (R6) and (R8), we have: ω∗(v) ≥ 5− 2× 3

4 − 3× 1
2 − 1× 1

3 = 5
3 ≥ 0.

(iv) v is incident to three (5, 5+, 5+, 3)-faces, one (5, 4+, 4+, 4+)-face and one (5, 3, 5+, 4)-
face. Hence by (R1), (R6), (R7) and (R8), we have: ω∗(v) ≥ 5 − 3 × 2

3 − 1 ×
1
2 − 1× 3

4 − 1× 1
3 = 17

12 ≥ 0.

(d) If n3(v) = 0, in the worst-case v can be incident to five (5, 5+, 5+, 3)-faces. Then by
(R7), we have: ω∗(v) ≥ 5− 5× 2

3 = 5
3 ≥ 0.

Case k = 6. Observe that ω(v) = 8. By Observation 4, we have the following cases:

- If m3(v) = 3 then m4(v) = 0. By Lemma 2.3 and Lemma 2.4, v is adjacent to at most
three 3-vertices. Hence, by (R1) and (R3), we have: ω∗(v) ≥ 8− 3× 2− 3× 1

3 = 1 > 0.

- If m3(v) = 2 then m4(v) ≤ 1. By Lemma 2.3 and Lemma 2.4, v is adjacent to at most four
3-vertices and incident to at most one (5+, 3, 5+, 3)-face. Hence, by (R1), (R3) and (R5),
we have: ω∗(v) ≥ 8− 2× 2− 1× 1− 4× 1

3 = 5
3 > 0.

- If m3(v) = 1 then m4(v) ≤ 3. By Lemma 2.3 and Lemma 2.4, v is adjacent to at most
five 3-vertices and incident to at most three (5+, 3, 5+, 3)-faces. Hence, by (R1), (R3) and
(R5), we have: ω∗(v) ≥ 8− 1× 2− 3× 1− 5× 1

3 = 4
3 > 0.

- If m3(v) = 0 then m4(v) ≤ 6. v can be incident to six (5+, 3, 5+, 3)-faces. Hence, by (R1)
and (R5), we have: ω∗(v) ≥ 8− 6× 1− 6× 1

3 = 0.

Case k = 7. Observe that ω(v) = 11. By Observation 4, we have the following cases:

- If m3(v) = 3 then m4(v) = 0. By Lemma 2.3 and Lemma 2.4, v is adjacent to at most four
3-vertices. Hence, by (R1) and (R3), we have: ω∗(v) ≥ 11− 3× 2− 4× 1

3 = 11
3 > 0.

- If m3(v) = 2 then m4(v) ≤ 2. By Lemma 2.3 and Lemma 2.4, v is adjacent to at most five
3-vertices and incident to at most two (5+, 3, 5+, 3)-face. Hence, by (R1), (R3) and (R5),
we have: ω∗(v) ≥ 11− 2× 2− 2× 1− 5× 1

3 = 10
3 > 0.

- If m3(v) = 1 then m4(v) ≤ 4. By Lemma 2.3 and Lemma 2.4, v is adjacent to at most six
3-vertices and incident to at most four (5+, 3, 5+, 3)-faces. Hence, by (R1), (R3) and (R5),
we have: ω∗(v) ≥ 11− 1× 2− 4× 1− 6× 1

3 = 3 > 0.

- If m3(v) = 0 then m4(v) ≤ 7. v can be incident to seven (5+, 3, 5+, 3)-faces and seven
3-vertices. Hence, by (R1) and (R5), we have: ω∗(v) ≥ 11− 7× 1− 7× 1

3 = 5
3 > 0.

Case k ≥ 8. Observe that ω(v) = 3k − 10. By Observation 4, we have the following cases:

- If m3(v) = ⌊k
2 ⌋ then m4(v) = 0. Hence, by (R1) and (R3):

ω∗(v) = 3k − 10− 2×m3(v)−
1

3
× n3(v)

≥ 3k − 10− 2×

⌊

k

2

⌋

−
1

3
× k

≥
5

3
k − 10 > 0
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- If 1 ≤ m3(v) ≤ ⌊k
2 ⌋ − 1 then m4(v) ≤ k − 3. Hence, by (R1), (R3) and (R5), we have:

ω∗(v) = 3k − 10− 2×m3(v)− 1×m4(v)−
1

3
× n3(v)

≥ 3k − 10− 2× (⌊
k

2
⌋ − 1)− (k − 3)× 1−

1

3
× k

≥
2

3
k − 5 > 0

- If m3(v) = 0 then m4(v) ≤ k. Hence, by (R1) and (R5), we have: ω∗(v) ≥ 3k − 10 − k ×
1− k × 1

3 = 5
3k − 10 > 0.

Let f ∈ F (H) be a k-face.

Case k = 3. Observe that ω(f) = −4. Suppose f = [rst]. Consider the following cases:

(a) Suppose d(r) = 3. Then, by Lemma 2.3, r is the unique 3-vertex and d(s) ≥ 5 and
d(t) ≥ 5. Hence, by (R3), we have: ω∗(f) = −4 + 2× 2 = 0

(b) Suppose now d(r) ≥ 4, d(s) ≥ 4 and d(t) ≥ 4. By Lemma 2.4, at least two of the three
vertices r, s and t is a 5+-vertex. Assume that d(s) ≥ 5 and d(t) ≥ 5. Then, by (R2)
and (R3), we have: ω∗(f) ≥ −4 + 2× 2 + 1× 1 = 1 ≥ 0.

Case k = 4. The initial charge of f is ω(f) = −2. By Lemma 2.3, at most two 3-vertices
are incident to the 4-face. Suppose f = [rstu]. Consider the following cases:

(a) Suppose d(r) = d(t) = 3. Then, by Lemma 2.3, d(s) ≥ 5 and d(u) ≥ 5. Hence, by (R5),
we have: ω∗(f) = −2 + 2× 1 = 0

(b) Suppose now d(r) = 3. Then, by Lemma 2.3, d(s) ≥ 5 and d(u) ≥ 5. Moreover, assume
d(t) = 4. Then, by (R4) and (R6), we have: ω∗(f) ≥ −2+2× 3

4 +1× 1
2 = 0. If d(t) ≥ 5,

by (R7) we have ω∗(f) ≥ −2 + 3× 2
3 = 0.

(c) Assume d(r) ≥ 4, d(s) ≥ 4, d(t) ≥ 4 and d(u) ≥ 4. Then, by (R4), we have:
ω∗(f) ≥ −2 + 4× 1

2 = 0.

Case k ≥ 5. The initial charge of f is ω(f) = 2k− 10 ≥ 0 and it remains unchanged during
the discharging process. Hence, ω(v) = ω∗(v) = 2k − 10 ≥ 0.

After performing the discharging procedure the new weights of all faces and vertices are
positive and therefore, H cannot exist. This completes the proof of Theorem 5.1.

3. Proof of Theorem 5.2

We will prove the following stronger version of Theorem 5.2 :

Theorem 7. Every planar graph G without C4 and C5 admits a (k + 3, 3)-incidence coloring for
every k ≥ ∆(G) ≥ 5, k ∈ N. Therefore, χi(G) ≤ ∆(G) + 3.

3.1. Structural properties

We proceed by contradiction. Let H be a counterexample to the theorem that minimizes
|E(H)| + |V (H)|. By hypothesis there exists k ≥ max{∆(G), 5} such that H does not admit a
(k + 3, 3)-incidence coloring. Let k ≥ max{∆(G), 5} be the smallest integer such that H does
not admit a (k + 3, 3)-incidence coloring. By using Remark 1, we must have k = max{∆(G), 5}.
Moreover by minimality it is easy to see that H is connected.
H satisfies the following properties:

Lemma 3. H does not contain:

1. 1-vertices,
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2. 2-vertices,

3. a 3-vertex adjacent to a 3-vertex,

4. a (3, 4, 4)-triangle.

Proof
First, we will suppose by contradiction that the described configuration exists in H. Then we con-
sider a graph H ′ obtained from H by deleting an edge or a vertex from H. The graph H ′ does not
contain a C4 neither a C3. Due to the minimality of H, the graph H ′ admits a (k′+3, 3)-incidence
coloring for any k′ ≥ max{∆(H ′), 5}. Since ∆(H) ≥ ∆(H ′), the set of integers k′ contains the set
of integers k. Hence for the value k′ = k, H ′ admits a (k + 3, 3)-incidence coloring φ′. Finally,
for each cases, we will prove a contradiction by extending φ′ to a (k+3, 3)-incidence coloring φ of H.

1. Lemma 3.1 can be easily checked by using the proof of Lemma 2.1.

2. Lemma 3.2 can be easily checked by using the proof of Lemma 2.2.

3. Suppose H contains a 3-vertex u adjacent to a 3-vertex v. By minimality of H, the graph
H ′ = H \ {uv} has a (k+3, 3)-incidence coloring φ′. We recall that we have at least 8-colors
and | φ′(Au) |≤ 2 and | φ′(Av) |≤ 2. Note that

| Fφ′

H (u, uv) |=| φ′(Iu) ∪ φ′(Au) ∪ φ′(Iv) |≤ 2 + 2 + 2 = 6

We have at least k − 3 ≥ 2 free colors for (u, uv). Choose a color for (u, uv), then for (v, vu)
by using the same calculation at most 7 colors are forbidden for this incidence. We have at
least k − 4 ≥ 1 free colors. So we can extend the coloring, a contradiction.

4. Suppose that H contains a (3, 4, 4)-triangle. Let u be the vertex of degree equal to 3 and v,
w the two vertices of degree equal to 4. Let t be the neighbor of u different from v and w.
By minimality of H, the graph H ′ = H−{uv, uw} admits a (k+3, 3)-incidence coloring. We
will extend φ′ to a (k + 3, 3)-incidence coloring φ of H as follows. We recall that we have at
least 8-colors. We have:

• | Fφ′

H (v, vu) |=| φ′(Iv) ∪ φ′(Av) ∪ φ′(Iu) |≤ 3 + 3 + 1 = 7. Hence we have one available
color for (v, vu).

• In the same way, we have one available for (w,wu).

• We have 3 available colors for (u, uv) belonging to φ′(Av) and 3 available colors for
(u, uw) belonging to φ′(Aw).

Without loss of generality, we assume that we are in the situation described in Figure 2.

b

b

b

bb

b

b t

b

u

wv

α

32

1
4

Figure 2: | Fφ′

H
(u, uv) |≤ 7

First, if φ′(u, ut) = 3 or φ′(u, ut) = 4, then we recolor (u, ut) with a color α different from 3
and 4 (it is possible because we have 3 available colors for (u, ut) belonging to φ′(At)).

Now, we color (v, vu) with the available color (say a) and (w,wu) with one available color
(say b). We consider two cases.
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• Assume that we can color (u, uv) with 4. If we can color (u, uw) with 3, we are done.
If we cannot color (u, uw) with 3. It means that φ′(t, tu) = 3 (note that α 6= 3). If we
cannot color (u, uw) with an other color of φ′(Aw) we have to φ′(Aw) = {3, a, α}. Then
we permute 3 and a in φ′(Iv) and we color (u, uw) with a color a, we are done.

• Assume that we cannot color (u, uv) with 4, it means that φ′(t, tu) = 4 (note that
α 6= 4). If we cannot color (u, uv) with an other color of φ′(Av) (if it is the case then
we can color (u, uw) with 3, we are done), it means that φ′(Av) = {4, b, α}. Then we
permute 4 and b in φ′(Iw) and we color (u, uv) with a color b and (u, uv) with color 3,
we are done.

We have extended the coloring for all the cases, a contradiction.

�

3.2. Discharging procedure

Euler’s formula |V (H)| − |E(H)| + |F (H)| = 2 can be rewritten as (4|E(H)| − 6|V (H)|) +

(2|E(H)| − 6|F (H)|) = −12. Using the relation
∑

v∈V (H)

d(v) =
∑

f∈F (H)

r(f) = 2|E(H)| we get that:

∑

v∈V (H)

(2d(v)− 6) +
∑

f∈F (H)

(r(f)− 6) = −12 (2)

We define the weight function ω : V (H) ∪ F (H) −→ R by ω(x) = 2d(x)− 6 if x ∈ V (H) and
ω(x) = r(x)−6 if x ∈ F (H). It follows from Equation (2) that the total sum of weights is equal to
-12. In what follows, we will define discharging rules (R1) and (R2). Next we redistribute weights
accordingly. Once the discharging is finished, a new weight function ω∗ is produced. However, the
total sum of weights is kept fixed when the discharging is finished. Nevertheless, we will show that
ω∗(x) ≥ 0 for all x ∈ V (H) ∪ F (H). This will lead us to the following contradiction:

0 ≤
∑

x∈V (H)∪F (H)

ω∗(x) =
∑

x∈V (H)∪F (H)

ω(x) = −12 < 0

and hence will demonstrate that such a counterexample cannot exist.

The discharging rules are defined as follows:

(R1) Every 4-vertex, gives 1 to each incident 3-face.

(R2) Every k-vertex, for k ≥ 5, gives 2 to each incident 3-face.

Let v ∈ V (H) be a k-vertex.
By Lemma 3.1 and Lemma 3.2, k ≥ 3. We recall that since H does not contain C4, there are

no adjacent 3-faces. Consider the following cases:

Case k = 3. Observe that ω(v) = 0. v does not give anything and does not get anything.
We have ω∗(v) = ω(v) = 0.

Case k = 4. ω(v) = 2. It is easy to see that v is incident to at most two 3-faces. Then, by
(R1) we have ω∗(v) ≥ 2− 2× 1 = 0.

Case k ≥ 5.Observe that ω(v) = 2k − 6. It is easy to see that m3(v) ≤ ⌊k
2 ⌋. Hence, by

(R2), we have: ω∗(v) ≥ 2k − 6− 2× ⌊k
2 ⌋ ≥ 0.

Let f ∈ F (H) be a k-face.

Case k = 3. Observe that ω(f) = −3. Suppose f = [rst]. Consider the following cases:

(a) Suppose d(r) = 3. Then, by Lemma 3.3, r is the unique 3-vertex and by Lemma 3.4,
d(s) ≥ 4 and d(t) ≥ 5. Hence, by (R1) and (R2), we have ω∗(f) ≥ −3+1×1+1×2 = 0
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(b) Suppose now d(r) ≥ 4, d(s) ≥ 4 and d(t) ≥ 4.Then, by (R1) and (R2), ω∗(f) ≥
−3 + 3× 1 = 0.

Case k ≥ 6. The face is not involved in the discharging procedure. ω(f) = ω∗(f) ≥ 0.

After performing the discharging procedure the new weights of all faces and vertices are
positive and therefore, H cannot exist. This completes the proof of Theorem 5.2.

Remark 2. By Theorem 1, the bound of Theorem 5.2 is true for ∆(G) ≤ 3. There is a challenging
question: prove Theorem 5.2 when ∆(G) = 4.
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