# Coloration d'arêtes sommets adjacents distinguants de graphes de degré maximum $\Delta$

Hervé Hocquard et Mickaël Montassier

LaBRI - Université de Bordeaux 351 cours de la libération, 33405 Talence, France

**JGA 2011** 

# Coloration d'arêtes sommets distinguants

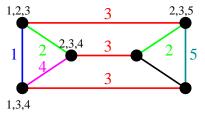
### Définition - vd-coloration

Une coloration d'arêtes sommets distinguants (vd-coloration) est une coloration d'arêtes

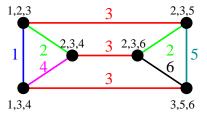
- 1. qui est propre : deux arêtes adjacentes ont des couleurs différentes
- 2. pour toutes paires de sommets u, v, nous avons  $S(u) \neq S(v)$ , où S(u) représente l'ensemble des couleurs utilisées par les arêtes incidentes à u.

Nous considèrerons des graphes avec au plus un sommet isolé et sans arêtes isolées.

# Exemple

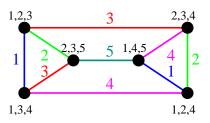


# Exemple



### Définition - observabilité

Le nombre minimum de couleurs tel que le graphe G admet une vd-coloration est appelé observabilité de G et est noté  $\mathrm{Obs}(G)$ .



$$Obs(G) = 5$$

# Conjecture [A.C. Burris et R.H. Schelp, 1997]

Soit G un graphe qui contient au plus un sommet isolé et qui ne contient pas d'arêtes isolées. Considérons j le plus petit entier tel

que  $\binom{j}{k} \ge n_k$  (pour  $1 \le k \le \Delta$ ), où  $n_k$  représente le nombre de sommets de degré k, alors  $\mathrm{Obs}(G) = j$  ou j+1.

Cette conjecture est vraie pour différentes classes de graphes.

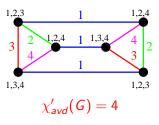
### Définition - avd-coloration

Une k-coloration d'arêtes sommets adjacents distinguants (k-avd-coloration) d'un graphe G est

- une coloration propre d'arêtes de G qui utilise au plus k couleurs et
- 2. pour toutes paires de sommets adjacents  $u, v, S(u) \neq S(v)$

### Définition - indice avd-chromatique

 $\chi'_{avd}(G)$ : est le plus petit entier k tel que G admet une k-avd-coloration.



# Quelques résultats

# Théorème [Z. Zhang, L. Liu et J. Wang, 2002]

Pour tout cycle  $C_p$ :

$$\chi'_{avd}(C_p) = \begin{cases} 3 \text{ si } p \equiv 0 \pmod{3} \\ 4 \text{ si } p \not\equiv 0 \pmod{3} \text{ et } p \neq 5 \\ 5 \text{ si } p = 5 \end{cases}$$

### Conjecture [Z. Zhang, L. Liu et J. Wang, 2002]

Pour tout graphe connexe G tel que  $|V(G)| \ge 6$ ,  $\chi'_{avd}(G) \le \Delta(G) + 2$ .

# Théorème [H. Hatami, 2005]

Tout graphe de degré maximum  $\Delta$  et sans arêtes isolées est tel que  $\chi'_{avd}(G) \leq \Delta + 300$ , lorsque que  $\Delta > 10^{20}$ .

# Quelques résultats

### Définition - mad

Le degré moyen maximum d'un graphe G, noté  $\operatorname{mad}(G)$ , est le maximum des degrés moyens de tous les sous-graphes de G:

$$\operatorname{mad}(G) = \max\left\{\frac{2|E(H)|}{|V(H)|}, H \subseteq G\right\}$$

### Théorème [W.Wang et Y.Wang, 2010]

Soit G un graphe de degré maximum  $\Delta(G)$  et de degré moyen maximum  $\operatorname{mad}(G)$ .

- 1. Si mad(G) < 3 et  $\Delta(G) \ge 3$ , alors  $\chi'_{avd}(G) \le \Delta(G) + 2$ .
- 2. Si  $mad(G) < \frac{5}{2}$  et  $\Delta(G) \ge 4$ , ou  $mad(G) < \frac{7}{3}$  et  $\Delta(G) = 3$ , alors  $\chi'_{avd}(G) \le \Delta(G) + 1$ .
- 3. Si  $\operatorname{mad}(G) < \frac{5}{2}$  et  $\Delta(G) \geq 5$ , alors  $\chi'_{avd}(G) = \Delta(G) + 1$  ssi G contient des sommets adjacents de degré maximum.

### Notre résultat

[W.Wang et Y.Wang, 2010]

- ▶ Si mad(G) <  $\frac{7}{3}$  et  $\Delta(G) = 3$ , alors  $\chi'_{avd}(G) \leq \Delta(G) + 1$ .
- ▶ Si  $mad(G) < \frac{5}{2}$  et  $\Delta(G) \ge 4$ , alors  $\chi'_{avd}(G) \le \Delta(G) + 1$ .

### Théorème

Si  $\operatorname{mad}(G) < 3 - \frac{2}{\Delta(G)}$  et  $\Delta(G) \geq 5$ , alors  $\chi'_{avd}(G) \leq \Delta(G) + 1$ .

### Preuve

Soit G un contre-exemple au théorème minimisant |E(G)|+|V(G)|, i.e. un graphe G tel que  $\mathrm{mad}(G)<3-\frac{2}{\Delta(G)}$  et  $\Delta(G)\geq 5$ , et  $\chi'_{avd}(G)>\Delta(G)+1$ .

Considérons 
$$H = G \setminus \{v \in V(G), d_G(v) = 1\}.$$

- 1. On étudie les propriétés structurelles de *H*.
- 2. On aboutit à une contradiction en utilisant une méthode dite de déchargement sur *H*.

# Propriétés structurelles de H

### Lemme 1

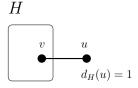
H possède les propriétés suivantes :

- 1.  $\delta(H) \geq 2$ , où  $\delta(H)$  est le degré minimum de H.
- 2. Soit  $v \in V(H)$  tel que  $d_H(v) = 2$ , alors  $d_G(v) = 2$ .
- 3. Soit *uvwx* une chaîne dans H telle que  $d_H(v) = d_H(w) = 2$ , alors  $d_G(u) = d_H(u)$  et  $d_G(x) = d_H(x)$ .

$$\delta(H) \geq 2$$
.

$$\delta(H)=0$$
  $G=K_{1,\Delta(G)}$  et  $\chi'_{\mathit{avd}}(G)=\Delta(G)$ , une contradiction.

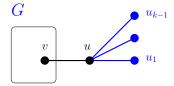
$$\delta(H)=1$$



$$\delta(H) \geq 2$$
.

$$\delta(H)=0$$
  $G=K_{1,\Delta(G)}$  et  $\chi'_{\mathit{avd}}(G)=\Delta(G)$ , une contradiction.

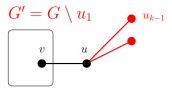
$$\delta(H)=1$$



$$\delta(H) \geq 2$$
.

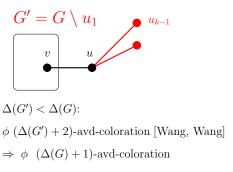
$$\delta(H)=0$$
  $G=K_{1,\Delta(G)}$  et  $\chi'_{avd}(G)=\Delta(G)$ , une contradiction.

$$\delta(H)=1$$



$$\delta(H) \geq 2$$
.

$$\delta(H)=0$$
  $G=K_{1,\Delta(G)}$  et  $\chi'_{avd}(G)=\Delta(G)$ , une contradiction.  $\delta(H)=1$ 

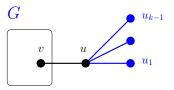


$$\delta(H) \geq 2$$
.

Supposons que  $\delta(H) \leq 1$ .

$$\delta(H)=0$$
  $G=K_{1,\Delta(G)}$  et  $\chi'_{avd}(G)=\Delta(G)$ , une contradiction.

$$\delta(H)=1$$

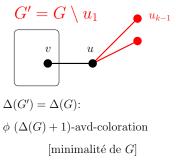


 $\phi (\Delta(G) + 1)$ -avd-coloration

Colorier  $uu_1$  proprement

$$\delta(H) \geq 2$$
.

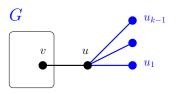
$$\delta(H)=0$$
  $G=K_{1,\Delta(G)}$  et  $\chi'_{avd}(G)=\Delta(G)$ , une contradiction.  $\delta(H)=1$ 



$$\delta(H) \geq 2$$
.

Suppose  $\delta(H) \leq 1$ .

$$\delta(H)=0$$
  $G=K_{1,\Delta(G)}$  et  $\chi'_{avd}(G)=\Delta(G)$ , une contradiction.  $\delta(H)=1$ 



 $\phi (\Delta(G) + 1)$ -avd-coloration

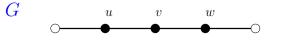
Colorier  $uu_1$  proprement tel que

$$S(u) \neq S(v)$$

# Propriétés structurelles de H

# Lemme 2 H ne contient pas la configuration suivante : o u v w





Lemme 1.2 :  $d_G(u) = d_H(u) = 2 = d_G(v) = d_G(w)$ 

$$G''$$
 $x$ 
 $u$ 
 $v$ 
 $w$ 
 $y$ 

$$\Delta(G') = \Delta(G)$$
 $\mathrm{mad}(G') \leq \mathrm{mad}(G)$ 
 $\phi$ 
 $(\Delta(G) + 1)$ -avd-coloration [minimalité de  $G$ ]
Effacer la couleur de  $vw$ 

$$G \qquad x \qquad u \qquad v \qquad w \qquad y$$

$$O \longrightarrow \bullet - - - \bullet - \bullet - - \bullet \bigcirc$$

$$vw: \phi(vw) \neq \phi(wy), \phi(xu)$$

$$\text{tel que } S(w) \neq S(y) \text{ si } d(y) = 2$$

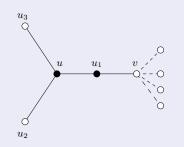
$$uv: \phi(uv) \neq \phi(xu), \phi(vw), \phi(wy)$$

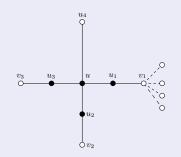
$$\text{tel que } S(u) \neq S(x) \text{ si } d(x) = 2$$

# Propriétés structurelles de H

### Lemme 3

 ${\it H}$  ne contient pas les configurations suivantes :



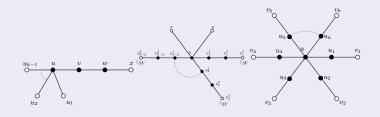


un 3-sommet adjacent à un 2-sommet un 4-sommet adjacent à trois 2-sommets

# Propriétés structurelles de H

### Lemme 4

H ne contient pas les configurations suivantes :



un k-sommet adjacent à un 2-sommet léger pour  $3 \leq k \leq \lceil \frac{\Delta}{2} \rceil$  un k-sommet adjacent à (k-2) 2-sommets légers pour  $\lceil \frac{\Delta}{2} \rceil + 1 \leq k \leq \Delta - 1$  un k-sommet adjacent à k 2-sommets pour k > 5

# Procédure de déchargement

On affecte une *charge* à chaque sommet de H:

$$\forall x \in V(H), \ \omega(x) = d_H(x)$$

Par hypothèses  $mad(H) < 3 - \frac{2}{\Delta}$ , et nous avons

$$\sum_{x \in V(H)} \omega(x) = 2|E(H)| < (3 - \frac{2}{\Delta})|V(H)|$$

# Procédure de déchargement

### Règles de déchargement :

- (R1) Chaque  $(\lceil \frac{\Delta}{2} \rceil + 1)^+$ -sommet donne  $1 \frac{2}{\Delta}$  à chaque 2-sommet léger adjacent.
- (R2) Chaque 4+-sommet donne  $\frac{1}{2}-\frac{1}{\Delta}$  à chaque 2-sommet fort adjacent.

Nous prouvons que  $\forall x \in V(H), \ \omega^*(x) \geq 3 - \frac{2}{\Delta}$ 

$$\left(3 - \frac{2}{\Delta}\right)|V(H)| \le \sum_{x \in V(H)} \omega^*(x) = \sum_{x \in V(H)} \omega(x) < \left(3 - \frac{2}{\Delta}\right)|V(H)|$$

Aucun contre-exemple n'existe.

### Conclusion

On sait que :

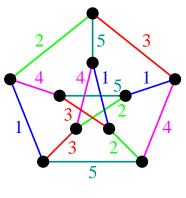
Si 
$$\operatorname{mad}(G) < 3 - \frac{2}{\Delta(G)}$$
 et  $\Delta(G) \geq 5$ , alors  $\chi'_{avd}(G) \leq \Delta(G) + 1$ .

### Problème

Trouver G et  $f(\Delta)$  tels que  $mad(G) = f(\Delta)$  et  $\chi'_{avd}(G) > \Delta + 1$ .



# Exemple



$$\mathrm{Obs}(P_{10})=5$$

# Exemple

