
An Expressively Complete Linear Time Temporal Logic
for Mazurkiewicz Traces1

P.S. Thiagarajan I. Walukiewicz2

SPIC Mathematical Institute Institute of Informatics

92 G.N. Chetty Road Warsaw University

T. Nagar, Chennai-600 017 Banacha 2

India. 02-096 Warsaw, Poland

Abstract

A basic result concerning LTL, the propositional temporal logic of

linear time, is that it is expressively complete; it is equal in expres-

sive power to the first order theory of sequences. We present here a

smooth extension of this result to the class of partial orders known as

Mazurkiewicz traces. These partial orders arise in a variety of contexts

in concurrency theory and they provide the conceptual basis for many

of the partial order reduction methods that have been developed in

connection with LTL-specifications.

We show that LTrL, our linear time temporal logic, is equal in

expressive power to the first order theory of traces when interpreted

over (finite and) infinite traces. This result fills a prominent gap in the

existing logical theory of infinite traces. LTrL also constitutes a charac-

terisation of the so called trace consistent (robust) LTL-specifications.

These are specifications expressed as LTL formulas that do not distin-

guish between different linearisations of the same trace and hence are

amenable to partial order reduction methods.

1This work was mainly done at BRICS, Basic Research in Computer Science, Cen-

tre of the Danish National Research Foundation, Computer Science Department, Aarhus

University, Denmark.
2The author was partially supported by Polish KBN grant

No. 8 T11C 002 11.

1 Introduction

We propose a linear time temporal logic called LTrL whose models are

Mazurkiewicz traces. From its inception [16] the class of labelled partial

orders known as (Mazurkiewicz) traces has played a fundamental role in the

theory of distributed systems. In particular, traces constitute the natural

tool for capturing the non-interleaved linear time behaviour of models such

as Petri nets, event structures and distributed transition systems of various

kinds [30].

The theory of traces is well-developed [3]. This theory may be viewed

as a smooth generalization of the classical theory of sequences. It turns out

that most of the algebraic, automata-theoretic and logical results concerning

sequences [27] have a natural extension to the setting of traces. There has

been however one prominent gap to date in the logical theory of traces. Our

main result concerning LTrL fills this gap.

To bring this out, we recall the famous theorem of Kamp [13] extended

by Gabbay et.al. [8]. It says that LTL, the linear time temporal logic inter-

preted over sequences has the same expressive power as the first order the-

ory of sequences. The surprising aspect of this result being the mismatch

between the ability to define an infinite number of operators of increas-

ing arities in the first order theory and the bounded number of operators

(one binary and one unary operator) admitted by LTL. For the class of

partial orders as a whole, it is known that there can be no such temporal

logic [8]. So far, it has been an open problem to determine whether the

class of traces viewed as a subclass of partial orders admits a temporal logic

(with a bounded number of operators) which has the same expressive power

as the first order theory of traces. Our main result solves this problem by

providing a positive solution. In other words, we show that that LTrL with

its bounded number of operators has the same expressive power as the first

order theory of traces.

There is also a more pragmatic motivation for studying temporal log-

ics interpreted over traces. To bring this out, we first recall that, as first

suggested by Pnueli [23], LTL is often interpreted over the runs of a dis-

tributed system. It is known that these runs can be grouped together into

equivalence classes; two runs are equated in case they differ only in the order

2

in which causally independent occurrences of events are recorded. In other

words, each equivalence class corresponds to all possible linearizations of a

single partially ordered stretch of behaviour. In many settings, the partial

orders that arise in this fashion are traces. Further, it is also often the

case that the property expressed by an LTL specification is insensitive to

a choice of linearizations in the sense that either all members of an equiva-

lence class satisfy the property or none do. Such properties are often called

robust or trace consistent properties. For verifying that all the runs of a dis-

tributed system satisfies a trace consistent requirement, it suffices to check

that the requirement is met by at least one member of each equivalence class

of runs. The resulting savings in the computational resources used during

the verification of trace consistent requirements can be substantial. This

is the insight that underlies many of the so called partial order reduction

techniques [11, 20, 31].

There is an alternative way to exploit the non-sequential nature of the

behaviour of distributed systems and the consequent partial order based

reduction techniques. It consists of developing temporal logics that can

be directly interpreted over the partial orders corresponding to equivalence

classes of runs. The formulas of such logics will describe only trace consistent

properties. Hence the associated verification task will be amenable to partial

order based reduction methods. This is, in retrospect, the key feature of the

branching time temporal logic ISTL introduced by Katz and Peled [14].

The explicit connection between ISTL and traces was later formalized and

exploited by Peled and Pnueli [21] to derive proof rules for reasoning about

the partially ordered runs of a concurrent program.. At present we do not

know of a characterization of the expressive power of ISTL and its variants.

In a linear time setting, there is an important criterion one could use to

judge the expressive power of a temporal logic interpreted over traces. One

could demand that such a logic should capture exactly the trace consistent

properties that can be defined by LTL formulas. It seems difficult to use

LTL itself to capture trace consistent properties, say, through syntactic

restrictions. One reason could be that the problem of deciding whether the

property described by an LTL formula is trace consistent happens to be

PSPACE–complete [22].

From the work of Ebinger and Muscholl [6] it is not difficult to con-

3

clude the following: A linear time temporal logic interpreted over traces will

capture exactly the LTL-definable trace consistent properties if and only if

this logic is expressively equivalent to the first order theory of traces. Thus

an important corollary of our main result is that LTrL captures exactly the

LTL-definable trace consistent properties.

Starting with [25] a number of linear time temporal logics for traces have

been proposed in the literature [1, 5, 18, 24]. None of these studies have been

able to exhibit a logic patterned after LTL which is equivalent in expressive

power to the first order theory of traces. These logics also have a semantics

which has a strong “local” flavour. As a result they can not formulate in a

natural way arbitrary global liveness and safety properties. In contrast, in

LTrL one can transparently express global liveness and safety properties of

all kinds.

There is however a price to be paid for this transparency. The second

author of this paper has recently established a non-elementary time lower

bound for the satisfiability problem for LTrL [29]. Hence it is clear that

from a practical standpoint LTrL is not the final stop in the search for

the “right” linear time temporal logic for traces. However, we feel that

this logic represents a vital step forward towards achieving this goal. We

also feel that the novel techniques developed to establish our main result

will eventually lead to a suitable variant of LTrL which, while remaining

expressively complete, will also admit a decision procedure with a more

reasonable time complexity.

The only available expressiveness results for temporal logics over traces

are due to Ebinger [5] and Niebert [19]. Ebinger’s logic, called TLPO,

has both previous state and since modalities. These past modalities are

extensively used in the attempt to prove that TLPO is expressively complete

when interpreted over finite traces. This proof does not extend to infinite

traces. In contrast, LTrL uses only a very restricted previous state modality.

And it is expressively complete over the domain of infinite traces as well.

Niebert has recently formulated a fixed point temporal logic called νTrPTL

interpreted over infinite traces. This logic is shown to be equal in expressive

power to the monadic second order theory of traces. Further, the satisfiabil-

ity problem for νTrPTL is shown to be solvable is essentially exponential

time. A drawback of this interesting new development is that the formulas

4

of νTrPTL are required to satisfy awkward syntactic restrictions. It is also

not clear how easy it is to formulate global properties of interest in νTrPTL.

Due to the fundamental role of fixed point operators it is also not possible

to cut out a natural fragment of νTrPTL which will capture exactly the

LTL-definable trace consistent properties.

The outline of the paper is as follows. In the next section we introduce

traces. The first order theory of traces as well as the syntax and semantics

of LTrL are presented in section 3. This leads to the formulation of the

main result and its corollaries. The major ingredients of the proof of the

main result are: a decomposition result for infinite traces, which is an easy

version of the Feferman-Vaught theorem for disjoint sums [7] and a new

normal form linearisation of traces. It is the use of the Feferman-Vaught

result and the new normal form that takes us past the key technical hurdles.

The proof is presented in sections 4–9. A proof outline of the difficult half

of the main result is given in section 5.

2 Traces

A (Mazurkiewicz) trace alphabet is a pair (Σ, I) where Σ is a finite set of

actions and I ⊆ Σ×Σ is an irreflexive and symmetric independence relation.

D = (Σ×Σ)− I is called the dependency relation. Through the rest of the

paper we fix a trace alphabet (Σ, I) and we will often refer to it implicitly.

We let a, b range over Σ.

We shall view (Mazurkiewicz) trace as a restricted Σ-labelled poset. Let

(E,≤, λ) be a Σ-labelled poset. In other words, (E,≤) is a poset and λ : E →

Σ is a labelling function. For Y ⊆ E we define ↓ Y = {x | ∃y ∈ Y. x ≤ y}

and ↑Y = {x | ∃y ∈ Y. y ≤ x}. In case Y = {y} is a singleton we shall write

↓ y (↑y) instead of ↓ {y} (↑{y}). We also let l be the relation: x l y iff

x < y and ∀z ∈ E. x ≤ z ≤ y implies x = z or z = y.

A trace (over (Σ, I)) is a Σ-labelled poset T = (E,≤, λ) satisfying:

(T1) ∀e ∈ E. ↓e is a finite set

(T2) ∀e, e′ ∈ E. el e′ ⇒ λ(e) D λ(e′).

(T3) ∀e, e′ ∈ E. λ(e) D λ(e′) ⇒ e ≤ e′ or e′ ≤ e.

We shall refer to members of E as events. The trace T = (E,≤, λ) is said

to be finite if E is a finite set. Otherwise it is an infinite trace. Note that E

5

is always a countable set. T is said to be non-empty in case E 6= ∅. We let

TRfin(Σ, I) be the set of finite traces and TRinf(Σ, I) be the set of infinite

traces over (Σ, I) and set TR(Σ, I) = TRfin(Σ, I) ∪ TRinf(Σ, I). Often we

will write TRfin instead of TRfin(Σ, I) etc.

Let T = (E,≤ λ) be a trace. The finite prefixes of T , to be called

configurations, will play a crucial role in what follows. A configuration of

T is a finite subset c ⊆ E such that c =↓ c. We let CT be the set of

configurations of T and let c, c′, c′′ range over CT . Note that ∅, the empty

set, is a configuration and ↓e is a configuration for every e ∈ E. Finally, the

transition relation → T ⊆ CT × Σ× CT is given by: c
a
→T c′ iff there exists

e ∈ E such that λ(e) = a and e /∈ c and c′ = c ∪ {e}. It is easy to see that

if c
a
→T c′ and c

a
→T c′′ then c′ = c′′. The configurations of a trace serve as

the finite stages of the distributed run modeled by the trace. The formulas

of our temporal logic will be interpreted at the configurations of a trace.

3 The Main Result

The first order theory of traces is formulated by assuming a countable set

of individual variables V ar = {x, y, z, . . .}; a family of unary predicates

{Ra}a∈Σ; and a binary predicate ≤. Then FO(Σ, I), the set of formulas in

the first order theory of traces (over (Σ, I)), is given by the syntax:

FO(Σ, I) ::= Ra(x) | x ≤ y |∼ ϕ | ϕ ∨ ϕ′ | (∃x)ϕ

Thus the syntax does not explicitly involve I. However, it is reflected in ≤

that will be interpreted as the partial order relation associated with a trace

which does indeed respect the independence relation I.

Given a trace T = (E,≤, λ) and an associated valuation V : Var →E,

the relation T |=FO
V ϕ will denote that T is a model of ϕ ∈ FO(Σ, I)

under the valuation V . This notion is defined in the expected manner. In

particular, T |=FO
V Ra(x) iff λ(V (x)) = a and T |=FO

V x ≤ y iff V (x) ≤ V (y).

As usual, a sentence is a formula with no free variables. Lϕ will denote the

set of models of the sentence ϕ. More precisely,

Lϕ = {T : T ∈ TR and T |=FO ϕ}

We will say that L ⊆ TR is FO-definable iff there exists a sentence

ϕ ∈ FO(Σ, I) such that L = Lϕ.

6

The set of formulas of our linear time temporal logic of traces (LTrL) is

defined as follows:

LTrL(Σ, I) ::= tt |∼ α | α ∨ β | 〈a〉α | αUβ | 〈a−1〉tt

Thus the next state modality is indexed by actions. There is also a

very restricted version of the previous state modality. Indeed the number

of past formulas is bounded by the size of Σ. For achieving the present

aims, there is no need for atomic propositions. It is worth mentioning that

if atomic propositions are to be introduced then the valuations must be

required to respect the independence relation in a suitable fashion. The

logic will become undecidable otherwise. More on this issue can found in

the concluding section. In the current framework, a model of LTrL is just a

trace T = (E,≤, λ). The relation T, c |= α will denote that α ∈ LTrL(Σ, I)

is satisfied at the configuration c ∈ CT . It is defined via:

• T, c |= tt. Furthermore ∼ and ∨ are interpreted in the usual way.

• T, c |= 〈a〉α iff ∃c′ ∈ CT . c
a
→T c′ and T, c′ |= α.

• T, c |= αUβ iff ∃c′ ∈ CT . c ⊆ c′ and T, c′ |= β and ∀c′′ ∈ CT .

c ⊆ c′′ ⊂ c′ implies T, c′′ |= α.

• T, c |= 〈a−1〉tt iff ∃c′ ∈ CT . c′
a
→T c.

The derived “sometime” and “always” modalities have expected seman-

tics. More precisely, with 3α
∆
⇔ tt Uα and 2α

∆
⇔∼3 ∼ α, we have:

T, c |= 2α iff ∀c′ ∈ CT . c ⊆ c′ implies T, c′ |= α. Thus arbitrary liveness and

safety properties interpreted over the global states of a distributed system

can be formulated in LTrL. A variety of models of distributed systems are

available in the literature whose non-interleaved linear time semantics can

be given in terms of traces. Elementary net systems, 1-safe Petri nets, trace

transition systems [30] and networks of finite state automata that commu-

nicate by synchronizing on common actions [17] are typical examples. For

all these system models, one can use LTrL formulas to specify the proper-

ties that must be satisfied by all trace runs. An example of this approach is

given in Section 11.

With each formula α ∈ LTrL(Σ, I), we can associate a set of traces as

follows:

7

Lα = {T ∈ TR | T, ∅ � α}.

We say that L ⊆ TR is LTrL-definable iff there exists a formula α ∈

LTrL(Σ, I) such that L = Lα.

Our main result can now be stated.

Theorem 1

Let L ⊆ TRinf. Then L is FO-definable iff L is LTrL-definable.

Indeed this result goes through in case L ⊆ TRfin or L ⊆ TR. We note

that in case I = ∅, Theorem 1 is just the expressiveness result of [8] in a

different and slightly weakened (because of the past modalities) form.

The theorem is proved by showing separately the two implications:

Lemma 2 Let α ∈ LTrL(Σ, I). Then there exists ϕ ∈ FO(Σ, I) such that

for every T ∈ TRinf: T, ∅ |= α iff T |=FO ϕ.

Lemma 3 Let ϕ ∈ FO(Σ, I). Then there exists α ∈ LTrL(Σ, I) such that

for every T ∈ TRinf: T |=FO ϕ iff T, ∅ |= α.

The proof of the first lemma is straightforward. It consists of coding the

semantics of LTrL(Σ, I) into FO(Σ, I). The proof of the second lemma is

much more involved. We will show it first for finite and restricted infinite

traces called perpetual directed traces. Then we will use some decomposition

and composition results to show the lemma for all traces.

Let us finish this section with some corollaries of our main result. As

the first order theory of traces is decidable [6] and the translation given in

the proof of Lemma 2 is constructive we immediately obtain:

Corollary 4 The satisfiability problem for LTrL is decidable.

To bring out one more consequence of Theorem 1, we shall define LTL(Σ),

linear time temporal logic interpreted over Σ-sequences. We will use Σ∗ and

Σω to denote the set of finite and infinite sequences over Σ respectively. We

will use Σ∞ for Σ∗ ∪ Σω.

The syntax of LTL(Σ) is given by:

LTL(Σ) ::= tt |∼ α̂ | α̂ ∨ β̂ | 〈a〉α̂ | α̂ U β̂.

8

For σ ∈ Σ∞, let prf(σ) denote the set of finite prefixes of σ and let τ v τ ′

denote that τ is a prefix of τ ′. Then σ, τ |= α̂ will stand for α̂ being satisfied

at the prefix τ of σ. This notion is defined in the usual way.

• σ, τ |= tt. The connectives ∼ and ∨ are interpreted in the standard

fashion.

• σ, τ |= 〈a〉α̂ iff τa ∈ prf(σ) and σ, τa |= α̂.

• σ, τ |= α̂U β̂ iff ∃τ ′ ∈ prf(σ) such that τ v τ ′ and σ, τ ′ |= β̂. Moreover

for every τ ′′ ∈ prf(σ), if τ v τ ′′ @ τ ′ then σ, τ ′′ |= α̂.

Next, let T = (E,≤, λ) ∈ TR. Then σ ∈ Σ∞ is a linearisation of T iff

there exists a map ρ : prf(σ) →CT , such that, the following conditions are

met:

(i) ρ(ε) = ∅ (ε is the null string)

(ii) ∀τa ∈ prf(σ) with τ ∈ Σ∗, ρ(τ)
a
→T ρ(τa)

(iii) ∀e ∈ E ∃τ ∈ prf(σ). e ∈ ρ(τ).

The function ρ will be called a run map of the linearisation σ. Note that

the run map of a linearisation is unique. In what follows, we shall let lin(T)

to be the set of linearisations of the trace T . The notion of linearisation

induces the standard equivalence relation ≈I⊆ Σ∞ × Σ∞ via: σ ≈I σ
′ iff

there exists a trace T , such that, σ, σ ′ ∈ lin(T). It is well-known that there

is a natural correspondence between Σ∞/ ≈I and TR∞(Σ, I). A formula

α̂ is said to be trace consistent if for every σ, σ ′ ∈ Σ∞ such that σ ≈I σ
′,

whenever σ, ε |= α̂ then σ′, ε |= α̂.

As mentioned earlier, specifications that are formulated as trace consis-

tent formulas can be often verified efficiently using partial order reduction

techniques. LTrL provides a characterisation of trace consistent LTL formu-

las in the following sense.

Corollary 5 (i) For every formula α ∈ LTrL(Σ, I) there is a trace con-

sistent formula α̂ ∈ LTL(Σ), such that
⋃
{lin(T) : T, ∅ � α} = {σ :

σ, ε � α̂}.

(ii) For every trace consistent LTL(Σ) formula α̂ there is a LTrL(Σ, I)

formula α such that
⋃
{lin(T) : T, ∅ � α} = {σ : σ, ε � α̂}.

9

4 From LTrL(Σ, I) to FO(Σ, I)

In this section we will show Lemma 2 which is an easy part of Theorem 1

Proof (of Lemma 2)

In FO(Σ, I) the variables range over events, but we can use a finite set

of variables to represent a configuration. Intuitively a set of variables X

represents in a given valuation V : Var → E the configuration cX
V = {e :

∃z ∈ X. e ≤ V (z)}.

For every set of variables X and every formula α of LTrL we will con-

struct a formula ϕX
α of FO(Σ, I) with free variables in the set X. This

formula will have the property that for every valuation V : Var → E:

T �
FO
V ϕX

α iff T, cXV � α (1)

In particular taking X = ∅ we will obtain the thesis of the lemma.

The construction proceeds by structural induction on α. If α = tt then

for every X we put ϕX
α = ∀ z. (z ≤ z). The cases for disjunction and

negation are also obvious.

Suppose α = 〈a〉β. Let X = {x1, . . . , xk} (this set may be empty). We

let ϕX
α to be:

∃y. Ra(y) ∧ ϕ
X∪{y}
β ∧

(∧

i=1,...,k

y 6≤ xi

)
∧
(
∀z. z < y ⇒

∨

i=1,...,k

z ≤ xi

)

Suppose α = βUγ. First, for two sets of variables Y,Z we define the

formulas

Below(Y,Z) =
∧

y∈Y

(
∨

z∈Z

)
y ≤ z

SBelow(Y,Z) =Below(Y,Z) ∧ ¬Below(Z, Y)

Intuitively formula Below(X,Y) says that all the events in the configuration

represented by Y belong to a configuration represented by Z. The formula

SBelow(X,Y) says the same plus the fact that the configurations are not

equal. With the help of this formula we define ϕX
α for X 6= ∅ by:

∃Z. Below(X,Z) ∧ ϕZ
γ ∧

∀Y. (Below(X,Y) ∧ SBelow(Y,Z)) ⇒ ϕY
β

10

In the above the quantifier ∃Z is an abbreviation of ∃z1, . . . ,∃z|Σ|. Similarly

for ∀Y . We let ϕ∅α to be:

ϕ∅γ ∨ ∃Z. ϕ
Z
γ ∧ ϕ

∅
β ∧ ∀Y. SBelow(Y,Z) ⇒ ϕY

β

Finally, if α = 〈a−1〉tt then the formula ϕX
α is

∨

x∈X

(
Ra(x) ∧

∧

x′∈X

x 6= x′ ⇒ x 6≤ x′
)

Here x 6= x′ is an abbreviation for x 6≤ x′ ∧ x′ 6≤ x.

By structural induction on α one can show that the condition (1) is satisfied.

�

5 From FO(Σ, I) to LTrL(Σ, I) for definable lineariza-

tions

The goal of this section is to give an outline of the proof of Lemma 3. First

we will assume that we have some notion of a canonical linearization of

traces. Further we will assume that there is an LTrL formula which can, in

some sense, describe this canonical linearization. With these assumptions

in place, we will outline a proof of Lemma 3. Unfortunately there can be no

such notion of a linearization that can be captured by a fixed LTrL formula

and which works for all traces. Towards the end of the section we will explain

how we get around this problem by restricting our attention to special kinds

of traces.

The first order theory of Σ-words will be denoted FO(Σ) and it will have

the same syntax as FO(Σ, I). The only difference is that the binary relation

≤ is to be viewed as the linear order relation over the positions of a Σ-word.

Viewed differently, FO(Σ) is just FO(Σ, I) with I = ∅. The basic details

concerning FO(Σ) can be found in [27].

We will not reprove here the famous equivalence in expressive power be-

tween FO(Σ) and LTL(Σ) [13]. Rather, we will use this result and work

with trace consistent fragment of LTL(Σ) instead of FO(Σ, I). This is possi-

ble by the following lemma which was observed in a slightly different setting

in [6].

11

Lemma 6 Let ϕ be a sentence in FO(Σ, I). Then there exists a trace

consistent α̂ ∈ LTL(Σ) such that for every T ∈ TR: T |=FO ϕ iff σ, ε |= α̂

for some linearisation σ of T .

Proof

In what follows, the semantic relation of satisfiability associated with the

sentences of FO(Σ) will be denoted |=fo. A simple but basic observation

essentially due to Wolfgang Thomas [28] can be stated as:

Observation 6.1 For every sentence ϕ ∈ FO(Σ, I) there exists a sentence

ϕ̂ ∈ FO(Σ) such that for every trace T : T |=FO ϕ iff u |=fo ϕ̂ for every

u ∈ lin(T).

Recall that lin(T) is the set of linearisations of T . Now, let T = (E,≤, λ)

be a trace, let u ∈ lin(T) and let ρ : prf(u) → CT the associated run map.

Suppose that e ∈ E and λ(e) = a. Then there exists a unique τa ∈ prf(u)

such that e 6∈ ρ(τ) and e ∈ ρ(τa). Let us call this τa the occurrence of e in

u. It is not difficult to show that e < e′ in T with e, e′ ∈ E iff there exists

τ0a0, τ1a1, . . . , τnan ∈ prf(u) such that the following conditions are satisfied.

• τ0a0 is the occurrence of e and τnan is the occurrence e′ in u.

• τ0a0 v τ1a1 v . . . v τnan.

• 1 ≤ n ≤ |Σ| and ai D ai+1 for 0 ≤ i < n.

All these conditions can be expressed in FO(Σ) and this easily leads to

Observation 6.1.

Now, by the expressiveness results of [8, 32], for each sentence ϕ̂ ∈ FO(Σ)

there exists α̂ ∈ LTL(Σ) such that:

{u ∈ Σ∞ | u |=fo ϕ̂} = {u ∈ Σ∞ | u, ε |= α̂}.

The lemma now follows at once from the definition of trace consistent for-

mulas. �

Let us now show how to translate trace consistent LTL(Σ) formulas to

LTrL(Σ, I) formulas assuming that we have a formula defining canonical

linearisations of traces.

12

Definition 7 (i) A map nrl : TR(Σ, I) → Σ∞ is called a linearization

map iff nrl(T) ∈ lin(T) for every trace T . Abstractly, nrl picks out

one particular “normal” linearization of each trace.

(ii) A formula, say, NRC ∈ LTrL(Σ, I) is said to capture the linearization

map nrl iff the following condition holds for every trace T .

• Suppose nrl(T) = σ and ρ : prf(σ) → CT is the run map of σ.

Then ∀ c ∈ CT . T, c |= NRC iff there exists τ ∈ prf(σ) such

that ρ(τ) = c.

Thus the magic formula NRC (if it exists) is such that it holds exactly

at the configurations in the image of the run map associated with the normal

linearization.

Now assume that nrl : TR(Σ, I) → Σ∞ is a linearization map and NRC

is a formula in LTrL(Σ, I) which captures nrl.

Using NRC, we now define the map ‖.‖ : LTL(Σ) →LTrL(Σ, I) via :

‖tt‖ = tt ‖ ∼ α̂‖ =∼ ‖α̂‖ ‖α̂ ∨ β̂‖ = ‖α̂‖ ∨ ‖β̂‖

‖〈a〉α̂‖ = 〈a〉(NRC ∧ ‖α̂‖)

‖α̂ U β̂‖ = (NRC ⊃ ‖α̂‖) U (NRC ∧ ‖β̂‖)

By an easy structural induction one can show:

Lemma 8 Let α̂ be a formula of LTL(Σ). For every trace T and its lineari-

sation σ defined by nrl (i.e. nrl(T) = σ) we have: σ, ε |= α̂ iff T, ∅ |= ‖α̂‖.

Hence to establish Lemma 3 it would suffice to fix a linearization map

and a formula in LTrL which captures it. Unfortunately such a formula can

not exist for any chosen linearization map (except of course in the degenerate

case where I = ∅). This is because it does not even exist for a trace alpha-

bet consisting of just two letters which are independent. An infinite trace

over such an alphabet consists of two disconnected infinite sequences. Cour-

celle [2] has shown that there is no monadic second order formula defining

a linearization of this trace.

Our approach to proving Lemma 3 is the following. We identify a re-

stricted type of an infinite trace called a perpetual directed trace. We show

that every (infinite) trace can be canonically decomposed into an initial finite

13

trace followed by a bounded number of perpetual directed traces. We then

show how to accomplish for perpetual directed traces what was not possible

for all traces. Namely, we define a partial linearization map defined only

on finite and perpetual directed traces and a formula NRC which captures

this map whenever it is applied to a finite or a perpetual directed trace. To

extend Lemma 3 to all traces we first show how to decompose a formula in

FO(Σ, I) into a bounded number of formulas that talk about the finite ini-

tial part and the perpetual directed parts of a trace. After translating such

decomposed formulas into LTrL via Lemma 3, we show how the resulting

LTrL formulas can be combined together to talk about a whole trace.

6 Decomposition of traces

Let T = (E,≤, λ) be a trace. The alphabet of T is denoted alph(T) and

is given by: alph(T) = {λ(e) | e ∈ E}. We define as Σfin

T = {a : λ−1(a) :

is a finite set}.

Definition 9 (Perpetual and directed traces) (i) A trace T is called

perpetual if it is non-empty and Σfin

T = ∅. Hence every perpetual trace

is infinite but converse is not always true.

(ii) The trace T is called directed iff every two events in E have an upper

bound, i.e., for every e1, e2 ∈ E there exists e, such that, e1 ≤ e and

e2 ≤ e.

We now define the Σ-labelled posets fin(T) and inf(T) via:

fin(T) = (Efin,≤fin, λfin) and inf(T) = (Einf,≤inf, λinf)

where Efin = {e : ∃e′. e ≤ e′ and λ(e′) ∈ Σfin

T } and Einf = E − Efin.

Furthermore, ≤fin (≤inf) is ≤ restricted to Efin × Efin (Einf × Einf) and λfin

(λinf) is λ restricted to Efin (Einf). The following observation is an easy

consequence of the definitions.

Proposition 10 For every trace T , fin(T) is a finite trace. Further, inf(T)

is a perpetual trace iff T is an infinite trace.

Next we decompose inf(T).

14

Proposition 11 Let T = (E,≤, λ) be a perpetual trace. Then there exists

a unique family of traces {Ti = (Ei,≤i, λi)}
m
i=1 with m ≤ |Σ| such that the

following conditions are satisfied:

(i) Each Ti is a perpetual directed trace.

(ii) For each i, j ∈ {1, . . . ,m}, if i 6= j then Ei ∩ Ej = ∅ and alph(Ti) ×

alph(Tj) ⊆ I.

(iii) E = ∪m
i=1 Ei, ≤= ∪m

i=1 ≤i and λ = ∪m
i=1 λi.

Proof

Let T = (E,≤ λ) be a perpetual trace and let DT = (alph(T)×alph(T))∩D,

i.e., DT is the dependency relation restricted to the letters from T . Define

a binary relation ↑⊆ E ×E via:

e ↑ e′ iff ∃e′′. e ≤ e′′ and e′ ≤ e′′. (2)

We wish to show that ↑ is an equivalence relation. For this we will need

three observations.

Observation 11.1 Suppose (a, b) ∈ DT and e ∈ E with λ(e) = a. Then

there exists e′ ≥ e with λ(e′) = b.

To see this, note that as T is perpetual, there must exist infinitely many

events labelled by b. For each such event eb we have eb ≤ e or e ≤ eb by

condition T3 in the definition of a trace. It cannot be the case that all these

events are ≤-smaller than e; this would contradict the condition (T1) of the

definition of a trace. Hence there is an event e′ labelled by b that is not

≤-smaller than e. By the condition (T3) we have: e ≤ e′.

Observation 11.2 Let e, e′ ∈ E with e < e′. Then (λ(e), λ(e′)) ∈ D∗
T ;

where D∗
T is the reflexive and transitive closure of the relation DT

Call a path from e to e′ in T a sequence e = e0le1l· · ·len = e′. Clearly

such a path must exist because e < e′. This follows from the condition (T1)

in the definition of a trace. Again, by condition (T2) in the definition of a

trace, we have (λ(ei), λ(ei+1)) ∈ DT for 0 ≤ i < n.

Observation 11.3 For every e, e′ ∈ E we have: e ↑ e′ iff (λ(e), λ(e′)) ∈ D∗
T

15

If this holds then ↑ is an equivalence relation because D∗
T is an equivalence

relation. To establish the observation first assume that e′′ ∈ E with e ≤ e′′

and e′ ≤ e′′ so that e ↑ e′. From Observation 11.2 and the fact that D∗
T

is an equivalence relation, we at once have (λ(e), λ(e′)) ∈ D∗
T . Conversely

assume that (λ(e), λ(e′)) ∈ D∗
T with λ(e) = a and λ(e′) = b. If a = b then

e ↑ e′ follows at once from condition (T3) in the definition of a trace. So

assume a 6= b. Let a0, a1, . . . , an be a sequence such that a = a0, an = b and

(ai, ai+1) ∈ DT for 0 ≤ i < n. By repeated applications of Observation 11.1

we can find a sequence of events e0, e1, . . . , en in E such that e = e0, λ(ei) =

ai and ei ≤ ei+1 for 0 ≤ i < n. Since λ(en) = b = λ(e′) we must have e′ ≤ en

or en ≤ e′. In either case, e ↑ e′ as required.

To finish the proof of the proposition, let {eq1, eq2, . . . , eqm} be the set of

D∗
T –equivalence classes of alph(T). Define Ti = (T |eqi,≤ |eqi, λ|eqi) where

|eqi denotes the restriction to the events labelled with the letters in eqi.

Conditions (i) and (ii) follow from Observation 11.3. Condition (iii) follows

directly from the definition of the traces Ti. �

We conclude by defining the crucial notion of shapes.

Definition 12 (Shape) (i) The shape of a perpetual trace T is the fam-

ily {alph(Ti)}
m
i=1 where {Ti}

m
i=1 is the decomposition described above.

(In other words the shape of T is the set of alphabets ofD∗
T -equivalence

classes of T)

(ii) A family {Σi}
m
i=1 is a shape in the trace alphabet (Σ, I) if it is the shape

of some perpetual trace over this alphabet.

7 Normal linearizations of traces

Our goal here is to define a partial linearization map whose domain will be

the set of finite and perpetual directed traces. This partial map will have

the property that it can be captured (in the sense of Definition 7) by a fixed

formula in LTrL.

Through the rest of the section we fix a strict linear order ≺⊆ Σ × Σ.

For ∅ 6= Σ′ ⊆ Σ, min(Σ′) will denote the least element of Σ′ under ≺.

Let T = (E,≤, λ) be a trace. Then the relation co ⊆ E×E is defined as:

e co e′ iff e � e′ and e′ � e. Further, for e, e′ ∈ E we set Σee′ = λ(↑e− ↑e′).

16

(For X ⊆ E, λ(X) = {λ(x) | x ∈ X}.)

Definition 13 Let T = (E,≤, λ) be a trace. Then lexT ⊆ E×E is defined

as: e lexT e′ iff one of the two following conditions is satisfied.

(i) e < e′

(ii) e co e′ and min(Σee′) ≺ min(Σe′e).

Suppose T = (E,≤, λ) is a trace and e, e′ ∈ E with e co e′. Then it is

easy to show that Σee′ ∩Σe′e = ∅ and that both Σee′ and Σe′e are nonempty.

Hence lexT is well-defined.

Lemma 14 Let T = (E,≤, λ) be a trace. Then (E, lexT) is a strict linear

order.

Proof

Let e, e′ ∈ E with e 6= e′. It is straightforward to verify that e lexT e
′ or

e′ lexT e but not both. So we need to show that lexT is transitive.

Let e1, e2, e3 ∈ E with e1 lexT e2 and e2 lexT e3. To show e1 lexT e3, first

note that e1, e2 and e3 must be pairwise distinct. For distinct i, j ∈ {1, 2, 3}

we fix (if it exists) an event eij ∈ ↑ei − ↑ej labelled with min(Σeiej
). We

need to examine several, quite easy, cases.

Suppose e1 < e2. Then ↑e2−↑e3 ⊆ ↑e1−↑e3 and ↑e3−↑e1 ⊆ ↑e3−↑e2.

As lexT (e2, e3) we get lexT (e1, e3).

The case when e2 ≤ e3 is done similarly. If e1 ≤ e3 then lexT (e1, e3) and

we are done.

Suppose e1 co e2 and e2 co e3 and e1 6≤ e3. We claim that e1 co e3. If it

were e3 ≤ e1 then ↑e1 −↑e2 ⊆ ↑e3 −↑e2 and ↑e2−↑e3 ⊆ ↑e2−↑e1. Hence

λ(e32) � λ(e12) and λ(e21) � λ(e23). We also know that λ(e12) ≺ λ(e21).

This gives us λ(e32) ≺ λ(e23), a contradiction.

Hence we are left with the case when e1, e2, e3 are pairwise in co relation.

From lexT (e1, e2) and lexT (e2, e3) we get λ(e12) ≺ λ(e21) and λ(e23) ≺

λ(e32).

First we claim that:

λ(e13) � λ(e12). (3)

17

Suppose e12 6∈ ↑e3. Then e12 ∈ ↑e1 − ↑e3 and (3) follows. So assume that

e12 ∈ ↑e3. Then e12 ∈ ↑e3 − ↑e2. Since e2 lexT e3 we have:

λ(e23) ≺ λ(e32) � λ(e12). (4)

Now we must consider two cases. Suppose e23 ∈ ↑e1. Then e23 ∈ ↑e1 − ↑e3

and hence λ(e13) � λ(e23) which then leads to (3). Suppose on the other

hand e23 6∈ ↑e1. Then e23 ∈ ↑e2 − ↑e1 which leads to λ(e12) ≺ λ(e21) �

λ(e23). But from (4) above we now have the contradiction: λ(e12) ≺ λ(e12).

Hence (3) must hold.

To finish the proof there are two cases to consider. Suppose e31 ∈ ↑e2.

Then e31 ∈ ↑e2 − ↑e1 and from λ(e12) ≺ λ(e21) � λ(e31) and (3) we can

deduce λ(e13) ≺ λ(e31). So suppose that e31 6∈ ↑e2. Then e31 ∈ ↑e3−↑e2 and

consequently λ(e23) ≺ λ(e32) � λ(e31). If e23 ∈ ↑e1 then e23 ∈ ↑e1−↑e3 and

hence λ(e13) � λ(e23) ≺ λ(e31) as desired. If on the other hand, e23 6∈ ↑e1

then e23 ∈ ↑e2−↑e1 and hence λ(e12) ≺ λ(e21) � λ(e23). This in turn leads

to λ(e12) ≺ λ(e31). From (3) we can again conclude that λ(e13) ≺ λ(e31).

�

We shall introduce the notion of normal configurations that in turn will

enable us to define normal linearisations of traces.

Definition 15 (Normal linearization) (i) Let T = (E,≤, λ) be a trace

and c ∈ CT . Then c is a normal configuration iff c is lexT closed, i.e.,

for every e ∈ c and every e′ ∈ E, if e′ lexT e then e′ ∈ c.

(ii) Let σ be a linearisation of T with ρ as the run map of σ (as defined in

Section 3). Then σ is a normal linearisation of T iff ρ(τ) is a normal

configuration for every τ ∈ prf(σ).

It is easy to see that there can be at most one normal linearisation of a

trace. Some traces do not have normal linearisations. One of the reasons

why we focus on directed perpetual traces is:

Lemma 16 If T is finite or a directed perpetual trace then there exists a

unique normal linearisation of T .

Proof

Let c be a configuration of T = (E,≤, λ). We say that the event e ∈ E is

18

enabled at c iff e 6∈ c and c∪{e} is a configuration. It is easy to see that e is

enabled at c iff e is a minimal element of E − c under ≤. Next we note that

if c is a normal configuration of the trace T and e is the least enabled event

at c under lexT (among all the enabled events at c), then c ∪ {e} is also a

normal configuration. From the fact that the empty configuration is always

normal, it now follows that if T is a finite trace then it admits a unique

normal linearisation.

One can apply the same reasoning in the case of directed perpetual traces

but it may be not clear that the obtained sequence contains all the events

of the trace. To show that it is indeed the case it is enough to show that for

every event e the set {e′ | e′ lexT e} is finite.

Let {a1, . . . , ak} = alph(T) . Take an event e1 ≥ e labelled with a1.

Such an event exists because T is directed and perpetual. Then inductively

for every i = 2, . . . , k take ei ≥ ei−1 labelled by ai. We claim that if e′ lexT e

then e′ ≤ ek. If e′ ≤ e then it is obvious. If e′ co e then let aj be the label of

e′. Clearly e′ ≤ ej . Hence e′ ≤ ek. We are done, as the set ↓ ek is finite. �

Thus the partial linearization map nrl we have in mind is defined only

for finite and perpetual directed traces. For each such trace T , we define

nrl(T) to be the normal linearization of T .

8 Defining normal linearizations in LTrL(Σ, I)

Here we construct a formula NRC which will capture the (partial) lin-

earization map nrl defined in the previous section. This is done in lemma

17. Although the lemma is stated for all traces, it does not mean that the

formula NRC will work for all traces. The catch is that the notion of a

normal configuration makes sense for any trace T since it is defined in terms

of lexT . However, for an infinite trace T , the element of Σω induced by

lexT may not be a linearisation of T ! Fortunately we know that by virtue

of Lemma 16, NRC will have the desired effect when applied to finite and

perpetual directed traces.

Lemma 17 There exists an LTrL(Σ, I) formula NRC such that for every

T ∈ TR and every c ∈ CT : T, c |= NRC iff c is a normal configuration.

19

Proof

We will say that the event e is at the top of the configuration c iff c ∩ ↑e =

{e}. In other words, e is a maximal element of c under ≤. We let top(c)

be the set of elements that are on the top of c. Recall that we say that an

event e is enabled in a configuration c if e 6∈ c and c∪{e} is a configuration.

Observation 17.1 Let T = (E,≤, λ) be a trace and c ∈ CT . Then c is

not a normal configuration iff there exist events e, e′ and e1 satisfying the

following conditions:

(i) e ∈ top(c), e′ is enabled at c and e1 ∈ ↑e
′ − ↑e,

(ii) ∀e2 ∈ E, if e2 ∈ ↑e− ↑e
′ then λ(e1) ≺ λ(e2).

To see that this holds assume first that c is not a normal configuration.

Then there exists e3 ∈ c and e′3 6∈ c such that e′3 lexT e3. Let e ∈ top(c) such

that e3 ≤ e and let e′ be enabled at c such that e′ ≤ e′3. By the transitivity

of lexT we now have e′ lexT e. Let x = min(Σe′e) and e1 ∈ ↑e
′ − ↑e such

that λ(e1) = x. Now suppose e2 ∈ ↑e− ↑e
′. By the definition of lexT , we

have x ≺ λ(e2).

Next suppose there exist e, e′ and e1 fulfilling the conditions specified by

Observation 17.1. Let e2 ∈ ↑e− ↑e
′. Then λ(e1) ≺ λ(e2). Hence min(Σe′e)

� λ(e1) ≺ min(Σee′). Thus e′ lexT e and c is not normal.

We need to define an intermediate formula before getting to NRC. In

what follows, for a, b, d ∈ Σ let Γd
ab = {S ⊆ Σ : a ∈ S and b, d 6∈ S}. We will

use this notion only in contexts where a 6= b and a 6= d.

For a, b, d ∈ Σ, define the formula µd
ab to be ∼ tt in case a = b or a = d.

Otherwise,

µd
ab = 〈b−1〉tt ∧

∨

S∈Γd
ab

αS

where

αS =
(∧

x∈S

〈x−1〉tt
)
U
(
〈d−1〉tt ∧

∧

x∈S

〈x−1〉tt ∧
∧

y∈(Σ−S)−{d}

∼ 〈y−1〉tt
)
.

The meaning of the formula µd
ab is the best described by the observation

below. We have also tried to present it graphically (Figure 1). Horizontal

line represents the top of the configuration. The thick part represents those

20

events from the top which labels go to the set S in αS . Dashed cone from

e′ represents all the events in the future of e′. A downwards cone from e1

represents all the events from the past of e1.

d

a

e e′

b

e1

Figure 1: The meaning of the formula µd
ab

Observation 17.2 Let T = (E,≤, λ) be a trace and c ∈ CT . Then T, c |=

µd
ab iff there exist events e, e′, e1 such that the following conditions are

satisfied:

(i) λ(e) = a, λ(e′) = b and λ(e1) = d.

(ii) e, e′ ∈ top(c) with e 6= e′ and e1 ∈ ↑e
′ − ↑e.

To see that this must hold first suppose that T, c |= µd
ab. Then a 6= b and

a 6= d. Let S ∈ Γd
ab such that T, c |= 〈b−1〉tt ∧ αS . Then there exists c′ such

that c ⊆ c′ and

T, c′ |= 〈d−1〉tt ∧
∧

x∈S

〈x−1〉tt ∧
∧

y∈(Σ−S)−{d}

∼< y−1 > tt. (1)

Furthermore, for every configuration c′′ such that c ⊆ c′′ ⊂ c′, we have

T, c′′ |=
∧

x∈S

〈x−1〉tt. (2)

Let e, e′ ∈ top(c) such that λ(e) = a and λ(e′) = b. Clearly, a 6= b implies

e 6= e′.

Now suppose b = d. Then by setting e1 = e′, we at once get the desired

conclusion. This follows from the fact that a 6= b because b 6∈ S and hence

λ(e) 6= λ(e′). But then e, e′ ∈ top(c) and thus e′ ∈ ↑e′ − ↑e.

So assume that b 6= d. Then T, c′ |=∼ 〈b−1〉tt because b ∈ (Σ−S)−{d}.

21

Let e1 ∈ top(c′) such that λ(e1) = d. Such an e1 must exist because

T, c′ |= 〈d−1〉tt. We now wish to argue that e, e′ and e1 have the desired

properties.

Let S = {a1, a2, . . . , ak}. Note that a ∈ S. Since T, c |=
∧

x∈S〈x
−1〉tt, we

can fix e1, e2, . . . ek ∈ top(c) such that λ(ej) = aj for each j ∈ {1, 2, . . . , k}.

Clearly e ∈ {e1, . . . , ej}. We will first argue that ej co e1 for every j which

will lead to e co e1. So fix j ∈ {1, 2, . . . , k} and suppose that ej co e1 does

not hold. Since e1 ∈ top(c′) and c ⊆ c′ and ej ∈ top(c) we can rule out

e1 < ej . So it must be the case that ej < e1. But this implies that there

exists a finite chain ej = z0 lz1 l · · ·lzn = e1. Since λ(e1) = d 6∈ S we have

λ(ej) 6= d and n ≥ 1. Let i be the least integer in {0, 1, . . . , n− 1} such that

λ(zi) = aj and λ(zi+1) 6= aj. Let λ(zi+1) = â. Clearly aj D â. Now consider

the configuration ĉ = c ∪ ↓ zi+1. It is easy to check that c ⊆ ĉ ⊆ c′. Hence

T, ĉ |=
∧

x∈S〈x
−1〉tt which then implies T, ĉ |= 〈(aj)−1〉tt. But zi+1 ∈ top(ĉ)

and hence T, ĉ |= 〈(â)−1〉tt. This is a contradiction because two distinct

labels at the top of a configuration can not be in the dependence relation.

Thus ej co e1 and consequently e co e1.

Next we must show that e′ ≤ e1. Since T, c |= 〈b−1〉tt and T, c′ |=∼

〈b−1〉tt (recall that we are considering the case b 6= d) we know that e′ 6∈

top(c′). Hence there exists e′′ ∈ top(c′) such that e′ < e′′. If e′′ = e1, we

are done. Otherwise e′ < e′′ for some e′′ ∈ top(c′) with λ(e′′) = aj for some

aj ∈ S. We will now argue that this is impossible.

Suppose e′ < e′′ and λ(e′′) = aj ∈ S with e′′ ∈ top(c′). Then from

ej ∈ top(c) and b 6∈ S, we get aj I b. Consequently aj 6= b. Clearly there

exists a non-null path e′ = z0 l z1 l · · · l zn = e′′ . Let i be the largest

integer in {1, 2, . . . , n} such that zi = aj and zi−1 6= aj. Let λ(zi−1) = â and

ĉ = c ∪ ↓ zi−1. It is easy to check that c ⊆ ĉ ⊂ c′ and hence T, ĉ |= 〈(aj)−1〉tt.

But zj−1 ∈ top(ĉ) and hence T, ĉ |= 〈(â)−1〉tt. We now have a contradiction

because â 6= aj and â D aj.

To prove the right to left implication of Observation 17.2 assume that the

event e, e′ and e1 exist which fulfill the properties specified in the observation.

Let c′ = c ∪ ↓ e1. Then e1 ∈ top(c′) and hence T, c′ |= 〈d−1〉tt. Let S =

{λ(e′′) | e′′ ∈ top(c′) and e′′ 6= e1}. First we assert a ∈ S. This is because

e ∈ top(c) and e co e1. Hence e ∈ top(c′) as well because c′ = c ∪ ↓ e1. By

the definition of S we are assured that d 6∈ S. Hence a 6= d. Next suppose

22

b ∈ S. Then there exists e′′ ∈ top(c′) such that e′′ 6= e1 and λ(e′′) = b. But

then e′′ ∈ c ∪ ↓ e1 and since e′′ 6= e1 implies e′′ co e1, we must have e′′ ∈ c.

In fact e′′ ∈ top(c) because e′′ ∈ top(c′) and c ⊆ c′. But this implies e′′ = e′

which contradicts e′ ≤ e1. Thus b 6∈ S and consequently b 6= a.

Clearly, by the choice of S, we have

T, c′ |= 〈d−1〉tt ∧
∧

x∈S

〈x−1〉tt ∧
∧

y∈(Σ−S)−{d}

∼ 〈y−1〉tt.

It is also clear that T, c |= 〈b−1〉tt. So suppose c ⊆ c′′ ⊂ c′ and â ∈ S. Then

there exists e′′ ∈ top(c′) such that λ(e′′) = â. But then c′ = c ∪ ↓ e1 and

d 6∈ S at once leads to â ∈ top(c′′) as well. Hence T, c′′ |= 〈(â−1〉tt. We now

have T, c |= µd
ab.

Now we define the desired formula NRC as:

NRC =∼
∨

(a,b)∈I

〈b〉

(
∨

d∈Σ

(
µd

ab ∧
∧

d′≺d

∼ µd′

ba

))
.

To see that NRC has the required property assume first that T = (E,≤, λ)

is a trace and ĉ ∈ CT is a configuration that is not normal. Then by

Observation 17.1, there exist event e, e′ and e1 such that e ∈ top(ĉ), e′ is

enabled at ĉ and e1 ∈ ↑e
′−↑e. Further, if e2 ∈ ↑e−↑e

′ then λ(e1) ≺ λ(e2).

Let λ(e) = a, λ(e′) = b and λ(e1) = d. If e ≤ e′ then this would lead to

e ≤ e1 contradicting e co e1. Hence e co e′ as well. Consequently a 6= b

and a 6= d. Now consider the configuration c = ĉ ∪ {e′}. Clearly c fulfills

the requirements of Observation 17.2 and hence T, c |= µd
ab. Now suppose

T, c |= µd′

ba for some d′ ≺ d. Then by the definition of the formula µd′

ba we

are assured that b 6= d′. Further, we already have b 6= a. Now again by

Observation 17.2, there exists e2 such that e2 ∈ ↑e−↑e
′ with λ(e2) ≺ λ(e1).

But this contradicts the criteria justifying the choice of e, e′ and e1. Hence

T, ĉ |=∼ NRC.

Next suppose T, ĉ |=∼ NRC. Then there exists (a, b) ∈ I and d ∈ Σ

such that T, ĉ |= 〈b〉
(
µd

ab ∧
∧

d′≺d ∼ µd′

ba

)
. Clearly a 6= b and a 6= d. Hence

there exists an event e ∈ top(ĉ) and an event e′ which is enabled at ĉ such

that λ(e) = a and λ(e′) = b. Moreover with c = ĉ ∪ {e′}, we have T, c |=

µd
ab ∧

∧
d′≺d ∼ µd′

ba. Because T, c |= µd
ab there exists an event e1 such that

λ(e1) = d and e1 ∈ ↑e′ − ↑e. This follows from Observation 17.2. Now

suppose there exists e2 ∈ ↑e− ↑e
′ such that λ(e2) = d′ ≺ d. If d′ 6= b then,

23

by Observation 17.2, we have T, c′ |= µd′

ba; a contradiction. Hence it must be

the case that d′ = b so that µd′

ba =∼ tt. But this is again a contradiction,

because λ(e2) = d′ = b implies that e′ ≤ e2 or e2 ≤ e′ whereas we are

supposed to have e2 co e
′. Thus min(Σe′e) � d ≺ min(Σee′). This leads to

e′ lexT e, which then guarantees that ĉ is not a normal configuration. �

9 Decomposing formulas in FO(Σ, I)

In this section we show how to decompose a formula in FO(Σ, I) into con-

junctions of formulas that talk separately about the finite and perpetual

directed components of a trace. From Proposition 10 and Proposition 11

we know that every trace can be canonically decomposed into a finite part

and a bounded number perpetual directed parts. Further, using the formula

NRC constructed in the previous section, we can apply Lemmas 6 and 8 to

translate an FO(Σ, I) sentence ψ into an LTrL formula α such that ψ and α

define the same language of finite and perpetual directed traces. Thus at the

end of this section, we will be able to translate any FO(Σ, I) sentence into

conjunctions of LTrL assertions such that any trace T is a model of ψ iff the

finite and perpetual directed components of T satisfy the LTrL assertions

obtained from ψ. In the next section we will show how these LTrL formulas

can be put together to form a single LTrL formula.

The decomposition result we are after is an easy consequence of the

decomposition theorem of Feferman and Vaught [7]. For the sake of com-

pleteness we recall this theorem here. The reader familiar with this topic

can proceed directly to Lemma 19.

Let us fix some finite relational signature Sig = {R1, . . . , Rl}. Given

two structures A = 〈A,RA
1 , . . . , R

A
l 〉 and B = 〈B,RB1 , . . . , R

B
l 〉 of this signa-

ture we define their disjoint union as the structure A⊕ B of the signature

Sig∪{in1, in2}:

A⊕B = 〈A⊕B,RA1 ⊕RB1 , . . . , R
A
l ⊕RBl , in

A⊕B
1 , inA⊕B2 〉

here A⊕B and RAi ⊕R
B
i stand for disjoint sums of the appropriate sets and

inA⊕B1 (a) holds if a ∈ A. Similarly inA⊕B2 (b) holds if b ∈ B.

24

Theorem 18 (Composition thm. for disjoint sum)

Let Sig be a finite relational signature. Let ϕ be a sentence of FO(Sig∪{in1, in2}).

There exists a finite collection of pairs (ψ1, ψ
′
1), . . . , (ψk, ψ

′
k) of FO(Sig) sen-

tences, such that, for every two structures A, B of the signature Sig we have:

A⊕ B � ϕ iff there exists i ∈ {1, 2, . . . , k} with A � ψi and B � ψ′i.

Proof

The proof is a standard application of Ehrenfeucht-Fräıssé games. For a

description of the games see for example [4]. We denote the n-move game

on structures A and B by Gn(A,B). Let us denote by qd(θ) the quantifier

depth of the sentence θ. We define an n-theory of a structure C as the set

of sentences Thn(C) = {θ : qd(θ) ≤ n and C � θ}. We have the following

characterisation of n-theories in terms of Ehrenfeucht-Fräıssé games.

Observation 18.1 Two structures A, B have the same n-theories iff Du-

plicator has a winning strategy in the n-move Ehrenfeucht-Fräıssé game.

Every n-theory is equivalent to a single sentence, i.e., for every n-theory Γ

there exist a sentence θΓ such that for every structure A: Thn(A) = Γ iff

A � θΓ.

The proof of this observation relies on the fact that the signatures are

finite and relational.

The next observation is that the n-theory ofA⊕B is determined by the n-

theories of A and B. Indeed suppose that Thn(A) = Thn(A′) and Thn(B) =

Thn(B′). By Observation 18.1 it is enough to show that Duplicator has a

winning strategy in the n-move game Gn(A ⊕ B,A′ ⊕ B′). By assumption

Duplicator has winning strategies in the games Gn(A,A′) and Gn(B,B′).

The strategy in Gn(A⊕B,A′⊕B′) is to copy moves of Spoiler in this game

to Gn(A,A′) or Gn(B,B′) and consult the strategies there. For example if

Spoiler puts a pebble on some element of the A component of A ⊕ B then

we put Spoilers pebble on the same element in the game Gn(A,A′). The

winning strategy of Duplicator in Gn(A,A′) puts a pebble on some element

of A′. We copy this move by putting a pebble on the same element of the

A′ component of A′⊕B′. It should be clear that such a strategy is winning

for Duplicator.

After these preliminary remarks we are ready to prove the theorem. Let

ϕ be a FO(Sig∪{in1, in2}) sentence. Let n be the quantifier depth of ϕ.

25

Let (Γ1,Γ
′
1), . . . , (Γk,Γ

′
k) be all the pairs of n-theories such that:

if Thn(A) = Γi and Thn(B) = Γ′i then ϕ ∈ Thn(A⊕ B) (5)

By a simple induction on n one can show that there are finitely many n-

theories. Hence, the number of pairs as in (5) is finite. From Observa-

tion 18.1 we know that for every Γi there exists a formula ψi, such that, for

every structure A: Thn(A) = Γi iff A � ψi. Similarly for every Γ′i we can

find ψ′i. We claim that (ψ1, ψ
′
1), . . . (ψk, ψ

′
k) satisfies the statement of the

theorem.

For the right to left implication suppose A � ψi and B � ψ′i then by (5)

we have ϕ ∈ Thn(A ⊕ B). For the left to right implication suppose that

A ⊕ B � ϕ. Then ϕ ∈ Thn(A ⊕ B). The n-theory of A ⊕ B is determined

by the n-theories of A and B. Hence there exists i, s.t. Thn(A) = Γi and

Thn(B) = Γ′i. So A � ψi and B � ψ′i. �

Let us now come back to decomposing traces. First we show that we can

separate finite and infinite part.

Lemma 19 Let ϕ ∈ FO(Σ, I). There exists a finite collection of pairs

of FO(Σ, I) formulas, (ψ1, ψ
′
1), (ψ2, ψ

′
2), . . . , (ψk, ψ

′
k), such that, for every

T ∈ TRinf: T |=FO ϕ iff there is i ∈ {1, 2, . . . , k} with fin(T) |=FO ψi and

inf(T) |=FO ψ′i.

Proof

Let ϕ ∈ FO(Σ, I) be given. We claim that there exists a formula ϕ′, such

that, for every infinite trace T :

T |=FO ϕ iff fin(T)⊕ inf(T) � ϕ′ (6)

For this we show that in fin(T)⊕ inf(T) we can recover the ordering of T by

means of a first order formula. Recall that fin(T)⊕ inf(T) is a structure of a

signature {Ra}a∈Σ ∪{≤, in1, in2}. The carriers of T and fin(T)⊕ inf(T) are

the same. Also the interpretations of the relations {Ra}a∈Σ are the same.

The interpretation of ≤ relation in fin(T)⊕ inf(T) is the (disjoint) union of

≤fin and ≤inf where fin(T) = (Efin,≤fin, λfin) and inf(T) = (Einf ,≤inf , λinf).

26

Consider the formula:

θ(x, y) =
(
in1(x) ∧ in1(y) ∧ x ≤ y

)
∨
(
in2(x) ∧ in2(y) ∧ x ≤ y

)

∨
(
in1(x) ∧ in2(y) ∧ ∃z1∃z2. in1(z1)

∧ in2(z2) ∧D(z1, z2) ∧ x ≤ z1 ∧ z2 ≤ y
)

where D(z1, z2) is a formula stating that the labels of z1 and z2 are de-

pendent. It is not difficult to check that for all nodes x, y of T we have:

T � x ≤ y iff fin(T) ⊕ inf(T) � θ(x, y). Hence taking ϕ and replacing all

subformulas of the form x ≤ y by θ(x, y) we obtain a formula ϕ′ satisfying

the condition (6). The lemma now follows directly from Theorem 18. �

Next we further break up the assertions concerning inf(T) to mimic the

decomposition described in Proposition 11.

Lemma 20 Let ϕ ∈ FO(Σ, I) and sh = {Σi}
m
i=1 be a shape of (Σ, I) (cf.

Definition 12). Then there exists a finite array of formulas

(θ1
1, . . . , θ

1
m), (θ2

1, . . . , θ
2
m), . . . , (θn

1 , . . . , θ
n
m)

such that the following conditions are satisfied:

(i) θj
i ∈ FO(Σi, Ii) for every i ∈ {1, 2, . . . ,m} and every j ∈ {1, 2, . . . , n}.

(Observe that the formulas with different subscripts have disjoint al-

phabets. As might be expected, Ii = (Σi × Σi) ∩ I)

(ii) Suppose T ∈ TRinf, and inf(T) is of shape sh. Let {Ti}
m
i=1 be a decom-

position of inf(T) as in Proposition 11. We have that inf(T) |=FO ϕ

iff there exists j ∈ {1, 2, . . . , n}, s.t., Ti |=
FO θj

i for all i = 1, . . . ,m.

This lemma follows from Proposition 11 and another easy application of

Theorem 18.

10 Composing formulas in LTrL

Finally we are ready to prove Lemma 3. First, we will show the lemma for

finite and perpetual directed traces. Then we will show it for perpetual but

not necessarily directed traces. Finally we will show it for all traces.

27

Lemma 21 Let ϕ ∈ FO(Σ, I). Then there exists a formula α ∈ LTrL(Σ, I)

such that for every finite or perpetual directed T ∈ TR we have: T |=FO ϕ

iff T, ∅ |= α.

Proof

Let ϕ ∈ FO(Σ, I). By Lemma 6, there exists a trace consistent α̂ ∈

LTL(Σ) such that for every trace T it is the case that T |=FO ψ iff σ, ε |= α̂

for some σ ∈ lin(T). Next we set α = ||α̂|| where || · || is the map defined in

Section 5 with the understanding that the the formula NRC used by this

map is the one constructed in Section 8.

Now suppose T is a finite or perpetual directed trace and T |=FO ϕ.

Then σ̂, ε |= α̂ where σ̂ is the normal linearization of T . We know that σ̂

exists by Lemma 16. But by the property of NRC established in Lemma 17

and by Lemma 8 we know that T, ∅ |= α.

Now suppose that T is a finite or perpetual directed trace such that

T, ∅ |= α. Then again by Lemma 17 and Lemma 8, we must have σ̂, ε |= α̂

where σ̂ is the normal linearization of T . But then by Lemma 6, this implies

that T |=FO ϕ. �

We can now put together the assertions concerning the perpetual di-

rected parts of a trace into a single assertion about the infinite (perpetual)

part of the trace.

Lemma 22 Let ϕ ∈ FO(Σ, I). Then there exists a formula α ∈ LTrL(Σ, I)

such that for every perpetual trace T : T |=FO ϕ iff T, ∅ |= α.

Proof

Let us fix a FO(Σ, I) formula ϕ. First, for every shape sh = {Σi}
m
i=1 of

(Σ, I) we will construct a LTrL formula αsh with the property:

for every perpetual trace T of shape sh: T �
FO ϕ iff T, ∅ � αsh (7)

Let us fix a shape sh = {Σi}
m
i=1. By Lemma 20, for the shape sh we have

an array of FO(Σ, I) formulas:

(θ1
1, . . . , θ

1
m), (θ2

1, . . . , θ
2
m), . . . , (θn

1 , . . . , θ
n
m) (8)

28

such that whenever a perpetual trace T is of the shape sh and {Ti}
m
i=1 is

the decomposition of T as in Proposition 11 then:

inf(T) �
FO ϕ iff

there is j ∈ {1, 2, . . . n} such that

for all i ∈ {1, 2, . . . ,m}, Ti, ∅ � θj
i

Moreover each θj
i is over the alphabet Σi.

By Lemma 21, for every θj
i we can find a LTrL formula αj

i such that for

every perpetual directed trace T ′ over the alphabet Σi we have T ′ |=FO θj
i

iff T ′, ∅ � αj
i . Hence, for a decomposition {Ti = (Ei,≤i, λi)}

m
i=1 as above

and for every j = 1, . . . , n we have Ti �FO θj
i iff Ti, ∅ � αj

i . Now Σi×Σj ⊆ I

whenever i 6= j and i, j ∈ {1, 2, . . . ,m}. Hence, we are assured that c ⊆ E

is a configuration of T iff ci = c∩Ei is a configuration of Ti for each i. It is

easy to establish by structural induction that for every formula γi over Σi

(i.e. γi mentioning at most the letters in Σi) and for every configuration c

of T , we have T, c |= γi iff Ti, ci |= γi. Since each αj
i is over the alphabet Σi

we have: T, ∅ |= αj
1 ∧ α

j
2 · · · ∧ α

j
m iff Ti, ∅ |= αj

i for each i.

Let us denote αj
1 ∧ · · · ∧ α

j
n by βj and let

αsh = β1 ∨ · · · ∨ βn

It should be clear that αsh satisfies the property (7). Next we observe that

we can write a formula νsh in LTrL such that inf(T), ∅ |= νsh iff inf(T) is

of shape sh. Let sh = {Σi}
m
i=1 and

Σsh =

m⋃

i=1

Σi.

Then

νsh =


 ∧

a∈Σsh

3〈a〉tt


 ∧


 ∧

a6∈Σsh

2 ∼ 〈a〉tt


 .

Clearly (Σ, I) admits only finitely many shapes. Let SH be the set of

all shapes. Then consider the formula:

α =
∧

sh∈SH

(νsh ⊃ αsh).

It is easy to verify that α satisfies the property required by the lemma.

�

29

Finally, we show how an assertion about the finite part and an assertion

about the infinite part of a trace can be put together to form an assertion

about the whole trace.

Lemma 23 Let α0, α1 ∈ LTrL(Σ, I). Then there exists a formula α ∈

LTrL(Σ, I) such that for every T ∈ TRinf, T, ∅ |= α iff fin(T), ∅ |= α0 and

inf(T), ∅ |= α1.

Proof

First we define an LTrL formula Border that holds precisely in the config-

uration of T consisting of all the events in fin(T):

Border = (
∧

a∈Σ

< a−1 > tt ⊃ 2 ∼< a > tt) ∧

∧

b∈Σ

2(< b > tt ⊃< b > 3 < b > tt).

Next we define FIN to be the formula 3Border. We have that for every

trace T : T, c � FIN iff c ⊆ fin(T) and T, c � BORDER iff c = Efin;

where Efin is the set of events of fin(T).

Now, with each formula α ∈ LTrL we associate the formula fin(α)

inductively as follows.

fin(tt) = tt fin(∼ α) =∼ fin(α)

fin((α ∨ β)) =fin(α) ∨ fin(β)

fin(〈a〉α) =〈a〉(FIN ∧ fin(α))

fin(αUβ) =fin(α)U (FIN ∧ fin(β))

Also, with each formula β we associate the formula inf(β) given by:

inf(β) = 3(Border ∧ β)

Now, let T = (E,≤, λ) ∈ TRinf and fin(T) = (Efin,≤fin, λfin) and inf(T) =

(Einf ,≤inf , λinf). It follows from the definitions that c ⊆ Efin is a configura-

tion of fin(T) iff c is a configuration of T . Hence using the properties of the

translation map fin defined above we can establish by structural induction

on α that T, c |= fin(α) iff fin(T), c |= α for each configuration c of fin(T).

Next we note that c ⊆ Einf is a configuration of inf(T) iff Efin ∪ c is a

configuration of T . Again, by using the property of the map inf , we can

30

show by structural induction, that

T,Efin ∪ c |= inf(β) iff inf(T), c |= β

for every configuration c of inf(T). It now follows at once that for every

T ∈ TRinf, T, ∅ |= fin(α0) ∧ inf(α1) iff fin(T), ∅ |= α0 and inf(T), ∅ |= α1.

�

Clearly Lemmas 19, 22, and 23 together yield Lemma 3 and we are done

with the proof of Theorem 1.

It remains to show Corollary 5. Given a formula α ∈ LTrL(Σ, I) we

translate it into an equivalent first order formula ϕ and then use Lemma 6

to obtain a trace consistent formula α̂ satisfied by the linearisations of traces

satisfying α. For a proof in the other direction take a trace consistent formula

α̂ ∈ LTL(Σ). We first translate it into an equivalent formula ϕ̂ ∈ FO(Σ).

Next we can translate ϕ̂ into a first order formula ϕ ∈ FO(Σ, I) satisfied

in the traces whose linearisations are accepted by ϕ̂. The fact that this is

possible follows from [6]. It can also be derived using the compositional

theorems and the fact that our normal linearisations are definable in first

order logic for perpetual directed traces. Finally we can translate ϕ into an

equivalent formula of LTrL(Σ, I) using Theorem 1.

11 Concluding Remarks

Our aim here has been to exhibit a temporal logic over traces with a bounded

number of operators which is equivalent in expressive power to the first order

theory of traces. The logic, LTrL, that we have formulated and studied

here is a smooth generalization of LTL in terms of both its syntax and its

semantics.

As the reader may have noticed, past formulas play a crucial role in the

proof of expressive completeness of LTrL. Although there are only finitely

many past formulas in the logic, at present we do not know if their use can

be avoided without loss of expressive power as it is the case with LTL.

Apart from its expressive completeness, LTL admits a PSPACE decision

procedure. As a consequence, LTL can be used as a specification logic and

the model checking problem can be solved in an automated fashion using

tools such as SPIN [12].

31

Unfortunately, it looks unlikely at present that LTrL can be used as a

specification logic. Recently, the second author has shown that the satis-

fiability problem for LTrL is non-elementary hard [29]. It turns out that

exploiting the fact that a model can consist of two independent linear or-

ders, one can describe in LTrL very large counters and compare their values.

This in turn allows to code long computations of Turing machines.

As a result, the model checking problem for LTrL is also going to be non-

elementary hard. For the record, it might be worth while to give a precise

formulation of the LTrL model checking problem.

To start with, we will formulate a slightly modified version of LTrL in

terms of distributed alphabets. We will also indicate how atomic proposi-

tions can be handled in this version of our logic. However, the lower bound

on the complexity of the model checking problem will hold even in the ab-

sence of atomic propositions.

Fix a finite set of agents P = {1, 2, . . . k} with i, j ranging over P. A

distributed alphabet over P is a family Σ̃ = {Σi}i∈P where each Σi is finite

non-empty alphabet of actions. We set Σ =
⋃

i∈P Σi and call it the global

alphabet associated with Σ̃. Furthermore we define loc : Σ −→ 2P via:

loc eΣ
(a) = {i | a ∈ Σi}.

This induces the independence relation IeΣ ⊆ Σ× Σ given by:

a IeΣ b iff loc eΣ(a) ∩ loc eΣ(b) = ∅

Thus each distributed alphabet Σ̃ induces in a canonical fashion the trace

alphabet (Σ, IeΣ).

Next we fix a family {APi}i∈P where APi is a set of atomic propositions

for each i and APi ∩ APj = ∅ for i 6= j. We set AP = ∪i∈PAPi and let p

range over AP . We now define the corresponding version of LTrL to be:

LTrL(Σ̃) ::= p |∼ α | α ∨ β | 〈a〉α | 〈a−1〉α | α U β

A model for this logic is a pair M = (T, V) with T = (E,≤, λ) being a

trace over (Σ, IeΣ
) and V : CT −→ 2AP being a valuation which is required

to respect IeΣ
in the following sense:

If c
a
−→T c′ and i 6∈ loc (a) then V (c) ∩APi = V (c′) ∩APi. (9)

32

The semantics for this version of LTrL is defined in the obvious way.

The restriction imposed on the valuation functions associated with models

will ensure that the the truth value of an atomic proposition in APi at a

configuration c will depend only on the i-events in c. More precisely, let

T = (E,≤, λ) be a trace over (Σ, IeΣ
). Then Ei, the set of i-events of T , is

defined to be :

Ei = {e | e ∈ E and λ(e) ∈ Σi}.

Now let M = (T, V) be a model and c, c′ ∈ CT such that c∩Ei = c′∩Ei.

Then for each p in APi we are assured by our definition of a model that

M, c |= p iff M, c′ |= p.

One may wish to consider the alternative where we have a (global) set of

atomic propositions P and define a model to be a pair M = (T, V) with V

being a valuation function which assigns to each configuration of T a subset

of P. Again the semantics of the corresponding version of LTrL would be

defined in the obvious way. In this case however, for all non-trivial trace

alphabets (in which the independence relation is non-empty) one can easily

show that the satisfiability problem is undecidable [15]. This is the reason

why we require our atomic propositions and valuation functions to have a

“local flavour”. From a pragmatic standpoint this is acceptable since atomic

assertions concerning distributed programs are invariably of a local kind.

We are now ready to formulate the model checking problem. As the first

step we define a distributed transition system over Σ̃ = {Σi}i∈P to be a

family T̃ S = {TSi}i∈P where for each i, we have TSi = (Qi,−→i, q
i
in) with

Qi a set of i-local states, −→i⊆ Qi × Σi ×Qi the i-local transition relation

and qi
in ∈ Qin the i-local initial state.

T̃ S induces the global transition system TS = (Q,−→, qin) where Q =

Q1 × Q2 × · · · × Qk (P = {1, 2, . . . , k}) and qin = (q1
in, . . . , q

k
in) and −→⊆

Q× Σ×Q (Σ =
⋃

i∈P Σi) is given by:

q
a
−→ q′ iff q(i)

a
−→i q

′(i) for each i ∈ loc (a) and q(i) = q′(i) for

each i 6∈ loc (a)

We will say that T̃ S is finite if TS is a finite transition system.

A distributed program over Σ̃ is a family P̃ r = {(TSi, Vi)}i∈P where

{TSi}i∈P is a family of finite transition systems as above and Vi : Qi −→

2APi .

33

Now let M = (T, V) be a model. Then M is in the (linear time trace)

behaviour of P̃ r iff there exists a map ρ : CT −→ Q such that the following

conditions are satisfied:

• ρ(∅) = qin.

• If c
a
−→T c′ then ρ(c)

a
−→ ρ(c′) in T̃ S where T̃ S = {TSi}i∈P .

• If ρ(c) = q then for each i, V (c) ∩APi = Vi(q(i)).

Let Bh(P̃ r) denote the set of behaviours of P̃ r defined as above. It should

be clear that every (T, V) ∈ Bh(P̃ r) satisfies condition (9) of being a model.

We will say that P̃ r meets the specification α – denoted P̃ r |= α – iff for all

M ∈ Bh(P̃ r) we have M |= α. The model checking problem is to determine,

given P̃ r and α, whether or not P̃ r |= α.

It is not difficult to see that the satisfiability problem is a special case of

the model checking problem. For our fixed distributed alphabet Σ̃ = {Σi}i∈P

we can define a program P̃ r whose behaviour is the set of all possible traces

over Σ̃. Then the question whether a formula α of LTrL over Σ̃ is satisfiable

reduces to the problem of whether P̃ r |=∼ α. Hence the complexity of the

model checking problem is also not elementary. The problem is decidable

because it can be formulated in monadic second order logic of traces.

At present it is not clear whether one can identify a nice variant of LTrL

which while being expressively complete will also admit an elementary time

decision procedure.

References

[1] R. Alur, D. Peled, and W. Penczek. Model-checking of causality properties.

In LICS ’95, pages 90–100, 1995.

[2] B. Courcelle. Private communication.

[3] V. Diekert and G. Rozenberg. The book of traces. World Scientific, Singapore,

1995.

[4] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.

[5] W. Ebinger. Charakterisierung von Sprachklassen unendlicher Spuren durch

Logiken. PhD thesis, Institut für Informatik, Universität Stuttgart, 1994.

[6] W. Ebinger and A. Muscholl. Logical definability on infinite traces. In ICALP

’93, volume 700, pages 335–346, 1993.

34

[7] S. Feferman and R. Vaught. The first order properties of products of algebraic

systems. Fundamenta Mathematicae, 47:57–103, 1959.

[8] A. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of

fairness. In 7th Ann. ACM Symp. on Principles of Programming Languages,

pages 163–173, 1980.

[9] D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic : Mathematical

Foundations and Computational Aspects, volume 1. Clarendon Press, Oxford,

G.B., 1994.

[10] P. Gastin and A. Petit. Asynchronous cellurar automata for infinite traces. In

ICALP ’92, volume 623 of LNCS, pages 583–594, 1992.

[11] P. Godefroid. Partial-order methods for the verification of concurrent systems,

volume 1032 of LNCS. Springer-Verlag, 1996.

[12] G. J. Holzmann. Design and Validation of Computer Protocols. Software

Series. Prentice Hall, 1992.

[13] H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University

of California, 1968.

[14] S. Katz and D. Peled Interleaving set temporal logic. Theoretical Computer

Science 75, pages 21-43, 1987.

[15] K.Lodaya, R. Parikh, R.Ramanujam, and P.S.Thiagarajan. A logical study of

distributed transition systems. Information and Computation, 119(1):91–118,

1995.

[16] A. Mazurkiewicz. Concurrent program schemes and their interpretations. Re-

port DAIMI-PB-78, Computer Science Department, Ȧrhus University, Ȧrhus,

Denmark, 1978.

[17] M. Mukund and P.S. Thiagarajan. Linear time temporal logics over traces.

In MFCS’96, volume 1113 of LNCS, pages 62–92, 1996.

[18] P. Niebert. A ν-calculus with local views for sequential agents. In MFCS ’95,

volume 969 of LNCS, pages 563–573, 1995.

[19] P. Niebert. A temporal logic for the specification and verification of distributed

behaviour. Ph.D. thesis, University of Hildesheim, Hildesheim, Germany, 1997.

[20] D. Peled. Partial order reduction : model checking using representatives. In

MFCS’9, volume 1113 of LNCS, pages 93–112, 1996.

[21] D. Peled and A. Pnueli. Proving partial order properties. Theoretical Com-

puter Science 126, pages 143-182, 1994.

[22] D. Peled, T. Wilke and P. Wolper. An Algorithmic Approach for Checking

Closure Properties of ω-Regular Languages. In CONCUR’96, volume 1119 of

LNCS, Springer-Verlag, (1996) 596-610.

[23] A. Pnueli. The temporal logic of programs. In 18th Symposium on Foundations

of Computer Science, pages 46–57, 1977.

35

[24] R. Ramanujam. Locally linear time temporal logic. In LICS ’96, pages 118–

128, 1996.

[25] P. S. Thiagarajan. A trace based extension of linear time temporal logic. In

LICS ’94, pages 438–447, 1994.

[26] P. S. Thiagarajan. A trace consistent subset of PTL. In CONCUR ’95, volume

962 of LNCS, Springer-Verlag, (1995) 438-452.

[27] W. Thomas. Automata on infinite objects. In J. van Leeuven, editor, Handbook

of Theoretical Computer Science Vol.B, pages 133–192. Elsevier, 1990.

[28] W. Thomas. On logical definability of trace languages. In V. Diekert, editor,

Workshop of the ESPRIT Basic Research Action No: 3166, volume Report

TUM-19002, Technical University of Munich,, pages 172–182, 1990.

[29] I. Walukiewicz. Difficult configurations – on the complexity of LTrL. In ICALP

’98, volume 1443 of LNCS, 1998.

[30] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky and

D. Gabby, editors, Handbook of logic in computer science, Vol.3, Oxford Uni-

versity Press, 1994.

[31] A. Valmari. A stubborn attack on state explosion. Formal Methods in System

Design, 1:297–322, 1992.

[32] L. Zuck. Past temporal logic. PhD thesis, Weizmann Institute of Science,

Israel, 1986.

36

