
Institute of Informatics, Warsaw University

A Complete Deductive System for
the µ-Calculus

Igor Walukiewicz∗

Doctoral Thesis

Written under the supervision of Professor Jerzy Tiuryn

Warsaw June, 1993

(*) This work was partially supported by Polish KBN grant No. 2 1192 91 01

To Parents

Contents

1 Overview 1
1.1 The µ-calculus . 3
1.2 Other Logics of Programs . 7

1.2.1 Propositional Dynamic Logic 7
1.2.2 Total correctness . 10
1.2.3 Temporal Logics . 11

1.3 Automata on infinite objects 13
1.4 Games . 16
1.5 Completeness problem . 17
1.6 Proposed system . 22
1.7 Synopsis . 24

2 Characterization 27
2.1 Tableaux . 28
2.2 Games . 32
2.3 Characterization . 33
2.4 Complexity . 38

3 Axiomatization 41
3.1 The system . 41
3.2 Discussion . 47

4 Proof of Completeness 51
4.1 Automaton . 55
4.2 Constructions on the graph 66
4.3 Coding states into formulas 69
4.4 Completeness proof . 79

5 Conclusions 87

5

Chapter 1

Overview

It is now common to view computer programs as state transformers, that
is actions that can change one state of computer hardware to another. In
contrast with classical logics the notion of change is intrinsic in modal logics.
Within modal logic, one can speak about multiple possible worlds and rela-
tions between them, as, for example, the changes of an environment during
time. This property makes the modal logic a valuable tool for description of
program behavior that is itself observable through the changes of computer
states.

Embedding programs into the syntax of a logic gives us the ability to
describe or verify programs inside the logic. The gain is that we do not have
to deal with different theories each time we consider a new program. There
is of course the price to pay for this, usual problems for predicate modal
logics of programs are highly undecidable. For example validity problem
for the first order algorithmic or dynamic logics [46, 41] is Π1

1-complete.
On the other hand propositional versions of modal logics do not have this
disadvantages even though they were found expressive enough to analyze
and check real-life applications.

There are basically two approaches to program verification using proposi-
tional modal logics. One, “proof theoretic”, advocated by Manna and Pnueli
in [28] is to describe a program by a formula of temporal or modal logic ψ.
Then showing that the program has a property α is reduced to showing that
α follows from ψ, that is to proving that formula ψ implies α.

The other approach, which we call following [4] “model theoretic”, gave
rise to the discipline called model checking. Here first step in verifying a
program is to design a structure reflecting its behavior. The abstraction

1

2 CHAPTER 1. OVERVIEW

we have to make is to describe the states of the program using propositional
variables. Then we describe the possible connections between different states
reflecting possible changes of a state of the system. When we complete this
task we obtain what is known in mathematical logic as a Kripke structure,
which describes the system in question on the propositional level. Then
verifying that program satisfies property α reduces to checking whether α is
satisfied in the initial state of this structure.

Both approaches require us to describe the system on the propositional
level which is the price to pay for using propositional logic. Fortunately, it
occurs that frequently such abstractions of the system are sufficient. This
is because while analyzing complex concurrent systems the biggest concern
is in mutual interaction between modules which can be considered as finite
automata.

Of course modal logics are not the only choice for implementing any of
above approaches, one can use classical first or second-order logic to talk
about such structures. The problem is that first-order logic is seldom suf-
ficient because it is not expressive enough and second-order logic is usually
much too strong with the consequence of being difficult for model-checking
or axiomatization.

First-order logic on the infinite sequence is as expressive as very weak
temporal logic T (O,U). This means that a property such as “something
holds in all even moments of time” is not expressive in the first-order theory
of the infinite sequence [21, 15].

Second-order logic on the other hand stumbles on decidability and com-
pleteness. There are two bold exceptions to this rule which are monadic
second-order theory of one successor S1S and monadic second order theory
of two successors S2S. Both logics are very expressive and yet decidable.
The first sets target, as far as expressiveness is concerned, for linear tempo-
ral logic and the second for modal logics. We say that there are two logics
but of course there are also second order theories of 3, 4, . . . successors. All
of them and even second order theory of ω successors are easily reducible
to S2S. On the other hand the difference between S1S and S2S is quite
substantial, hence we will distinguish only these two logics forgetting about
other theories of successors.

The problem with S1S and S2S is that, although decidable, the complex-
ity of decision procedures is very high. Meyer [31] showed that decidability
problem for S1S is not elementary. Siefkes in 1970 presented a finitary
axiomatization of S1S [48]. No finitary axiomatization of S2S is known.

The properties of logic we should consider, when we have program verifi-

1.1. THE µ-CALCULUS 3

cation in mind, are expressiveness, completeness and decidability. The more
expressive is the logic, the more properties of the systems we can describe.
A complete axiom system allows us to reason about the properties. Decid-
ability and particularly computational complexity of the decision procedure
is important for machine aided verification. Finally, there is a question of
a model checking, i.e., establishing the truth of a formula in a given state
of a (usually very large) structure, which describes a behavior of a complex
program.

In this context the µ-calculus is very interesting logic. It is as expressive
as S2S but much easier to decide and model check. As we will show here,
there is also finitary complete axiomatization of it.

In this chapter we present the µ-calculus in the perspective of other
propositional modal logics and monadic second order logics. The issues we
are interested in are expressiveness, decidability and existence of complete
axiomatizations. Next we introduce some notions from automata theory
and Borel games which we will use in this work. Then we describe our
proof method in the perspective of other proof methods used for proving
completeness for different modal logics. We conclude this chapter with the
description of the proposed system and the brief synopsis of the rest of the
thesis.

1.1 The µ-calculus

The propositional µ-calculus results from adding fixpoint operator µ to the
ordinary modal logic with many modalities. This construct was added to
numerous logics see e.g. [47, 20, 40, 43], the logic as we will consider here
was presented by Kozen in [24].

For some structureM the meaning of a formula α(X) of ordinary modal
logic is some set of states of M which depends on the meaning of X . In
other words we can consider α(X) as a function from a set of states to a set
of states. If X occurs only positively in α(X), i.e., each occurrence of X is
under an even number of negations, then the function designated by α(X)
is monotone. This means that there is a least fixpoint of this function in the
complete lattice of the subsets of the states of the structure. The meaning of
the formula µX.α(X) will be exactly this least fixpoint of monotone operator
α(X).

The syntax of the µ-calculus is based on the three sets:

• Prop = {p, q, ..}, a set of propositional letters,

4 CHAPTER 1. OVERVIEW

• Var = {X, Y, ..}, a set of propositional variables, and

• Act = {a, b, ..}, a set of actions.

Formulas of the µ-calculus over this three sets can be defined by the
following grammar:

α := X | p | ¬α | α ∨ β | α ∧ β |
〈a〉α | [a]α |
µX.α(X) | νX.α(X)

In the last two constructs we require that the variable X occurs only un-
der even number of negations in the formula α(X). We will sometimes use
σX.α(X) to denote µX.α(X) or νX.α(X), the symbol ff will be an abbre-
viation for the formula p ∧ ¬p for some propositional letter p.

Formulas are interpreted in Kripke models of the formM =< S,R, ρ >,
where:

• S is a nonempty set of states,

• R is a function assigning to each action in Act a binary relation on S,

• ρ is a function assigning to each propositional letter in Prop a set of
states.

Intuitively R describes the possible changes of states under different actions
and ρ assigns to each propositional letter the set of states where it is true.

The meaning of a formula α in a model M under an assignment Val :
Var → P(S) is the set of states where α is true. It will be denoted by
‖ α ‖MV al and can be defined inductively by the following clauses (we will
omit superscript M when it causes no ambiguity):

‖ X ‖V al = V al(X)
‖ p ‖V al = ρ(p)
‖ ¬α ‖V al = S \ ‖ α ‖V al

‖ α ∧ β ‖V al = ‖ α ‖V al ∩ ‖ β ‖V al
‖ 〈a〉α ‖V al = {s : ∃s′.(s, s′) ∈ R(a) ∧ s′ ∈ ‖ α ‖V al}
‖ [a]α ‖V al = {s : ∀s′.(s, s′) ∈ R(a)⇒ s′ ∈ ‖ α ‖V al}

‖ µX.α(X) ‖V al =
⋂
{S ′ ⊆ S : ‖ α ‖V al[S′/X] ⊆ S ′}

‖ νX.α(X) ‖V al =
⋃
{S ′ ⊆ S : S ′ ⊆ ‖ α ‖V al[S′/X]}

1.1. THE µ-CALCULUS 5

The requirement that X occurs only under even number of negations in
σX.α(X) guarantees that α(X) is interpreted as a monotone operator. In
consequence the meaning of µX.α(X) is the least fixpoint of this operator
and νX.α(X) denotes its greatest fixpoint. We say that a variable X is
bounded by µ in a formula µX.α(X). By FL(ψ) we denote the set of all
free variables of ψ.

Summarizing modal µ-calculus is just a modal logic K with addition of
the fixpoint operators. It is easy to observe that least and greatest fixpoints
are duals of each other. This means that apart from the usual dualities of
propositional classical logic given by DeMorgan laws we have also equiva-
lences:

[a]α ≡ ¬〈a〉¬α νX.α(X) ≡ ¬µX.¬α(¬X)

The dualities hint the possible normal form of the µ-calculus formulas which
will be of some use in later sections.

Definition 1.1.1 A formula α is called positive iff the only negations which
occur in α stand before propositional constants and free variables. A variable
X in µX.α(X) is guarded iff every occurrence of X in α(X) is in the scope
of some modality operator 〈〉 or []. We say that a formula is guarded iff every
bound variable in the formula is guarded.

Proposition 1.1.2 Every formula is equivalent to a positive guarded for-
mula.

Proof
Let ϕ be any formula, we first show how to obtain an equivalent guarded
formula.

Suppose ϕ = µX.α(X) and α(X) is a guarded formula. Suppose X is
unguarded in some subformula of α(X) of the form σY.β(Y,X) and Y is
guarded in σY.β(Y,X). Then one can use the equivalence σY.β(Y,X) ≡
β(σY.β(Y,X),X) to obtain a formula with all unguarded occurrences of X
outside the fixpoint operator. This way we obtain a formula equivalent to
α(X) but with all unguarded occurrences of X not in the scope of a fixpoint
operator.

Now using the laws of classical propositional logic we can transform this
formula to conjunctive normal form (considering formulas of the form 〈a〉γ
and [a]γ) as propositional constants. This way we obtain a formula

(X ∨ α1(X))∧ . . .∧ (X ∨ αi(X))∧ β(X) (1.1)

6 CHAPTER 1. OVERVIEW

where all occurrences of X in α1(X), . . . , αi(X), β(X) are guarded. Variable
X occurs only positively in (1.1) because it did so in our original formula.
Formula (1.1) is equivalent to

(X ∨ (α1(X) ∨ . . .∨ αi(X)))∧ β(X)

We will show that µX.(X ∨ ᾱ(X))∧β(X) is equivalent to µX.ᾱ(X)∧β(X).
It is obvious that

(µX.ᾱ(X)∧ β(X)) ⇒ (µX.(X ∨ ᾱ(X))∧ β(X))

Let γ(X) stand for ᾱ(X)∧ β(X). To prove another implication it is enough
to observe that µX.γ(X) is a prefixpoint of µX.(X ∨ ᾱ(X)) ∨ β(X) as the
following calculation shows:

((µX.γ(X))∨ ᾱ(µX.γ(X)))∧ β(µX.γ(X)) ⇒
((ᾱ(µX.γ(X))∧ β(µX.γ(X)))∨ ᾱ(µX.γ(X)))∧ β(µX.γ(X)) ⇒

ᾱ(µX.γ(X)∧ β(µX.γ(X))

If ϕ is a guarded formula then we use dualities of the µ-calculus to
produce equivalent positive formula. It is easy to see that it will be still
guarded formula.

This proposition shows among others that we could make negation a de-
fined connective. We have decided not to do this although we will frequently
restrict to positive guarded formulas.

Despite its appealing simplicity, the µ-calculus is a very expressive logic.
It turned out that it is as expressive as S2S [37, 38, 11].

In this context the surprising fact is that checking validity of µ-calculus
formulas was shown to be decidable in EXPTIME [7]. Another property
connected with decidability is the small model property. This property states
that if a formula ϕ is satisfiable then there exists a model for ϕ, of size
bounded by some function of size of ϕ. The small model property is not
a necessary condition for decidability as shows an example of PDL∆ with
converse operation [52], but makes the logic more manageable.

The equivalence of the µ-calculus and S2S shows some kind of expressive
completeness of the logic. The other result which confirms its quality is that
it is closely related to bisimulation equivalences. This makes it a natural
logic for process calculi such as CCS [19, 51].

The properties of the µ-calculus made it a valuable tool in verifying
real life systems. In the area of model checking µ-calculus is extensively

1.2. OTHER LOGICS OF PROGRAMS 7

used as it presents a good balance between expressibility and complexity of
checking satisfiability of a formula [50, 59]. As we will show in this work,
the µ-calculus has also quite an elegant complete axiom system.

1.2 Other Logics of Programs

In this section we will relate µ-calculus to other logics of programs. This
will allow us to hint where the problems of finding complete axiomatization
for the µ-calculus begin.

1.2.1 Propositional Dynamic Logic

Historically the first propositional modal logic constructed with computer
science in mind was propositional dynamic logics (PDL) [12, 13]. This logic
extends simple propositional modal logic by allowing regular expressions
with tests to appear in the place of modalities.

In PDL a special syntactical category of programs is distinguished. Pro-
grams are interpreted as binary input-output relations on states. Formulas,
as usual, are interpreted as sets of states.

Formulas and programs are defined by mutual recursion

P := a | P1 ∪ P2 | P1;P2 | P ∗ | F?
F := p | ¬F | F1 ∧ F2 |〈P 〉F

Here we used a and p to stand for an atomic action and a propositional
letter respectively. Given a Kripke structure M =< S,R, ρ > we define the
meaning of a program and a formula simultaneously:

‖ a ‖M = R(a)
‖ P1 ∪ P2 ‖M = ‖ P1 ‖M ∪ ‖ P2 ‖M
‖ P1;P2 ‖M = ‖ P1 ‖M ◦ ‖ P2 ‖M
‖ P ∗ ‖M = ‖ P ‖∗M
‖ F? ‖M = {(s, s) : s ∈ ‖ F ‖M}
‖ p ‖M = ρ(p)
‖ ¬F ‖M = S \ ‖ F ‖M

‖ F1 ∧ F2 ‖M = ‖ F1 ‖M ∩ ‖ F2 ‖M
‖ 〈P 〉F ‖M = {s : ∃t.(s, t) ∈ ‖ P ‖M ∧ t ∈ ‖ F ‖M}

8 CHAPTER 1. OVERVIEW

Symbols ◦ and ∗ used above denote composition and transitive closure of a
relation respectively.

A very pleasant property of PDL, not shared by many other modal logics
we will consider, is so called collapsed model property. The property states
that if a formula ϕ is satisfied in a state s of a structure M then it is
satisfied in a structure obtained by identifying states which satisfy the same
subformulas of ϕ. More formally let us define

Definition 1.2.1 The Fisher-Ladner closure of a PDL formula ϕ, denoted
CL(ϕ), is a smallest set of formulas such that ϕ ∈ CL(ϕ) and for every action
a, programs P1, P2 and formulas α, β:

• if ¬α ∈ CL(ϕ) then α ∈ CL(ϕ),

• if α ∧ β ∈ CL(ϕ) then α ∈ CL(ϕ) and β ∈ CL(ϕ),

• if 〈a〉α ∈ CL(ϕ) then α ∈ CL(ϕ),

• if 〈P1;P2〉α ∈ CL(ϕ) then 〈P1〉〈P2〉α ∈ CL(ϕ),

• if 〈P1 ∪ P2〉α ∈ CL(ϕ) then 〈P1〉α ∈ CL(ϕ) and 〈P2〉α ∈ CL(ϕ),

• if 〈P ∗〉α ∈ CL(ϕ) then 〈P 〉〈P ∗〉α ∈ CL(ϕ) and α ∈ CL(ϕ),

• if 〈β?〉α ∈ CL(ϕ) then β ∈ CL(ϕ) and α ∈ CL(ϕ),

Definition 1.2.2 For any formula ϕ and any structure M = 〈S,R, ρ〉, we
define a quotient structure M′ = 〈S ′, R′, ρ′〉 as follows:

• M′ = {[s] : s ∈ M} where

[s] = {t ∈ S : for all α ∈ CL(ϕ),M, s |= α iffM, t |= α}

• ([s], [t]) ∈ R′(a) iff there are s′ ∈ [s] and t′ ∈ [t] such that (s′, t′) ∈ R(a),

• ρ′(p) = {[s] : s ∈ ρ(p)}

Fisher and Ladner [13] showed the following theorem:

Theorem 1.2.3 (Collapsed model property) Let ϕ, M and M′ be as
above. Then for every α ∈ CL(ϕ) and every s ∈ S we have M, s |= α iff
M′, [s] |= α.

1.2. OTHER LOGICS OF PROGRAMS 9

The collapsed structure is relatively small. The size of CL(ϕ) is linear in
the size of ϕ. Hence the size of the structure is bounded by single exponential
function in the size of ϕ. The important consequence of collapsed model
property is that it gives us the ability to perform “surgery” on models, i.e.,
to cut or merge two or more structures leaving some properties unchanged.

On the other hand Theorem 1.2.3 points out an essential weakness of
PDL. This logic can express only local properties of the state or, to put
it differently, input-output relation of programs. In consequence some im-
portant global properties of the structure (like well foundedness) are not
expressible in PDL. In other words, total correctness is not expressible in
PDL.

There are finitary complete axiomatizations of PDL. Sometimes the com-
pleteness we have in mind is called weak completeness because it is only
concerned with proving validity of a formula.

Strong completeness refers to the axiomatization of semantic consequence
relation, Γ |= ϕ for any set of formulas Γ and formula ϕ. We say that an
axiomatization is weakly complete iff it is possible to prove `ϕ for any valid
formula ϕ. In classical first order logic there is no difference between weak
and strong completeness because the logic is compact.

PDL is not compact, i.e., there is a set of formulas Γ and a formula ϕ
s.t. Γ |= ϕ but for any finite subset Σ ⊆ Γ, we have Σ 6|= ϕ. This implies
that there cannot be a finitary strongly complete axiomatization of PDL
although there are infinitary ones [18, 32]. In what follows by completeness
we always understand weak completeness.

Some simple program constructs, including nondeterministic choice, are
easily definable in PDL:

• if γ then P1 else P2 fi as (γ?;P1) ∪ (¬γ?;P2)

• while γ do P od as (γ?;P)∗;¬γ?

• either P1 or P2 ro as P1 ∪ P2

Decidability of PDL is relatively easy in the sense of complexity. It is
EXPTIME complete [12, 13, 42], hence at the present state of knowledge
similar to the decidability of the classical propositional logic. It is worth
to recall here, that the decidability of the µ-calculus is also complete in
EXPTIME even thought it is much more expressive logic.

The fact that decidability of both logics is equally difficult is even more
surprising in the light of the fact that there is a simple syntactic translation

10 CHAPTER 1. OVERVIEW

of PDL into the µ-calculus. Constructs not present in the µ-calculus can be
translated using the following clauses:

• [[〈P1;P2〉α]]◦ = [[〈P1〉〈P2〉α]]◦,

• [[〈P1 ∪ P2〉α]]◦ = [[〈P1〉α]]◦ ∨ [[〈P2〉α]]◦,

• [[〈P ∗〉α]]◦ = µX.([[α]]◦ ∨ [[〈P 〉X]]◦) where X is a fresh variable,

• [[〈γ?〉α]]◦ = [[γ]]◦ ∧ [[α]]◦,

Notice that a translated formula can be exponentially larger then the
original one (but not if we present a formula as a DAG). The translation
becomes linear if we use multiple fixpoint µ-calculus as described in [58].

1.2.2 Total correctness

Because total correctness is an important property of program behavior there
were many suggestions how to introduce it to modal logics of programs. We
will present here the logic called PDL∆ considered by Streett [52]. The
other approaches worth mentioning are Pratt’s continuous µ-calculus [43],
propositional algorithmic logic (PAL) [32] and process logic (PL) [17].

PDL∆ is an extension of PDL with a new operator ∆. For any program
P the intended meaning of ∆P is that infinite repetition of P is possible,
i.e.,

M, s |= ∆P iff ∃s0, s1, . . . s.t. s0 = s and ∀i ≥ 0, (si, si+1) ∈ ‖ P ‖M

With this operator the statement that all executions of program P ∗ ter-
minate in a state satisfying α can be written as a formula ¬∆P ∧ [P ∗]α.
Formula [P ∗]α alone states only partial correctness, i.e. that every terminat-
ing execution of P ∗ ends in a state satisfying α. Total correctness clauses
for program constructs other than iteration are straightforward.

Finite model property and decidability of PDL∆ follow from the fact
that PDL∆ can be coded into the µ-calculus by adding the following clause
to the translation of PDL:

[[∆P]]◦ = νX.[[〈P 〉X]]◦

Similarly PAL and PL have simple syntactic translations into the µ-calculus.

1.2. OTHER LOGICS OF PROGRAMS 11

An interesting fact about PDL∆ is that although it has the small model
property, it does not have the collapsed model property as the following
example shows.

Let us define the structures Mn = 〈{0, . . . , n}, Rn, ρn〉, where Rn(a) =
{(i, i+ 1) : i = 0, . . . , i− 1} and ρn is arbitrary. Let us consider the formula
¬∆a which certainly is true in the state 0 of every one of this structures.

Suppose now that we have somehow defined a Fisher-Ladner closure of
a PDL∆ formula to be a finite set of formulas. For any n the size of Mn

after collapsing cannot be greater then some fixed number which depends
only on the size of the closure and not on n. Hence for sufficiently large n
there will be a loop in a collapsed structure obtained fromMn. This implies
that ¬∆a will not be true in the equivalence class containing state 0.

This example shows that lack of the collapsed model property is not spe-
cific to PDL∆ but rather connected to the ability to express total correctness
in the logic.

This increased expressibility seems to introduce new level of difficulty
in finding complete finitary axiom systems. Completeness of PDL can be
shown in numerous different ways [14, 39, 26, 23, 27]. All of them seem to
use the collapsed model property in more or less direct way. Since for PDL∆,
and hence also for the µ-calculus, the collapsed model property is not true,
there is no hope to extend those methods to show the completeness of the
µ-calculus.

An infinitary axiomatization of PAL was given in [32]. No complete
finitary axiomatization of PDL∆, PAL or PL is known. We believe that it
should be possible to obtain axiomatizations of these logics using methods
presented in this thesis.

Even though PDL∆ is strictly more expressive then PDL, it is still less
expressive then the µ-calculus. There is a very elegant example due to
Damian Niwiński. He proved that the formula νX.[a]X ∧ [b]X is not ex-
pressible in PDL∆ [36]. This example shows that there is something more
in the µ-calculus then just termination arguments.

1.2.3 Temporal Logics

There are numerous systems of propositional temporal logics as well as a big
variety of predicate temporal logics. The difference between modal and tem-
poral logic is that formulas of temporal logics express properties of runs, i.e.
sequences of states. This is influenced by the different idea which lies behind
temporal logics. Modal logics of programs mention programs explicitly. On

12 CHAPTER 1. OVERVIEW

the other hand temporal logics are designed to reason directly about execu-
tion sequences of the programs, i.e. sequences of states which are possible
executions of one assumed program.

Temporal logics basically come in two kinds: linear time and branching
time. First allows to reason about one execution at time, the second can talk
about all executions simultaneously. Most linear time propositional temporal
logics are reducible to the µ-calculus in the straightforward way [6]. We
briefly sketch here the definition of branching time temporal logic CTL [2].

Formulas of CTL are divided into two categories of state and path for-
mulas which can be defined by mutual induction as follows:

• atomic letter is a state formula,

• if ϕ, ϕ′ are state formulas then so are ϕ ∧ ϕ′,¬ϕ,

• if ψ is a path formula then Eψ and Aψ are state formulas.

• if ϕ, ϕ′ are state formulas then Xϕ, ϕUϕ′ are path formulas.

A formula of CTL is interpreted in a Kripke structure M =< S,R, ρ >
but because we don’t have atomic actions, R now is just a binary relation
on states which is total, i.e. there is at least one arc from any state. We
will use the convention that π denotes an infinite path inM, i.e. a sequence
(s1, s2, . . .), and πi the suffix path (si, si+1, . . .). Because there are two cat-
egories of formulas we will use M, s |= ϕ to mean that a state formula ϕ
is satisfied in state s and similarly M, π |= ψ for a path formula ψ. The
inductive definition of satisfiability can be presented as follows:

• M, s |= q iff s ∈ ρ(q),

• M, s |= ϕ1 ∧ ϕ2 iffM, s |= ϕ1 and M, s |= ϕ2
M, s |= ¬ϕ iff not M, s |= ϕ,

• M, s |= Eψ iff there exists a path π = (s, s2, . . .) inM andM, π |= ψ,
M, s |= Aψ iff for all paths π = (s, s2, . . .) in M and M, π |= ψ,

• M, π |= ϕ1Uϕ2 iff there is i s.t. M, si |= ϕ2 and for all j < i it holds
thatM, sj |= ϕ1.

• M, π |= Xϕ iffM, π1 |= ϕ.

1.3. AUTOMATA ON INFINITE OBJECTS 13

When the restrictions on the use of path quantifiers E,A are dropped
we obtain the logic CTL∗ which is strictly more expressive then CTL. When
we add, to CTL∗ Büchi automata on infinite words as temporal operators,
we obtain ECTL∗. See [4] for overview of numerous temporal logics.

CTL does not have the collapsed model property. Let us take the formula
A(trueUα) which states that on every path a state satisfying α can be
eventually reached. Using the argument very similar to that for PDL∆ one
can show that CTL cannot have the collapsed model property if only we
define closure of a formula to be a finite set.

Translation of branching time temporal logic into the µ-calculus is more
complicated then for linear time temporal logics, especially when one consid-
ers such powerful branching temporal logics as CTL∗ [9] and ECTL∗ [57, 54].
Existing translations of this logics are quite complex and refer to automata
theory or properties of models. More “syntactical” translations [3] rely heav-
ily on tableaux method. In consequence the translation is not compositional
and quite complex as well.

The other way to show that the µ-calculus is at least as expressive, or
even strictly more expressive than CTL∗ or ECTL∗, is semantical [60]. One
can show that the sets definable by those logics are also definable in the
µ-calculus. Indeed, µ-calculus is strictly more expressive [60].

There is a complete axiomatization of CTL [10]. There are no known
axiomatizations of CTL∗. An interesting fact is that decidability of CTL∗

is complete for double exponential time. Hence even though less expressive,
the logic is more succinct than the µ-calculus.

1.3 Automata on infinite objects

Automata theory proved to be a valuable tool for modal logics of programs.
It is especially fruitful for proving decidability of numerous logics and classi-
fying their expressibility. For example the satisfiability problem for a formula
of linear temporal logic is easily reducible to the emptiness problem of some
finite automaton on infinite strings. Similarly, for branching time temporal
logics and for modal logics, checking satisfiability of a formula reduces to
testing emptiness of a certain finite automaton on infinite trees.

Following this examples we will essentially use automata theoretic results
and methods in our completeness proof. In this section we will introduce
some basic definitions and a bit of automata theory we will need.

A Büchi automaton over an alphabet Σ is a quadruple A = (Q, q0,∆, F)

14 CHAPTER 1. OVERVIEW

where:

• Q is a finite set of states,

• q0 ∈ Q is an initial state,

• ∆ ⊆ Q× Σ×Q is a transition relation,

• F ⊆ Q the set of final states

A run of A on a an infinite word v1v2 . . . over Σ is an infinite sequence
of states s1, s2, . . . such that s1 = q0 and (si, vi, si+1) ∈ ∆, for each i ≥ 0.

A run is called accepting iff there is a state from F which occurs infinitely
often on the run. The language accepted by the automaton A is the set of
those infinite words over Σ for which there is an accepting run of A. The
emptiness problem for the automata is the question whether the language
accepted by a given automaton is empty or not. Emptiness problem for
Büchi automata was shown NlogSpace complete [56].

Deterministic Büchi automata are weaker then their nondeterministic
counterparts. There are other kinds of automata the deterministic and non-
deterministic versions of which have the same expressive power. One of them
is Rabin automaton on strings.

The only difference between Rabin and Büchi automata is in acceptance
conditions. In Rabin automata, instead of one set of final states there is a set
of pairs of states Ω = {(L1, U1), . . . , (Ln, Un)}. A run is accepting, subject
to the conditions Ω, iff there is i ∈ {1, . . . , n} s.t. no state from Li occurs
infinitely often on the run and some state from Ui occurs infinitely often on
the run.

Büchi automata were used to show decidability of the monadic second
order theory of one successor S1S [1]. The second order theory of two suc-
cessors proved to be much more difficult and finally was shown decidable by
Rabin [44]. In his proof a new kind of automata, later called Rabin automata
on trees was used.

Rabin automaton on trees over an alphabet Σ is can be presented as a
quadruple A = 〈Q, q0,∆,Ω〉 where Q is a set of states, q0 ∈ Q is the initial
state, ∆ ⊆ Q × Σ × Q × Q a transition relation and Ω the set of pairs as
in Rabin automaton on words. A run of A on a binary tree t is a function
r : t → Q s.t. r(ε) = q0 and (r(w), t(w), r(w0), r(w1)) ∈ ∆. The run is
successful iff every path of the tree satisfies Rabin conditions Ω. A tree t is
accepted by an automaton A iff there is a successful run of A on t.

1.3. AUTOMATA ON INFINITE OBJECTS 15

Proofs of decidability for S1S as well as for S2S followed the same pat-
tern. First some kind of automata was selected and the emptiness problem
for this kind of automata was shown decidable. Next, the reduction of the
satisfiability of the formula to the emptiness problem of the chosen kind of
automata was shown. Both Büchi and Rabin gave compositional, syntax
directed translations from a given formula ϕ to an automaton Aϕ s.t. Aϕ
accepted some input iff ϕ was satisfiable.

The technique of reducing decidability problem to the emptiness problem
was found very fruitful for modal logics of programs. Streett, using this
method, showed decidability of PDL∆ with the converse operator. In 1984
Streett and Emerson [53] showed in this way that the µ-calculus is elementary
decidable.

One very important difference between the proofs for S1S or S2S and the
proofs for modal logics is that in the later case the translations of formulas
into automata are not compositional and syntax driven. Instead, to derive
an automaton a tableau method was used. We will introduce the tableau
method in the next chapter where we extend the results from [53].

Once one knows that the logic is decidable, the natural question to ask is
what is the lower bound on the complexity of a decision procedure and how
to construct an optimal algorithm. Somewhat surprisingly the reductions
used to show decidability led to essentially optimal decision procedures. To
put it more strongly, the only known optimal decision procedures for several
logics of programs, µ-calculus included, are derived from the translations to
the automata.

Obtaining optimal decision procedures was a very complex task. The
problem was, that in such procedures either determinization or complemen-
tation of automata was used. This influenced increased interest in optimizing
determinization and complementation procedures. It was also important to
have optimal procedure for testing emptiness of the Rabin automata.

First step in designing optimal procedure for testing emptiness of Rabin
automata was the following theorem proved in [5]

Theorem 1.3.1 (Emerson) Suppose A is a Rabin automaton over a single
letter alphabet. If A accepts some tree then there is a graph G with states of
A as nodes which unwinds to an accepting run of A.

Although it was shown already by Rabin in 1972 that if a Rabin automa-
ton accepts some tree then it accepts a regular tree, the above theorem gives
particularly elegant description of such a regular tree and the bound on its
size.

16 CHAPTER 1. OVERVIEW

The theorem was used in [5] to show that the emptiness problem for
Rabin automata is in NP [5, 55]. Then Emerson and Jutla [7] showed that
the problem is indeed NP-complete. In the same paper they show that there
is a deterministic algorithm testing emptiness of an automaton which works
in time O((mn)3n), where m is the number of states and n the number of
pairs in the acceptance condition.

The quest for optimal complementation of Büchi automata led through
determinization of the automata. As it was mentioned, nondeterministic
Büchi automata are strictly stronger then their deterministic counterparts.
Hence determinization procedure for Büchi automata must give a different
kind of automata, such as deterministic Rabin or Muller automaton in the
result. The first such procedure was proposed by McNaughton [30]. Optimal
and particularly elegant procedure was given by Safra [45]. Optimal com-
plementation procedure for Büchi automata was presented in [49]. Optimal
simultaneous complementation and determinization procedure was given by
Emerson and Jutla [8].

1.4 Games

We need to mention one other significant problem of automata theory. It is
complementation of Rabin automaton on trees. The first complementation
construction was the heart of the Rabin’s proof of the decidability of S2S.
The proof was extremely complicated. In 1970 Rabin himself put as an
open problem finding a simpler complementation construction. Particularly
elegant solution was given by Muchnik [34]. Gurevich and Harington [16]
show the result by proving that certain infinite games are determined and
what is more important there are finite forgetful winning strategies in such a
game. The task of accepting or rejecting a tree is then presented as a game
of this kind. An automaton accepting a complement of the language is con-
structed from a strategy for a player which tries to reject an input tree. This
metaphor of game proved to be very fruitful. In 1992 Klarlund [22] showed
essentially optimal complementation construction for Rabin automata using
this ideas.

The games we will need in this thesis will have simpler form then those
used in the results mentioned above. The result we will use is Martin’s
Theorem [29] about determinization of Borel games. We will briefly describe
the basic concepts of such games for details see e.g. [33].

Let Y be a set of finite sequences such that every prefix of an element

1.5. COMPLETENESS PROBLEM 17

of Y belongs to Y and such that every element is a proper prefix of some
element of Y . Such an Y will be called arena for the game. Let F(Y) be
the collection of all infinite sequences y0y1 . . . whose finite initial segments
belong to Y . For each A ⊆ F(Y) one can define a game as follows.

The game is played between two players, I and II. Player I starts by
picking y0 ∈ Y , then player II responds by picking y1 s.t. y0y1 ∈ Y etc.
Player I wins iff the chosen sequence y0y1 . . . belongs to A. This game is a
game of perfect information in the sense that a player can see all previous
moves while making next move. A strategy S for player I is a function
whose domain is the set of elements of Y of even length such that always
y0 . . .y2n−1S(y0 . . .y2n−1) ∈ Y . Player I plays according to the strategy S
iff for all n, y2n = S(y0 . . .y2n−1). Similarly we can define the notions of a
strategy and a play according to a strategy for player II.

We say that the game is determined iff there is a wining strategy for
one of the players. Of course, the existence of the winning strategy strongly
depends on the acceptance set A.

On F(Y) we can give a topology by taking as a base all subsets of F(Y)
of the form {x : p is a prefix of x} for p ∈ Y . A set A ⊆ F(Y) is Borel iff
it belongs to the σ-algebra generated by the open subsets of F(Y), i.e., it is
constructed from open sets by taking infinite sums and complementations.

Martin [29] proved that all Borel games are determined, i.e., if A is Borel
than there exists a wining strategy for one of the players in a game described
above. We will not need this result in its full strength, our games will lie
very low in the Borel hierarchy.

1.5 Completeness problem in propositional modal
logics

As one might expect the difficulty of designing and proving completeness of
axiomatizations increases with the increase of expressibility of the logic. In
this section we will try to present different approaches to proving complete-
ness for different propositional modal logics.

The simplest modal logic is the system K where there are only atomic
actions as modalities. In this logic almost the same methods as for clas-
sical propositional logic apply. We will present one of them, of which our
completeness proof for the µ-calculus is an extension.

We will consider only positive guarded formulas of modal logic and se-
quents of form Γ ` . The interpretation of such a sequent is standard, i.e.,

18 CHAPTER 1. OVERVIEW

that conjunction of formulas in Γ is not satisfiable. One sided sequent calculi
tend to have less rules then two sided versions. We use sequents Γ` instead
of more common ` Γ because we think they better illustrate the point we
want to make. The sequent Γ` is called an axiom iff there is a propositional
letter p such that p,¬p ∈ Γ.

For a simple modal logic the following system is sufficient:

(and)
α, β,Γ`
α ∧ β,Γ`

(or)
α,Γ` β,Γ`
α ∨ β,Γ`

(〈〉) α, {β : [a]β ∈ Γ}`
〈a〉α,Γ`

The proof of a sequent Γ` in this system is a diagram obtained using the
rules above with the root labeled by Γ` and all leaves labeled by axioms.

It is easy to check that all the rules are sound, i.e., if all assumptions of
the rule are valid then the conclusion is valid. The completeness proof is not
more difficult than that for classical propositional logic which is essentially
due to the fact that any tableau is a finite tree.

Also finite model theorem can be easily deduced using this system. We
can consider the rules above as a rules for constructing more general tableaux.
Instead of the rule (〈〉) we take the rule:

(all〈〉) {α, {β : [a]β ∈ Γ}` : 〈a〉α ∈ Γ}
Γ`

This rule has as many assumptions as the number of formulas of the form
〈a〉α in Γ. When there are no such formulas at all then we cannot apply this
rule. Rule (all〈〉) can be seen as a very weak logical rule but it is probably
better not to look at it this way. It is rather different type of rule, because
it is enough to prove only one of the assumptions of the rule to prove the
conclusion, while for other rules we have to prove all the assumptions. This
distinction will be elaborated below.

Given a sequent Γ ` of positive formulas, we construct a tableau for it
in this tableau system. One important difference with the classical propo-
sitional logic is that we would like tableaux to be maximal in a sense that
the rule (all〈〉) is used only to the sequents Σ` such that each formula in Σ
is either a propositional constant, its negation or a formula of the form 〈b〉β
or [b]β for some action b and a formula β.

1.5. COMPLETENESS PROBLEM 19

The tableau constructed will obviously be finite. Some of the leaves will
be axioms and others will be unreducible sequents which are not axioms.
Axiom sequent is clearly valid because some propositional constant and its
negation occurs in it. If Σ ` is an unreducible sequent which is not an
axiom then it is easy to find a state where it is not true. This is because
only propositional constants, its negations, and formulas of the form [a]α for
some a and α can occur in Σ.

The general property of tableaux for Γ D̀ is that one can find either a
proof of Γ` in a tableau or we can read a finite model for the formula

∧
Γ

from it. To see this we apply the following simple marking procedure. We
mark all the leaves labeled with axiom sequents with 1 and all other leaves
with 0. Then if in a node of the tableau the rule (and) was used we mark
it by the same number as its only son. If (or) rule was used in a node and
both sons are labeled by 1 then we mark the node by 1 otherwise we mark it
by 0. For each node where (all〈〉) rule was used we mark it with 0 if all sons
of it are marked with 0, otherwise we mark it with 1. It should be obvious
that if the root of the tableau is marked with 1 then there is a proof of Γ`
in the tableau.

If the root of the tableau is labeled by 0 then we can find a model for∧
Γ in the tableau. Let us define the structure M = 〈S,R, ρ〉 where:

• S is a set of all leaves in the tableau and all nodes of the tableau in
which (all〈〉) rule was used.

• (s, t) ∈ R(a) iff there is a son of s, r obtained by reduction of the action
a and on the path from r to t the rule (all〈〉) was not used.

• s ∈ ρ(p) iff s is labeled by Γ` and p ∈ Γ.

It is easy to prove by induction on the formula α thatM, s |= α if there
is a node t labeled by α,Γ` and on the path from t to s the rule (all〈〉) was
not used.

Situation gets more difficult when we consider PDL. There is no problem
in writing rules for all the connectives except ∗. If we include the rule:

(reg)
α,Γ` 〈P 〉〈P ∗〉α,Γ`

〈P ∗〉α,Γ`

then we would lose the property that a tableau of a sequent is always finite,
hence our previous method of proving completeness does not apply and we
must look for other ideas.

20 CHAPTER 1. OVERVIEW

One solution is to use Henkin method. This in general comes from the
idea that instead of showing that every valid formula is provable one shows
that every consistent formula, i.e. such that its negation is not provable, has
a model. To show this one usually constructs a syntactic model from a given
formula. This in turn is done using a filtration method well known form
classical and simple modal logics.

Completeness of PDL can be shown in numerous different ways [14, 39,
26, 23, 27]. All of them seem to use Henkin method and the collapsed model
property in more or less direct way.

Very interesting in this light is the proof of completeness for CTL [9].
This logic does not have collapsed model property as was remarked in sec-
tion 1.2.3. In the completeness proof for CTL, Emerson and Halpern showed
that, although there is no collapsed model property, the simple syntactic
structure, constructed in the way similar to that for PDL, can be trans-
formed into a model of a starting formula.

It is not known how to extend this technique to CTL∗ or ECTL∗. The
problem is that, with increased expressibility of the logics, transformations of
models became more and more difficult. Probably this lack of techniques for
model manipulation is the main problem in finding complete axiom systems
for more expressive logics of programs.

In conclusion, Henkin method does not seem very promising for prov-
ing completeness of the µ-calculus because of the difficulty in syntactical
model constructions for such an expressible logic. Other possibility would
be to try to follow the proof of Siefkes for S1S and to “internalize” the de-
cidability proof, that is to perform automata-theoretic constructions on the
logical level. This looks like a possible choice because Rabin automata closely
correspond to the µ-calculus. This idea of proving completeness was used
among others by Kozen [25] to show the completeness of his axiomatization
of Kleene algebras. An application of similar ideas to ECTL∗ can also be
found in [3]. A disadvantage of this approach is that the automata-theoretic
constructions we would have to internalize are quite complex.

In our proof we will follow neither this method nor Henkin’s method. We
will rather return to the ideas of the completeness proof for simple modal
logic as presented at the beginning of this section and use bits of other
methods on the way.

It is remarkable that although collapsing and similar techniques do not
work for such logics as CTL∗, ECTL∗, PDL∆, PAL, PL and µ-calculus, there
is another technique which allows to prove the small model property and
elementary decidability of any of this logics. All these results are obtained

1.5. COMPLETENESS PROBLEM 21

by employing automata-theoretic techniques. The method, although very
strong, has one disadvantage when considered as a step to the completeness
proof. The connection between a formula and a small model for it, which was
evident for PDL because of collapsed model property, becomes very vague
in case of this more expressible logics.

The first step of our proof is to examine this vague connection between
a formula and a small model for it by revising the small model construction
for the µ-calculus [53] and other expressive modal logics. In this results the
so called tableau method is employed. This technique can be viewed as a
refinement of the model construction for the simple modal logic we presented
at the beginning of this section. For a logic in question one uses the reduction
rules similar to that we used for modal logic. In case of PDL∆ one might
add regeneration rule (reg). For other logics similar simple rules are added.
Of course the consequence of employing such rules is that a tableau of a
formula may be infinite. It occurs that one can give such a condition on
infinite paths of a tableau that if there is “good” tableau Dϕ, for a formula
ϕ, then a structure satisfying ϕ can be constructed from it. This structure
is usually defined almost exactly as we did in the case of simple modal logic.

Next, one establishes that every satisfiable formula has a tableau of this
special kind. This way the problem of checking satisfiability of a formula
reduces to the problem of checking whether there is a tableau of a special
kind for the formula.

At this moment automata theory comes with some solutions. Usually
the condition on infinite paths of a tableau can be expressed either as Büchi
or Rabin condition or negation of one of them. If it is the case then we
can construct for a given formula ϕ an automaton Aϕ accepting the set of
“good” tableaus of ϕ. In this construction determinization or complemen-
tation procedure is usually used. This way we know that a formula ϕ is
satisfiable iff the language accepted by Aϕ is not empty. It remains to use
an algorithm for testing emptiness for an appropriate kind of automata to
have the decidability procedure. One can also use Theorem 1.3.1 to obtain
a small model property.

This technique is clearly a refinement of the one used for modal logic.
Only one part of this technique is employed, i.e. nothing is said about what
happens when a formula is not satisfiable. In case of modal logic the algo-
rithm for finding a model was dual to the task of proving that the formula
is not satisfiable. It seems that this duality was left unexplored for stronger
logics. We investigate it in chapter 2 in case of the µ-calculus. It occurs that
when a formula ϕ is not satisfiable then there is a tableau for ϕ`which looks

22 CHAPTER 1. OVERVIEW

almost as a proof, except that it can have infinite paths which are subject
to some Büchi condition. We call such a tableau a refutation of ϕ.

In some sense the status of refutation is similar to that of proof. It
is a syntactical object and there are also only syntactical conditions for
deciding whether something is a refutation or not. As we will see there
are regular refutations, i.e., finite graphs which unwind to refutations. For
any unsatisfiable formula there is a regular refutation of size bounded by
the exponential function in the size of the formula. There is an algorithm
which for a given formula ϕ constructs either a refutation of γ or a model
for γ. The algorithm runs in single exponential time. Hence, if we are
interested in showing validity, or equivalently, unsatisfiability of the formula,
then refutations may be as good choice as proofs.

On the other hand refutations have also some disadvantages. They are
too closely connected with automata hence they do not present an entirely
new insight into the logic. The conditions defining refutations, even though
syntactic, are global, i.e. refer to the whole tree, while proofs are only subject
to local conditions, i.e., correctness of applying rules. In consequence the
standard proof theoretic methods do not apply to refutations.

Even though not as good as proofs, refutations are an important step
in the completeness proof. The property that the set of refutations of a
formula is recognized by a Rabin automaton allows us to use automata
theoretic results which in turn allow us to obtain refutations of the “right”
shape. This can be compared with constructing special syntactic models in
Henkin method.

The next step is to show that transitions in this “right” refutations
can be internalized inside the logic. That is, there is a coding of nodes
of “right” refutations such that if m1, . . .mi are all sons of n then the se-
quent Ff (n)`Ff(m1), . . . , Ff(mi) is provable in the system, where we used
Ff (n), Ff(m1), . . . , Ff (mi) to denote codings of the corresponding nodes. Fi-
nally, using this coding we “read” the proof of ϕ` from the “right” refutation
of ϕ.

1.6 Proposed system

We propose the following axiom system for the µ-calculus. We present it
here in the form similar to that of Kozen [24]. The other, sequent style
presentation of the system can be found in section 3.1.

In this presentation the judgment has the form ϕ = ψ with the meaning

1.6. PROPOSED SYSTEM 23

that the formulas ϕ and ψ are equivalent. Inequality ϕ ≤ ψ is considered as
an abbreviation of ϕ ∨ ψ = ψ.

Apart from the axioms and rules of equational logic (including substitu-
tion of equals by equals), i.e. cut rule, there are the following axioms and
rules:

(K1) axioms for Boolean algebra

(K2) 〈a〉ϕ ∨ 〈a〉ψ = 〈a〉(ϕ ∨ ψ)

(K3) 〈a〉ϕ ∧ [a]ψ ≤ 〈a〉(ϕ ∧ ψ)

(K4) 〈a〉ff = ff

(K5) α(µX.α(X))≤ µX.α(X)

(I)
ϕ(ff) ≤ ψ ϕ(α(µX.Z ∧ α(X))) ≤ ψ ∨ 〈P 〉ϕ(µX.Z ∧ α(X))

ϕ(µX.α(X))≤ 〈P ∗〉ψ
In the last rule the variable Z is a new propositional variable not occur-

ring free in ϕ(µX.α(X)) or ψ. The letter P stands for a PDL program, and
〈P 〉α stands for an obvious translation of this formula into the µ-calculus.

In the above notation ϕ(µX.α(X)) stands for the result of the substitu-
tion ϕ[µX.α(X)/[]] where [] is a special variable. The substitution ϕ[α/X]
is legal only if no free variable of α becomes bound in ϕ[α/X].

The rule (I) is an induction rule. It allows to reason about fixpoint
formulas in terms of their approximations. From the small model property
we know that if ϕ(µX.α(X)) ≤ 〈P ∗〉ψ is not true then there exists a small,
i.e., finite model where it is not true. This means that there exists a natural
number n s.t. ϕ(αn(ff)) ≤ 〈P∗〉ψ is not true. In other words to show that
some µ-formula implies some formula it is enough to show that all its finite
approximations imply this formula. This observation leads to the natural
induction rule:

ϕ(ff) ≤ ψ ϕ(αn+1(ff)) ≤ ψ ∨ 〈P〉ϕ(αn(ff))
ϕ(µX.α(X))≤ 〈P ∗〉ψ

The reason why we consider µ-formula in a context is that, as it turns out, we
need to perform induction on the several occurrences of the same µ-formula
simultaneously.

24 CHAPTER 1. OVERVIEW

This rule as it is written is not a syntactically correct rule of the µ-
calculus. The reason is that n acts here as a variable ranging over natural
numbers. The easiest way to remedy this drawback is to place a fresh propo-
sitional variable in place of αn(ff) which will result in the rule:

ϕ(ff) ≤ ψ ϕ(α(Z)) ≤ ψ ∨ 〈P 〉ϕ(Z)
ϕ(µX.α(X))≤ 〈P ∗〉ψ

This rule unfortunately appears to be too weak, which is because we have
strengthened the assumption to much. The reason is that the value of Z can
be arbitrary while the value of αn(ff) ranged only over approximations of
the µ-formula.

There is no way to express that something is exactly an approximation
of the µ-formula but we can use the following observation:

If V al(Z) = ‖ αn(ff) ‖V al then ‖ µX.Z ∧ α(X) ‖V al = ‖ αn(ff) ‖V al.

This means that if the value of Z is some approximation of the µ-formula
then the value of µX.Z ∧ α(X) is also this approximation and when the
value of Z is something else, the value of µX.Z ∧ α(X) is “truncated” to
approximate the meaning of µX.α(X). Our induction rule (ind) is the result
of putting µX.Z ∧ α(X) in place of Z in the last of the above rules.

The only difference between the above system and the system proposed
by Kozen is that the later, instead of (I) contains the rule:

(K6)
α(ϕ) ≤ ϕ

µX.α(X) ≤ ϕ

We will show in section 3.2 that the rule (I) is not derivable from rules
(K1), . . . , (K6) but the rule (K6) is derivable in our system.

1.7 Synopsis

Our first goal will be to obtain a syntactic characterization of validity. We
start by reexamination of syntactic characterization of satisfiability as pre-
sented in [53]. Because we would like to base other constructions on such a
characterization, we are interested in as simple characterization as possible.
We find that the concept of definition constants introduced in the context
of model checking [50] is especially useful for expressing some of the ideas.
We define a set of rules for tableau construction and show that a formula

1.7. SYNOPSIS 25

is satisfiable iff there is a special tableau which we call a pre-model of the
formula.

Having a characterization of satisfiability by means of infinite trees a
natural question to ask is what happens when a formula is not satisfiable.
In case of simple modal logic the answer is: a proof of unsatisfiability of a
formula. Here we cannot hope for so much but we can at least follow the
same pattern of investigation.

We construct a more general tableau for a formula. Because there can
be infinite paths in such a tableau, a simple marking technique is useless in
this case. Instead, we use Martin’s determinacy theorem of infinite Borel
games [29]. It occurs that a two player game on a tableau for a formula ϕ
can be defined in such a way that a strategy for one player can be presented
as a pre-model of ϕ. The strategy for the second player can be presented
as a tree which we call a refutation of ϕ. From determinacy of this game
a characterization of unsatisfiable sequents by refutations is obtained. In
the last section of Chapter 2 we show that any unsatisfiable formula has a
refutation which is an unwinding of a graph of size exponential in the size
of the formula. There is also an algorithm which finds a pre-model or a
refutation for a formula in exponential time in the size of the formula.

In chapter 3 we propose an axiom system for the µ-calculus. It can be
briefly described as a system for simple modal logic with addition of two
rules for fixpoint formulas. The first rule states that the interpretation of a
formula µX.α(X) is a fixpoint. The second, is the induction rule. It allows
us to reason about fixpoint formulas using their approximations. In that
chapter we also compare the proposed system with the system presented by
Kozen in [24]. We show that all the rules of Kozen’s system are derivable in
our system but our induction rule is not derivable in the Kozen’s system.

Chapter 4 is devoted to the completeness proof. We take any unsatisfiable
positive guarded formula ϕ0 and show how to construct a proof of the sequent
ϕ0` in our system.

From our characterization of validity we know that there is a refutation
of ϕ0. Because the set of refutations of a formula is recognizable by a Rabin
automaton, there is a regular refutation. This refutation looks almost like a
proof except that it can have some loops.

Using the ideas of Safra’s determinization construction [45] we construct
a special Rabin automaton TAϕ0 on trees over one letter alphabet, which
runs correspond closely to the refutations of ϕ0. We modify Safra’s construc-
tion because we will then encode the states of the automaton as formulas of
the µ-calculus, hence the form of the states will be very important to us.

26 CHAPTER 1. OVERVIEW

The next step is to use Theorem 1.3.1 which guarantees existence of
a special graph Gϕ0 with states of TAϕ0 as nodes, which unwinds to an
accepting run of TAϕ0 . In section 4.2 we investigate the properties of this
graph. We show that in Gϕ0 , special nodes, which we call loop nodes, can be
distinguished. This nodes can be seen as “witnesses” that Gϕ0 is accepted
by the automaton. On every cycle there is exactly one loop node which
“confirms” that the unwinding of the cycle is accepted by TAϕ0 . Another
important thing is that there is a natural partial order on loop nodes.

After observing these properties of Gϕ0 we encode its nodes as formulas.
The coding Ff (s) of a state s depends on the function f designating the part
of the structure of s to be coded. The coding is such that each transition in
Gϕ0 will be derived in our system. That is, if t1, . . . , tk are all nodes to which
there is an edge from s in Gϕ0 then the sequent Ff (s)`Ff (t1), . . . , Ff(tn) is
provable.

Finally we perform the special unwinding of Gϕ0 into a finite tree with
back edges Tϕ0 . This unwinding is not essential but it simplifies the proof
construction. The construction of the proof of ϕ0 ` will be directed by the
structure of Tϕ0 .

Chapter 2

Characterization

In this chapter we present a characterization of the validity of the µ-calculus
formulas by means of infinite regular trees labeled with sequents. The results
of this chapter were obtained jointly with Damian Niwiński [35].

We propose two systems of tableau rules. For the first system we show
that a formula γ is satisfiable iff there exists a successful tableau for γ. We
call it a pre-model of γ. Successful tableaux constructed in the second system
will be infinite trees labeled with sequents, subject to some Büchi conditions
on infinite paths. What’s more, the rules of this second system are sound
when considered as logical rules and for a tableau to be successful all leaves
must be labeled with axioms. Successful tableaux of this kind will be called
refutations.

Interestingly, it turns out that a pre-model of γ and a refutation of γ
can be naturally presented as a wining strategy for one of the players in a
certain infinite game. The game is determined, by the Martin’s Theorem.
This way we show that a formula γ is not satisfiable iff there is a refutation
for γ. This characterization of the validity will be the starting point of our
completeness proof.

In the last section we consider the possible size of a refutation and con-
clude that if a formula γ is not satisfiable then there exists regular refutation
for γ of the size not bigger then exp(|γ|) (single exponential function in the
size of γ). Hence finding a refutation occurs to be as easy as testing satisfi-
ability. What’s more, there is an algorithm which in time exp(|γ|) gives us
either a refutation of γ, if γ is not satisfiable, or a model for γ, if there is
one.

In this chapter we will consider only positive guarded formulas. By

27

28 CHAPTER 2. CHARACTERIZATION

Proposition 1.1.2 it is not a restriction when semantics is concerned.

2.1 Tableaux

In this section we present a system of rules for constructing a tableau for
a formula. Tableaux will serve as arenas for a game we will describe later.
We will also define two substructures of a tableau: quasi-model and quasi-
refutation. It is convenient to introduce the concept of a definition list [50]
which will name the fixpoint subformulas of a given formula in order of their
nesting.

We extend vocabulary of the µ-calculus by a countable set Dcons of fresh
symbols that will be referred to as definition constants and usually denoted
U, V, . . .These new symbols are now allowed to appear positively in formulas,
like propositional variables.

A definition list is a finite sequence of equations :

D = ((U1 = σ1X.α1(X)), . . . , (Un = σnX.αn(X))

where U1, . . . , Un ∈ DCons and σiX.αi(X) is a formula such that all defi-
nition constants appearing in αi are among U1, . . . , Ui−1. We assume that
Ui 6= Uj and αi 6= αj , for i 6= j. If i < j then Ui is said to be older than Uj
(Uj younger then Ui).

We assign a definition list to a formula γ by means of the contraction
operation [〉α〈] which is defined recursively as follows:

1. [〉p〈] = [〉¬p〈] = [〉X〈] = [〉U〈] = ∅

2. [〉〈a〉α〈] = [〉[a]α〈] = [〉α〈]

3. [〉α ∧ β〈] = [〉α ∨ β〈] = [〉α〈] ◦ [〉β〈]

4. [〉µX.α(X)〈] = (U = µX.α(X)), [〉α(U)〈] where U is new.

5. [〉νX.α(X)〈] = (U = νX.α(X)), [〉α(U)〈] where U is new.

The operation [〉α〈] ◦ [〉β〈] is defined as follows. First we make sure that the
definition constants used in [〉α〈] are disjoint form those used in [〉β〈]. Then if
it happens that (U = γ) ∈ [〉α〈] and (V = γ) ∈ [〉β〈], we delete the definition
from list [〉β〈] and replace V with U in [〉β〈]. This may cause other formulas
to be doubly defined and we deal with them in the same way.

2.1. TABLEAUX 29

We will say that U is a µ-constant if (U = µX.β(X)) ∈ D, if (U =
νX.β(X)) ∈ D, U will be called a ν-constant. Observe that every constant
occurring in D is either µ or ν constant.

For a formula α and a definition list D containing all definition constants
occurring in α we define the expansion operation 〈[α]〉D, which subsequently
replaces definition constants appearing in the formula by the right hand sides
of the defining equations

〈[α]〉D = α[αn/Un]...[α1/U1] where D = (U1 = α1), .., (Un = αn)

A tableau sequent is a pair (Γ,D), where D is a definition list and Γ is
a finite set of formulas such that the only constants that occur in them are
those from D. We will denote (Γ,D) by Γ D̀ .

A tableau axiom is a sequent Γ D̀ such that some formula and its nega-
tion occurs in Γ.

We extend expansion operations to tableau sequents in a natural way:

〈[Γ D̀]〉D = {〈[γ]〉D : γ ∈ Γ}

In what follows we will frequently drop a prefix “tableau” if it is clear
from the context. The other, two sided, type of sequents will be introduced
in the chapter presenting axiomatization.

Below we present the set of rules for constructing tableaux. This rules
can be considered as logical rules when read upside-down. We write them
with premises below the line because it is more appropriate for tableaux
construction. This style also puts emphasis on the fact that this rules are
used to construct tableaux not proofs.

Definition 2.1.1 Let S be the following set of tableau rules :

30 CHAPTER 2. CHARACTERIZATION

(and)
α ∧ β,Γ D̀
α, β,Γ D̀

(or)
α ∨ β,Γ D̀

α,Γ D̀ β,Γ D̀

(cons)
U,Γ D̀

α(U),Γ D̀
whenever (U = σX.α(X)) ∈ D

(µ)
µX.α(X),Γ D̀

U,Γ D̀
whenever (U = µX.α(X)) ∈ D

(ν)
νX.α(X),Γ D̀

U,Γ D̀
whenever (U = νX.α(X)) ∈ D

(all〈〉) Γ D̀
{α, {β : [a]β ∈ Γ} D̀ : 〈a〉α ∈ Γ}

where in the last rule each formula in Γ is a propositional constant, a variable,
a negation of one of them or a formula of the form 〈b〉β or [b]β for some action
b and a formula β.

Observe that each rule, except (or) or (all〈〉), has exactly one premise.
The rule (or) has two premises and the number of premises in the rule (all〈〉)
is equal to the number of formulas of the form 〈a〉α in Γ and may be 0.

The system Smod is obtained from S by replacing the rule (or) by two
rules (orleft) and (orright) defined in the obvious way.

The system Sref is obtained from S by replacing the rule (all〈〉) by the
rule

(〈〉) 〈a〉α,Γ D̀
α, {β : [a]β ∈ Γ} D̀

with the same restrictions on formulas in Γ as in the case of (all〈〉) rule.

Observe that if we consider a sequent Γ D̀ as a formula
∧〈[Γ]〉D ⇒ ff

then the rules of the system Sref become sound logical rules.

Definition 2.1.2 Given a positive guarded formula γ, a tableau for γ is any
labeled tree 〈K,L〉, where K is a tree and L a labeling function, such that

1. the root of K is labeled with γ D̀ where D = [〉γ〈],

2. if L(n) is a tableau axiom then n is a leaf of K,

2.1. TABLEAUX 31

3. if L(n) is not an axiom then the sons of n in K are created and labeled
according to the rules of the system S.

A quasi-model of γ is defined in a similar way to tableau, except the system
Smod is used instead of S and we impose the additional requirement that no
leaf is labeled by a tableau axiom.

A quasi-refutation of γ is defined in a similar way to tableau, except the
system Sref is used instead of S and we impose the additional requirement
that every leaf is labeled by a tableau axiom.

Remark: Observe that each quasi-model, as well as a quasi-refutation can
be obtained from a tableau by cutting off some nodes.

Definition 2.1.3 Let T = 〈K,L〉 be a tableau for a positive guarded for-
mula γ and D = [〉γ〈]. Let P = (v1, v2, . . .) be a path in the tree K, i.e., each
vi+1 is a son of vi. A trace Tr on the path P is any sequence of formulas
{αi}i∈I such that αi ∈ L(vi) and αi+1 is either:

• αi if formula αi was not reduced by the rule applied in vi, or otherwise

• αi+1 is one of the formulas obtained by applying the rule to αi.

This last notion should be clear if the rule is other then (〈〉). If the rule in
question is (〈〉) and it reduces a formula 〈a〉α then αi+1 = β iff αi = [a]β or
αi+1 = α if αi = 〈a〉α; in other cases αi is the last element of the trace.

Definition 2.1.4 A constant U regenerates on the trace Tr if for some i,
ai = U and ai+1 = α(U) where (U = σX.α(X)) ∈ D

The trace Tr is called a ν-trace iff it is finite and does not end with
a tableau axiom, or if the oldest constant in the definition list D which is
regenerated infinitely often on Tr is a ν-constant. Otherwise the trace is
called a µ-trace.

Observe that a µ-trace is either a finite trace ending in a tableau axiom
or an infinite trace on which the oldest constant regenerated infinitely often
is some µ-constant.

The above definition applies as well to quasi-models and to quasi-refuta-
tions.

32 CHAPTER 2. CHARACTERIZATION

Definition 2.1.5

— A quasi-model PM is called pre-model iff any trace on any path of PM
is a ν-trace.

— A quasi-refutation of γ is called a refutation of γ iff on every path of it
there exists a µ-trace.

We will show in the next sections that a formula is satisfiable iff there is
a pre-model for it and that a formula is unsatisfiable iff there is a refutation
for it. The condition laid on pre-models is due to the observation that if for
some structure M and state s, M, s |= µX.α(X) then the smallest ordinal
τ s.t. M, s |= ατ (ff) must be a successor ordinal. Hence M, s |= α(ασ(ff))
for some σ < τ . That is in the process of “investigating” the “reasons”
why the µ-formula is satisfied we have managed to reduce the index of the
formula. Because ordinals are well ordered it means that we will need to
do regeneration of the µ-formula only finitely many times. The condition
on refutations is dual and obtained from analysis of a game we are going to
describe in the next section.

2.2 Games

In this section we show that any formula γ has either a pre-model or a
refutation.

Let T be a tableau for γ. We define an infinite game for two players to
be played on T . Intuitively, player I will try to show that γ is satisfiable and
player II that it is not. Our two players play the game as follows.

• game will start in the root of T ,

• in any (or) node, i.e. node where (or) rule was applied, player I chooses
one of the sons,

• in any (all〈〉) node, player II chooses one of the sons,

• in other nodes which are not leaves automatically the only son is cho-
sen.

The result of such a game is either a finite or an infinite path of the
tableau T . The path can be finite only when it ends in a leaf which can be
labeled either by axiom or by unreducible sequent but not an axiom. In the

2.3. CHARACTERIZATION 33

former case player II wins and in the latter case player I is the winner. If
the resulting path is infinite, then player II wins iff we can find a µ-trace on
the path.

Now, it is easy to see that our game can be presented in the form that
satisfies the conditions of the Martin’s theorem on determinacy of infinite
Borel games [29], and hence it is determined. A winning strategy of either
player can be naturally presented as a tree. More precisely, a winning strat-
egy for player I may be identified with a pre-model of γ, while a winning
strategy for player II can be identified with a refutation of γ. Hence, we
have the following:

Proposition 2.2.1 For each formula γ there exists a pre-model of γ or a
refutation of γ in any tableau for γ.

2.3 Characterization

In this section we prove that γ is satisfiable iff there exists a pre-model for
it. From the results of the previous section, it will follow that γ is true iff
there exists refutation for ¬γ.

It will be convenient to use a characterization of the extremal fixpoints
in terms of possibly transfinite induction. We introduce two new constructs
µτX.α(X) and ντX.α(X), where τ is any ordinal, with the following seman-
tics:

— ‖ µ0X.α(X) ‖V al = ∅, ‖ ν0X.α(X) ‖V al = S,

— ‖ στ+1X.α(X) ‖V al = ‖ α(X) ‖V al[‖στX.α(X)‖V al/X] (σ means µ or ν),

— ‖ µτX.α(X) ‖V al =
⋃
τ ′<τ ‖ µτ

′
X.α(X) ‖V al, for τ limit ordinal,

— ‖ ντX.α(X) ‖V al =
⋂
τ ′<τ ‖ ντ

′
X.α(X) ‖V al, for τ limit ordinal.

Then we have:

‖ µX.α(X) ‖V al =
⋃

τ

‖ µτX.α(X) ‖V al

‖ νX.α(X) ‖V al =
⋂

τ

‖ ντX.α(X) ‖V al

Now we introduce the notion of a signature similar to that considered by
Streett and Emerson [53].

34 CHAPTER 2. CHARACTERIZATION

Definition 2.3.1 Let us take a formula β, a definition list D containing
all definition constants occurring in β, and a state s of a model M such
that M, s |= 〈[β]〉D. We define a signature of β in s, SigD(β, s), as the
least, in lexicographical ordering, sequence of ordinals (τ1, . . . , τdµ) such that
M, s |= 〈[β]〉D′ , where D′ is a definition list constructed from D by replacing
the i-th µ−constant definition (Ui = µX.αi(X)) ∈ D by (Ui = µτiX.αi(X))
for each i = 1, . . . , dµ

It can be shown that signatures behave nicely with respect to formula
reduction namely:

Lemma 2.3.2 For any state s of a model M:

— If M, s |= 〈[α ∧ β]〉D then SigD(α ∧ β, s) = max(SigD(α, s), SigD(β, s)).

— If M, s |= 〈[α ∨ β]〉D then SigD(α ∨ β, s) = SigD(α, s) or SigD(α ∨ β, s) =
SigD(β, s).

— If M, s |= 〈[〈a〉α]〉D then SigD(〈a〉α, s) = SigD(α, t) for some state t such
that (s, t) ∈ RM(a).

— If M, s |= 〈[[a]α]〉D then SigD([a]α, s) ≥ SigD(α, t) for every state t such
that (s, t) ∈ RM(a).

— IfM, s |= 〈[νX.α(X)]〉D and (V = νX.α(X)) ∈ D then SigD(νX.α(X), s) =
SigD(V, s).

— If M, s |= 〈[µX.α(X)]〉D and (Ui = µX.α(X)) ∈ D is the i-th µ-constant
in D then the prefixes of length i − 1 of SigD(µX.α(X), s) and SigD(Ui, s)
are equal.

— IfM, s |= 〈[W]〉D and (W = σX.α(X)) ∈ D then SigD(W, s) = SigD(α(W), s)
if W is a ν constant. If W is the i-th µ-constant in D then the second sig-
nature is smaller and they differ at position i or smaller.

Proof
We will consider only the last case. Suppose M, s |= 〈[Ui]〉D, where Ui is
the i-th definition constant from D. Let SigD(Ui, s) = (τ1, . . . , τn) and D′
be a definition list obtained from D by replacing j-th µ-constant definition
(Uj = µX.αj(X)) ∈ D by (Uj = µτjX.αj(X)) for every j = 1, . . . , n. Please
note that only definition constants older then Ui can appear in αi(X). Let
us denote β(X) = 〈[αi(X)]〉D′. From the definition of the signature we have

2.3. CHARACTERIZATION 35

M, s |= µτiX.β(X). Observe that τi must be a successor ordinal hence
M, s |= β(µτi−1X.β(X)) which implies the thesis of the lemma

Proposition 2.3.3 If a positive guarded sentence γ is satisfiable then any
tableau for γ contains a pre-model for γ as its subtree.

Proof
Let us take a sentence γ and a model M =< SM, RM, ρM > in which
γ is satisfiable. Let D = [〉γ〈] = (W1 = γ1), . . . , (Wd = γd). Let (U1 =
µX.α1(X)), . . . , (Udµ = µX.αdµ(X)) be a subsequence of µ definitions in D.

Given a tableau T for γ we will construct a pre-model PM = 〈K,L〉 as
a subtree of T . Starting from the root of T we will subsequently select the
nodes of T that will be included in PM. With every node n, of PM under
construction, we will associate a state sn of M such that M, sn |= 〈[L(n)]〉.

The root of T becomes the root of PM and for the associated state we
choose any state of M in which the formula γ is satisfied.

Suppose that we have already selected a node n of PMwith an associated
state sn. We will show how to proceed from this point depending on what
rule was used in node n of T :

1. If the (or) rule was applied to L(n) = α ∨ β,Γ D̀ then select the left
son of n if SigD(α, sn) ≤ SigD(α ∨ β, sn) and the right son otherwise.
Associate the state sn with the chosen node.

2. If the (all〈〉) rule was applied then for any son n′ of n, there is a formula
of the form 〈a〉α which reduction resulted in the label of n′. For the
node n′ choose a state t such that (sn, t) ∈ R(a) and SigD(〈a〉α, sn) ≥
SigD(α, t).

3. For all other rules, just take the only son of n in T as the next node
of PM and associate the state sn with it.

We show that PM constructed in this way is indeed a pre-model for γ.
It is easy to see that a leaf of PM cannot be labeled by a tableau axiom

because for every leaf n we have that 〈[L(n)]〉 is satisfiable and obviously
p ∧ ¬p cannot be satisfied.

It remains to show that any infinite trace T = {αn}n∈P on any path P is
a ν-trace. Suppose that we can find a trace T such that the oldest constant
regenerated infinitely often on it is some i-th µ-constant Ui. Clearly, after

36 CHAPTER 2. CHARACTERIZATION

some point n0, Ui must be the oldest constant which will regenerate on the
trace.

Observe that Lemma 2.3.2 implies that from the point n0, prefix of length
i of signatures of formulas in T never increases. The only way the prefix
could increase without regeneration of a definition constant older than Ui is
an application of the rule (µ) with a constant older than Ui. But then the
next reduction on the trace would be a regeneration of the constant older
than Ui.

Lemma 2.3.2 also says that the prefix actually decreases after each regen-
eration of Ui. Since we have assumed that Ui is regenerated infinitely often
we obtain a contradiction, because the lexicographical ordering on sequences
of bounded length over a well ordering is also a well ordering. This shows
that every trace of PM is a ν-trace, hence PM is a pre-model.

Now we will show implication in the other direction, i.e., given a pre-
model for γ, how to construct a structure where γ is satisfied.

Definition 2.3.4 Given a pre-model PM, the canonical structure for PM
is a structure M = 〈SM, RM, ρM〉 such that:

1. SM is the set of all nodes of PM which are either leaves or to which
(all〈〉) rule was applied. For any node n of PM we will denote by sn
the closest descendant of n belonging to SM.

2. (s, s′) ∈ RM(a) iff there is a son n of s with sn = s′, such that L(n)
was obtained from L(s) by reducing a formula of the form 〈a〉α.

3. ρM(p) = {s : p occurs in the sequent L(s)}.

Proposition 2.3.5 If there exists a pre-model PM for a positive guarded
sentence γ then γ is satisfiable in the canonical structure for PM.

Proof
Let PM = 〈K,L〉 be a pre-model of a sentence γ. LetM =< SM, RM, ρM >
be the canonical structure for PM. Let D = [〉γ〈] = (W1 = γ1), . . . , (Wd =
γg) be the definition list and let (V1 = νX.β1(X)), . . . , (Vdν = νX.βdν (X))
be a sublist of ν-definitions from D.

Suppose that M, sn0 6|= γ, where n0 is the root of PM. From now on
we will proceed in a similar way to the previous proof.

First, for a formula α and state s s.t. M, s 6|= α we define a ν-signature,
SigνD(α, s) to be the smallest sequence of ordinals (τ1, . . . , τdν) such that

2.3. CHARACTERIZATION 37

when we take definition list D′ obtained from D by replacing νX.βi(X) by
ντiX.βi(X), then M, s 6|= 〈[α]〉D′ still holds. For ν-signatures we can prove
an analog of Lemma 2.3.2 but with interchanging: µ with ν, 〈〉 with [] and
conjunction with disjunction.

Next we show that from the assumption M, sn0 6|= γ, it follows that
we can construct a µ-trace on some path P of PM, which contradicts the
assumption that PM is a pre-model of γ.

The first element of a trace T = {αn}n∈P will be of course αn0 = γ. Now
suppose that we have constructed T up to the element αm ∈ L(m), such
thatM, sm 6|= 〈[αm]〉. We proceed as follows:

— if a rule different from (all〈〉) was applied to L(m) then there is only one
son m′ of m and:

• if αm wasn’t reduced by this rule then αm′ = αm,

• if αm = ϕ ∧ ψ was reduced then choose αm′ = ϕ if SigνD(ϕ ∧ ψ, sm) ≥
SigνD(ϕ, sm), else choose αm′ = ψ as the next element of the sequence,

• if αm = ϕ∨ψ then choose αm′ to be the formula which occurs in L(m′),

• in other subcases just take the resulting formula as the next element of
the trace,

— if (all〈〉) rule was applied then:

• if αm = 〈a〉ϕ then there is a son m′ of m the label of which was obtained
by reducing this formula. Take αm′ = ϕ

• if αm = [a]ϕ then, because σm 6|= αm, there exists a state t such that
(sm, t) ∈ RM(a) and SigνD(ϕ, t) ≤ SigνD([a]ϕ, s). Observe that from the
definition of our structure this means that there is some son m′ of m,
such that ϕ ∈ L(m′) and sm′ = t. So let us take αm′ = ϕ.

If the constructed trace were finite then from the definition of the canon-
ical structure and restrictions on the application of the rule (all〈〉) it follows
that the last element of the trace αm, must be some propositional con-
stant p, its negation, or m can be a leaf of PM and αm a formula of the
form [a]ψ. Then from the definition of the canonical structure we have that
M, sm |= αm, contradiction.

Using an argument about signatures similar to the one from Proposi-
tion 2.3.5, we can show that the oldest constant regenerated infinitely often

38 CHAPTER 2. CHARACTERIZATION

on T must be a µ-constant. But PM is a pre-model hence all its traces are
ν-traces, contradiction.

It should be clear that Propositions 2.3.3 and 2.3.5 hold not only for
positive guarded sentences but for all positive guarded formulas. Putting
them together we obtain:

Theorem 2.3.6 There exists pre-model of a positive guarded formula γ iff
γ is satisfiable.

Finally using our results from previous section we obtain also a charac-
terization of valid formulas.

Theorem 2.3.7 Positive guarded formula ¬γ is valid iff there exits a refu-
tation for γ.

Proof
Consider any tableau T for γ. Since there is no model for γ, we cannot find
a pre-model in T hence from Proposition 2.2.1 there is a refutation in T .

In other direction if P is a refutation for γ then we know that in the
tableau T , of which P is a subtree, we cannot find a pre-model. Hence from
Proposition 2.3.3 it follows that γ is not satisfiable and ¬γ is valid.

2.4 Complexity

In this section we give bounds on the size of a refutation of a formula and
consider the computational complexity of the problem for finding a refuta-
tion.

Emerson and Jutla [8] gave the exact bound of the decidability prob-
lem for the µ-calculus, by showing that the satisfiability problem for the
µ-calculus is decidable in deterministic exponential time. The completeness
of the problem for this complexity class follows from the lower bound for
PDL due to Fischer and Ladner(1979) [13]. Streett and Emerson [53] also
show a small model theorem for the propositional µ-calculus which, com-
bined with the later results of Emerson and Jutla [8] tells that if a sentence
has a model then it has a finite model of the exponential size in the size of
the sentence. Considering the proof method used in [8], we can restate this
result as follows.

2.4. COMPLEXITY 39

Theorem 2.4.1 (Emerson and Jutla) There is an algorithm which de-
cides if a µ-calculus sentence γ is satisfiable in time exp(|γ|). If this is the
case, the algorithm constructs a model of the size exp(|γ|) in time exp(|γ|).

The key fact needed for this theorem is a result on complexity of Rabin tree
automata that is also shown in [8].

Theorem 2.4.2 (Emerson and Jutla) There is an algorithm which, given
a Rabin automaton with n states and m pairs decides if the automaton ac-
cepts any tree in time O(nm). If it is the case, the algorithm constructs in
time O(nm) a regular tree of the size O(n) accepted by the automaton.

This last result can be also used for obtaining the upper bound for the
size (and the constructing time) of the refutations.

Let a µ-calculus sentence γ be given. Since the rules of the system S
are nondeterministic, there may be many tableaux of γ. Clearly, we can
construct a tableau T of γ, which is a regular tree of size exp(|γ|), and the
construction can be performed in time exp(|γ|). Let Σ be the alphabet con-
sisting of the sequents labeling the nodes of T . Observe that |Σ| = exp(|γ|).
We construct a Büchi automaton on infinite words over Σ which nonde-
terministically chooses a trace from a path in T and accepts iff this is a
µ-trace. It is easy to see that O(|γ|) states are sufficient for this job. Apply-
ing the Safra determinization construction [45], we get a Rabin automaton
on ω-words with exp(|γ|) states and O(|γ|) pairs, and finally, following the
construction of [53], we obtain a Rabin tree automaton with exp(|γ|) states
and O(|γ|) pairs, which accepts precisely the refutations of γ. We can there-
fore state the following.

Theorem 2.4.3 There is an algorithm which, given a µ-calculus sentence
γ, constructs a model of size exp(|γ|) or a refutation of size exp(|γ|). The
algorithm runs in time exp(|γ|).

40 CHAPTER 2. CHARACTERIZATION

Chapter 3

Axiomatization

This chapter is divided into two sections. In the first we present a finitary
axiom system for the µ-calculus. This system will be shown complete in the
next chapter. In the second section we will relate the presented system to
the Kozen’s system proposed in the paper introducing µ-calculus [24].

3.1 The system

In this section we present a finitary deduction system for the µ-calculus. We
have chosen sequent calculus presentation because it corresponds nicely with
the tableau rules used to obtain the characterization of the validity.

A sequent is a pair of finite sets of formulas and it will be denoted Γ`∆.
If Γ ∩∆ 6= ∅ then the sequent Γ`∆ is called axiom.

In what follows it will be sometimes convenient to use PDL syntax. We
will sometimes write 〈P 〉α or [P]α, where α is a formula of µ-calculus and
P is a PDL program, i.e., a regular expression over the set of actions. The
meaning of such a formula is given by the usual translation of PDL formulas
into µ-calculus as presented in the section 1.2.1.

Our system consists of two groups of rules and some additional axioms.
First we take the rules of the simple propositional modal logic.

41

42 CHAPTER 3. AXIOMATIZATION

(¬)
Γ`∆, α

Γ,¬α`∆
Γ, α`∆

Γ`¬α,∆

(∧)
α, β,Γ`∆
α ∧ β,Γ`∆

Γ`α,∆ Γ`β,∆
Γ`α ∧ β,∆

(∨)
α,Γ`∆ β,Γ`∆

α ∨ β,Γ`∆
Γ`α, β,∆

Γ`α ∨ β,∆

(〈〉) α, {β : [a]β ∈ Γ}`{γ : 〈a〉γ ∈ ∆}
〈a〉α,Γ`∆

(cut)
Γ`∆, γ Σ, γ`Ω

Γ,Σ`∆,Ω

Then we add the rules concerning fixpoints

(µ)
Γ`α(µX.α(X)),∆

Γ`µX.α(X),∆

(ind)
ϕ(ff)`∆ ϕ(α(µX.Z ∧ α(X)))`∆, 〈P 〉ϕ(µX.Z ∧ α(X))

ϕ(µX.α(X))`〈P ∗〉∆

Z 6∈ FV (ϕ(µX.α(X)),∆)

In the last rule P is a PDL program, 〈P 〉∆ = {〈P 〉δ : δ ∈ ∆} and Z is a new
propositional variable not occurring free in ϕ(µX.α(X))`∆.

In the above notation ϕ(µX.α(X)) stands for the result of substitution
ϕ[µX.α(X)/[]] where [] is a special variable. The substitution ϕ[α/X] is
legal only if no free variable of α becomes bound in ϕ[α/X].

Finally because we had chosen to include constructions [a]α and νX.α(X)
into the language we have to define them using other connectives by adding
the following axioms:

([]L) [a]α`¬〈a〉¬α ([]R) 〈a〉α`¬[a]¬α

(νL) νX.α(X)`¬µX.¬α(¬X) (νR) µX.α(X)`¬νX.¬α(¬X)

Definition 3.1.1 A finite tree constructed with the use of the above rules
will be called diagram. A proof will be a diagram whose all leaves are labeled
with axioms i.e., instances of the axioms above or sequents with the same
formula on both sides. We consider ff as an abbreviation of p∧¬p for some
propositional constant p.

3.1. THE SYSTEM 43

Observe the difference between diagrams and tableaux. The first are
always finite while the second not necessary so. They are also constructed
using different, although similar, sets of rules.

The rule (ind) is a stronger version of the induction rule:

ϕ(ff)`∆ ϕ(α(Z))`∆, 〈P 〉ϕ(Z)
ϕ(µX.α(X))`〈P ∗〉∆ (3.1)

where Z is a new variable. Rule (ind) is stronger because the assumptions
of (ind) rule are weaker then those of (3.1). It turns out that the rule (3.1) is
too weak to make our completeness proof work. The reason is that putting
variable Z in place of µX.α(X) we “forget” that Z is an approximation
of µX.α(X). On the other hand, as the next lemma shows µX.Z ∧ α(X)
behaves very much the same as the variable Z alone.

The presence of modalities 〈P 〉 and 〈P ∗〉, in the (ind) rule should be also
explained. This construction works like existential quantifier on states. To
see this let us look at a formula of the form 〈P ∗〉α, where P = a1∪. . .∪an and
a1, . . . , an are all actions occurring in α. The meaning of 〈P ∗〉α is roughly
the same as the statement that there exists a reachable state satisfying α.

Lemma 3.1.2 For any structureM and valuation Val such that Val(Z) =
‖ αk(ff) ‖V al for some k ∈ N and Z 6∈ FV (α(ff)),

‖ µX.Z ∧ α(X) ‖V al = Val(Z)

Proof
Let Val(Z) = ‖ αk(ff) ‖V al then

‖ µX.Z ∧ α(X) ‖V al = ‖ µX.αk(ff) ∧ α(X) ‖V al = ‖ αk(ff) ‖V al

The next proposition states soundness of the system. There are at least
three possible notions of soundness of a rule in a modal logic:

• The strongest will be to require that if the assumptions of a rule are
satisfied in a state of a structure then the conclusion must be satisfied
in this state. It is easy to see that rules (neg), (and), (or), (cut) and
(µ) are sound in this sense.

44 CHAPTER 3. AXIOMATIZATION

• The other would be to require that, for any structureM, if all assump-
tions of the rule are valid in a structure (i.e. satisfied in every state)
then the conclusion must be valid in this structure. The rule (〈〉) is
sound in this sense. We will show in the next section that all the rules
of the Kozen’s axiomatization of the µ-calculus are also sound in this
sense.

• The weakest of the three is the condition that if all assumptions of the
rule are valid then the conclusion is valid. The rule (ind) is sound in
this sense and as we will show in the next section it is not sound in the
sense of any of the two preceding notions of soundness. Of course this
type of soundness is all that we need to require from the axiomatization
of the validity relation. In the following by soundness we will always
understand this weak notion of soundness.

Proposition 3.1.3 All rules of our system are sound and all axioms are
valid

Proof
Validity of the axioms is standard. Also standard is validity of all the rules
except (ind) which soundness we prove below.

Let us assume conversely that the rule (ind) is not sound. Then from the
finite model property we have a finite structure M such that the sequents:

ϕ(ff)`∆ ϕ(α(µX.Z ∧ α(X)))`∆, 〈P 〉ϕ(µX.Z ∧ α(X))

are valid inM and ϕ(µX.α(X))`〈P ∗〉∆ is not. We assume that the variable
Z does not appear free in ϕ(µX.α(X)) or ∆. Let k be the smallest integer
s.t. there exists a state s ofM and valuation Val s.t.M, s,Val |= ϕ(αk(ff))
and for all δ ∈ ∆,M, s,Val 6|= 〈P ∗〉δ.

We have two cases depending on whether k = 0 or not.

— If k = 0 thenM, s,Val |= ϕ(ff) hence from the assumption that ϕ(ff)`∆
is valid in M we have that M, s,Val |= δ for some δ ∈ ∆, contradiction.

— If k > 0 then let Val ′ be identical to Val except that for the vari-
able Z, Val ′(Z) = ‖ αk−1(ff) ‖V al. Hence M, s,Val′ |= ϕ(α(Z)) and from
lemma 3.1.2 it follows that M, s,Val′ |= ϕ(α(µX.Z ∧ α(X))). From the
validity of the second premise we have that M, t,Val ′ |= ϕ(µX.Z ∧ α(X))
for some state t reachable from s by P or M, s,Val |= δ for some δ ∈ ∆.
The second case is impossible by our assumption.

3.1. THE SYSTEM 45

If M, t,Val ′ |= ϕ(µX.Z ∧ α(X)) then by lemma 3.1.2 M, t,Val′ |= ϕ(Z),
hence M, t,Val |= ϕ(αk−1(ff)). Because k was chosen the smallest pos-
sible there must exist δ ∈ ∆ s.t. M, t,Val |= 〈P ∗〉δ. But then because t
is reachable from s by program P we have also that M, s,Val |= 〈P ∗〉δ.
Contradiction.

This is maybe the place to comment on the inclusion of the cut rule in
our system. Since the rule (ind) has the specific shape of reducing connective
which can be “hidden” deep into the formula, the addition of the cut rule
seems to be a reasonable way to make the system usable. The completeness
proof will give us an algorithm for constructing a proof of a valid formula
and, as we will see this proof will have some kind of subformula property even
though cuts will be used in it. The conclusion is that cuts in the proof can
be used in a very restricted way and one can substitute them by appropriate
rules which may be added to the system. Addition of the cut rule makes the
system simpler and since we have an algorithm for automatic construction
of a proof of a valid sequent we prefer the presented formulation.

The next step is to show the following useful fact which will allow sub-
stituting equals for equals:

Fact 3.1.4 For any formula ψ(X1, . . . , Xk) with X1, . . . , Xk occurring pos-
itively in ψ and provable sequents δi ` γi for each i = 1, . . . , k, the sequent
ψ(δ1, . . . , δk)`ψ(γ1, . . . , γk) is provable.

This will follow from

Lemma 3.1.5 Let ~X and ~Y denote the sequences of variables X1, . . . , Xn

and Y1, . . . , Yn respectively. Let ϕ(~X) be a formula with free variables ~X
each occurring only positively or negatively in it, let a1, . . . , ai be all actions
occurring in ϕ(~X) and let P = a1 ∪ . . . ∪ ai. For any finite set of formulas
∆ there is a diagram of ϕ(~X)`ϕ(~Y), 〈P ∗〉∆ in which the only leaves which
are not axioms are of the form Xi`Yi, 〈P ∗〉∆, if the variable Xi occurs only
positively, and Yi `Xi, 〈P ∗〉∆, if the variable Xi occurs only negatively in
ϕ(X1, . . . , Xn).

Proof
Proof proceeds by induction on the structure of ϕ.

— if ϕ is one of the free variables or some propositional constant then the
lemma is obvious.

46 CHAPTER 3. AXIOMATIZATION

— if ϕ = ¬ψ then the application of the derivable rule

ψ(~Y)`ψ(~X), 〈P ∗〉∆
¬ψ(~X)`¬ψ(~Y), 〈P ∗〉∆

gives us the desired conclusion.

— if ϕ = ψ1 ∧ ψ2 then we use the derivable rule

ψ1(~X)`ψ1(~Y), 〈P ∗〉∆ ψ2(~X)`ψ2(~Y), 〈P ∗〉∆
ψ1(~X) ∧ ψ2(~X)`ψ1(~Y) ∧ ψ2(~Y), 〈P ∗〉∆

— if ϕ = 〈a〉ψ then the rule to use is (〈〉)
ψ(~X)`ψ(~Y), 〈P ∗〉∆

〈a〉ψ(~X)`〈a〉ψ(~Y), 〈P ∗〉∆

— if ϕ = µV.β(V) then we use rule (ind) to the sequent

µV.β(V, ~X), νV.¬β(¬V, ~Y)`〈P ∗〉∆ (3.2)

from which the sequent

µV.β(V, ~X)`µV.β(V, ~Y), 〈P ∗〉∆
is obtainable by the (cut) rule. The sequents:

ff , νV .¬β(¬V , ~Y)`〈P∗〉∆

β(µV.Z ∧ β(V, ~X), ~X), νV.¬β(¬V, ~Y) `
〈P ∗〉((µV.Z ∧ β(V, ~X)) ∧ νV.¬β(¬V, ~Y)), 〈P ∗〉∆

are assumptions of the instance of (ind) rule in which (3.2) is the conclusion.

Clearly ff , νV .β(V , ~Y)`〈P∗〉∆ is provable and from the induction hypoth-
esis we have an appropriate diagram for

β(µV.Z ∧ β(V, ~X), ~X) `
β(µV.β(V, ~Y), ~Y), 〈P ∗〉((µV.Z ∧ β(V, ~X)) ∧ νV.¬β(¬V, ~Y)), 〈P ∗〉∆

(3.3)
The only leaves in that diagram which are not labeled by axioms are

µV.Z∧β(V, ~X)`µV.β(V, ~Y), 〈P ∗〉((µV.Z∧β(V, ~X))∧νV.¬β(¬V, ~Y)), 〈P ∗〉∆
This sequent is clearly provable. Hence sequent 3.3 is provable. Observe
that sequent 3.3 is equivalent to the second assumption of the instance of
(ind) rule.

3.2. DISCUSSION 47

— in cases when ϕ = ψ1 ∨ ψ2, ϕ = [a]ψ or ϕ = νV.β(V) we can just use the
fact that these connectives are defined by the connectives already considered.

Proposition 3.1.6 Any formula is provably equivalent to some positive
guarded formula

Proof
From Fact 3.1.4 it follows that it is enough to consider a formula of the
form µX.α(X) where α(X) is already positive guarded formula. Then,
following the steps of the proof of proposition 1.1.2 we obtain a formula
µX.(X ∨ ᾱ(X))∧ β(X) which is provably equivalent to µX.α(X) and where
all occurrences of X in ᾱ(X) and β(X) are guarded.

It is enough to show that µX.(X ∨ ᾱ(X))∧ β(X) is provably equivalent
to µX.ᾱ(X) ∧ β(X). This can done in quite straightforward way using
Lemma 3.1.5.

3.2 Discussion

Here we would like to consider some properties of the presented axiomatiza-
tion and relate it to the Kozen’s axiom system from the paper introducing
the µ-calculus [24]. Let us call this system Kµ here.

The system Kµ uses a different form of judgment. It has the form of
equality ϕ = ψ with the meaning that the formulas ϕ and ψ are semantically
equivalent. Inequality ϕ ≤ ψ is considered as an abbreviation of ϕ ∨ ψ = ψ.

Apart from the axioms and rules of equational logic (including substitu-
tion of equals by equals) there are the following axioms and rules:

48 CHAPTER 3. AXIOMATIZATION

(K1) axioms for Boolean algebra

(K2) 〈a〉ϕ ∨ 〈a〉ψ = 〈a〉(ϕ ∨ ψ)

(K3) 〈a〉ϕ ∧ [a]ψ ≤ 〈a〉(ϕ ∧ ψ)

(K4) 〈a〉ff = ff

(K5) α(µX.α(X))≤ µX.α(X)

(K6)
α(ϕ) ≤ ϕ

µX.α(X) ≤ ϕ
Our sequent Γ`∆ corresponds to inequality

∧
Γ ≤ ∨∆ in this notation.

We will call a rule derivable in the system Kµ iff there is a way to derive the
conclusion of the rule, assuming all the premises of the rule.

Proposition 3.2.1 Any rule derivable in the system Kµ must have the
property that for any structure M:

if all the premises of the rule are true in M then the conclusion
is true in M

The proposition follows directly from the observation that all the rules
of Kµ have this property. We will show that the rule (ind) of our system
does not have this property hence it cannot be derived in Kµ.

Proposition 3.2.2 There is a structure M and an instance of the (ind)
rule such that the premises are true in M but the conclusion is not.

Proof
Consider a structure M = 〈S,R, ρ〉 such that:

• S = N ∪ {∞}

• R(a) = {(i+ 1, i) : i ∈ N} ∪ {(∞, i) : i ∈ N}

• ρ(p) = {∞}

Here a is some action, p some propositional constant andN the set of natural
numbers.

3.2. DISCUSSION 49

Consider a sequent:
p ∧ [a]µX.[a]X` (3.4)

which is not valid inM becauseM,∞ |= p∧ [a]µX.[a]X . If we were to prove
the sequent 3.4 we could use rule (ind) directly and have the premises:

p, [a]ff ` (3.5)
p, [a]([a]µX.Z ∧ [a]X)`p∧ [a]µX.Z ∧ [a]X (3.6)

Clearly sequent 3.5 is true inM. To see why sequent 3.6 is true inM suppose
that for some valuation Val we haveM,∞,Val |= p∧[a][a](µX.Z∧[a]X) then
clearly N ⊆ Val(Z) hence also by lemma 3.1.2 N ⊆ ‖ µX.Z ∧ α(X) ‖V al
which means that M,∞,Val |= p ∧ [a](µX.Z ∧ [a]X).

The above proof also shows why we have called the rule, induction rule.
Of course Proposition 3.2.2 does not imply incompleteness of the system Kµ
even though the rules of Kµ are derivable in our system.

Proposition 3.2.3 All axioms of the systemKµ are provable in our system.
All rules of Kµ are derivable in our system

Proof
Provability of the axioms is very easy, so is also deriveability of the rules
other then (K6) and substitution of equals by equals. This second rule is
derivable by the fact 3.1.4.

For the rule (K6) let us assume α(ϕ)`ϕ and we will show how to prove
¬ϕ ∧ µX.α(X)` . Let P = a1 ∪ . . . ∪ ai where {a1, . . . , ai} is the set of all
actions occurring in α(ϕ).

To obtain ¬ϕ ∧ µX.α(X)`we can use induction rule if we prove

ff ∧ ¬ϕ` and ¬ϕ ∧ α(µX.Z ∧ α(X))`〈P ∗〉¬ϕ ∧ µX.Z ∧ α(X)

The first sequent is clearly provable. Using assumption that α(ϕ)`ϕ we will
have a proof of the second sequent if we only prove:

¬α(ϕ) ∧ α(µX.Z ∧ α(X))`〈P ∗〉¬ϕ ∧ µX.Z ∧ α(X)

This in turn is equivalent to proving

α(µX.Z ∧ α(X))`α(ϕ), 〈P ∗〉¬ϕ ∧ µX.Z ∧ α(X)

50 CHAPTER 3. AXIOMATIZATION

By Lemma 3.1.5 there is a diagram for this sequent in which the only leaves
which are not axioms are of the form

µX.Z ∧ α(X)`ϕ, 〈P ∗〉¬ϕ ∧ µX.Z ∧ α(X)

But such sequent is clearly provable.

Chapter 4

Proof of Completeness

Let us fix an unsatisfiable positive guarded formula ϕ0 of the µ-calculus.
In this chapter we will show how to construct a proof of the sequent ϕ0 `
in our system. We can consider only positive guarded formulas because
by Proposition 3.1.6 any formula is provably equivalent to some positive
guarded formula.

From Theorem 2.3.7 we know that there is a refutation of ϕ0. Because
the set of refutations of a formula is recognizable by a Rabin automaton,
there is a regular refutation. This refutation looks almost like a proof except
that it can have some loops.

The difficulty we face is as follows. If we take an infinite path of such
a refutation then we know that there is a µ-trace on it, i.e. there is an
occurrence of a µ-formula which regenerates i.o. and never disappears. It
was already shown by Kozen [24] how to use some derivable rules of his
system in such a clever way that it is possible to “cut” such a path, i.e.,
arrive at the axiom sequent after a finite number of steps. We can of course
apply such a cutting strategy to each path of a refutation. The problem
is that we will obtain a set of finite paths, each of them finishing with an
axiom, but usually it would be impossible to compose them back to a tree.

There is a similar problem in automata theory, with constructing a tree
automaton recognizing trees such that each path is accepted by some nonde-
terministic Büchi automaton. The solution there is to determinize the Büchi
automaton first. We will follow this idea here.

An elegant solution for the problem of determinizing Büchi automaton
was presented by Safra [45]. Rather then using his construction directly we
will modify it a little bit. We do this because we will then code every state

51

52 CHAPTER 4. PROOF OF COMPLETENESS

of the automaton as a formula of the µ-calculus hence the form of the state
will be very important to us.

This way we construct appropriate Rabin automaton over one letter al-
phabet TAϕ0 whose runs closely correspond to the refutations of ϕ0. We
can then use Theorem 1.3.1 which allows us to conclude that there is a small
graph Gϕ0 , with states of TAϕ0 as nodes, which unwinds to an accepting
run of TAϕ0 . In this graph special nodes which we call loop nodes can be
distinguished. This nodes can be seen as “witnesses” that unwinding of Gϕ0

is accepted by the automaton. On every cycle there is exactly one loop
node which “confirms” that the unwinding of the cycle is accepted by Aϕ0 .
Another important thing is that there is a natural partial order on loop
nodes.

What we would like to do now is to sketch the method we use to transform
a refutation of ϕ0 into a proof of the sequent ϕ0 ` . This method will be
different from the one used by Kozen and more suitable to use with our
induction rule. The example will allow us to show why deterministic strategy
is essential. It should also give some intuitions about coding states of Gϕ0

into the formulas of the µ-calculus, which will be the next step of the proof.
Let Dϕ0 be a definition list for the formula ϕ0. Let us suppose that we

would like to transform some refutation of ϕ0 into a proof of the sequent ϕ0 .̀
Let us look closer at some path P = {Σi D̀ϕ0

}i∈P of this refutation. Each
Σi is a set of formulas, probably with definition constants from Dϕ0 . If we
look at the sequence of expanded tableau sequents 〈[P]〉 = {〈[Σi]〉Dϕ0 D̀ }i∈P
then it occurs that this sequence can be seen as a path of a proof because
each sequent, accept the first, is one of assumptions in some logical rule
of which the preceding sequent is a conclusion. If P is finite then the last
sequent in the sequence is moreover an axiom. This means that a finite path
of a refutation can be transformed into a finite path which can be seen as a
path of a proof.

If we use this expansion to the whole refutation, we will obtain a tree
labeled with sequents which is almost a proof except that there can be infinite
paths. The whole problem lies in “cutting” this infinite paths.

Suppose P = {Dϕ0 Σ̀i
}i∈P is infinite then of course also the path 〈[P]〉 =

{〈[Σi]〉Dϕ0 D̀ }i∈P is infinite. The condition lied on infinite paths of refuta-
tions says that on P there must be a µ-trace, i.e. an infinite trace on which the
oldest regenerated constant is some µ-constant, say (U = µX.α(X)) ∈ Dϕ0 .
Because there can be only finitely many different sequents, U must be regen-
erated infintely often in the same sequent, say U,Σ D̀ϕ0

. This situation is

53

schematically presented below (the formulas from the trace are put in boxes
and on the right the path with expanded sequents is presented).

ϕ0 D̀ϕ0
ϕ0`

U ,Σ D̀ϕ0
µX.α(X) , 〈[Σ]〉 `

α(U) ,Σ D̀ϕ0
α(µX.α(X)) , 〈[Σ]〉 `

...
...

U ,Σ D̀ϕ0
µX.α(X) , 〈[Σ]〉 `

...
...

The path on the right is constructed according to logical rules but unfor-
tunately it is infinite. Let a1, . . . , an be all actions appearing in the formula
ϕ0 and let P stand for a PDL program (a1 ∪ . . .∪ an)∗. First observation is
that if we take any formula β and put a formula 〈P 〉β on right side of the
sequents then the obtained path

µX.α(X) , 〈[Σ]〉 `〈P 〉β
α(µX.α(X)) , 〈[Σ]〉 `〈P 〉β

...

µX.α(X) , 〈[Σ]〉 `〈P 〉β
...

will be still localy correct path in the sese that each sequent is obtained from
the other by some number of logical rules.

The second obsrevation is that if we take a fresh propositional variable,
Z, and repalce U with α(µX.Z ∧ α(X)) (instead of µX.α(X)) in the first
sequent of the path, we can get the following, still locally correct, path.

α(µX.Z ∧ α(X)) , 〈[Σ]〉 `〈P 〉β
α(µX.Z ∧ α(X)) , 〈[Σ]〉 `〈P 〉β

...

µX.Z ∧ α(X) , 〈[Σ]〉 `〈P 〉β
...

54 CHAPTER 4. PROOF OF COMPLETENESS

Observe that the first step becomes just identity but it has some influence.
We can look at the second sequent as obtained by replacing U with µX.Z ∧
α(X). This is the reason why we have µX.Z ∧ α(X) in place of U in the
last sequent. It is also important to know that U does not disapear on the
trace. If U disapeared on the trace then also additionall information would
disapear with it and all we could get would be µX.α(X) in the last sequent.
As we will see appearing and dissapearing of definition constants will concern
us during the whole proof.

Putting this observations together we proceed in a folowing way. In
the first place where regeneration of U was preformed, i.e. in the seqent
µX.α(X) , 〈[Σ]〉 ` , we apply the rule (ind) and obtain two premisses

ff , 〈[Σ]〉 ` α(µX.Z ∧ α(X)) , 〈[Σ]〉 `〈P 〉(〈[Σ]〉 ∧ µX.Z ∧ α(X))

The first one is clearly provable and with the second we just travel allong
the path of the refutation obaining the following path of a proof

α(µX.Z ∧ α(X)) , 〈[Σ]〉 `〈P 〉(〈[Σ]〉 ∧ µX.Z ∧ α(X))

α(µX.Z ∧ α(X)) , 〈[Σ]〉 `〈P 〉(〈[Σ]〉 ∧ µX.Z ∧ α(X))
...

µX.Z ∧ α(X) , 〈[Σ]〉 `〈P 〉(〈[Σ]〉 ∧ µX.Z ∧ α(X))

Observe that the last sequent is easily provable.
This way we have transformed an infinte path of a refutation into a finite

path of a proof tree. Unfortunatelly with this approach as it is now we can
run into at least one problem.

Important point is that while describing the cutting procedure, we have
taken a path of a refutation first and only then constructed a part of a proof.
To cut the path we needed to know which constant regenerates infintely often
and does not disapear on it. If we took different path, there could be other
constant and cutting strategy might be different. We would arrive with
parts of the proof, each for different path of the refutation, which would not
neccessary compose back to a tree. In other words we need a deterministic
cutting strategy, i.e., such a strategy which would depend only on ancestors
of a node and not on the whole path.

From the graph Gϕ0 we can read a deterministic strategy for dealing with
every path of the refutation, obtained by unwinding of Gϕ0 into an infinite
tree. The strategy will work almost as described in the example above.

4.1. AUTOMATON 55

The one very important difference is that it occurs that we are forced to
use induction rule in nodes where no regeneration of the µ-formula occurs.
That is we have to use induction rule on several occurences of the µ-formula
simultanously. This is the reason why the induction rule allows to consider
µ-formulas in the context.

The first step in construction of a deterministic strategy is to develop
means to code nodes of Gϕ0 , which are the states TAϕ0 , as formulas. The
coding Ff (s) of a state s will depend on the function f designating the part
of the structure of s to be coded.

The coding will be such that each transition in Gϕ0 will be derived in our
system. That is if t1, . . . , tk are all nodes to which there is an edge from s
in Gϕ0 then the sequent Ff (s)`Ff(t1), . . . , Ff (tn) will be provable.

In the last section of this chapter we construct a proof of ϕ0` . The proof
construction is guided not by the graph Gϕ0 itself, but by its unwinding to
the finite tree with “back edges” Tϕ0 . This simplifies construction a little
because there is a direct correspondence between Tϕ0 and the shape of a
proof obtained for ϕ0` .

The formula ϕ0 is fixed throughout this chapter. Additionally let Dϕ0

denote a definition list [〉ϕ0〈] = (W1 = σX.γ1(X)) . . .(Wd = σX.γd(X)). We
will consider only definition constants from Dϕ0 and when we will say that
a definition constant is older (younger) then the other we will mean that it
is older (younger) with respect to the definition list Dϕ0 .

4.1 Automaton

The goal of this section is to construct a special Rabin automaton TAϕ0 on
trees over one letter alphabet, which accepting runs closely correspond to the
refutations of ϕ0. We do this by constructing a special deterministic Rabin
automaton Aϕ0 on paths, which recognizes exactly the paths of a tableau
for ϕ0 with µ-trace on them.

Instead of determinizing some obvious Büchi automaton we will construct
Aϕ0 from the scratch. Since we will quickly arrive at trees labeled with states
which are itself trees, we will always call nodes of states vertices and nodes
of trees of states just nodes.

Consider an infinite path P of a tableau for ϕ0. We would like to check
whether there is a µ-trace on P or not. We can do this using simple non-
deterministic Büchi automaton. This automaton will go along the path and
pick one formula from each tableau sequent in such a way that it will form

56 CHAPTER 4. PROOF OF COMPLETENESS

a trace. Then acceptance conditions will be such that this chosen trace will
be accepted iff it is µ-trace. Obviously this automaton is nondeterministic
because of the tableau rule (and). If we have chosen formula α ∧ β in a
sequent α ∧ β,Γ D̀ then after application of the rule (and) we obtain a
sequent α, β,Γ D̀ and we may choose either formula α or formula β as the
next formula in a trace.

Our goal is to construct an automaton on trees recognizing refutations of
ϕ0. We cannot directly convert a nondeterministic automaton A on paths,
into an automaton on trees accepting trees whose all paths are accepted by
A. The reason is that although we can run A on each path separately, its
accepting runs not necessary may compose back to a tree to give a run of
the tree automaton. They would certainly compose if the path automaton
were deterministic.

An elegant determinization construction was given by Safra [45]. Later
we will need to code states of obtained automaton into formulas of the µ-
calculus. This means that the form of a states is important to us and the
succinct construction of Safra seems to be a good starting point.

Let us look more closely at the nondeterministic Büchi automaton we
have described above. We will first introduce two notions to facilitate its
description.

Definition 4.1.1 For any formula ϕ, possibly with definition constants, we
define the FL-closure of ϕ, FL(ϕ) as the set of all formulas which can occur
in a sequent Σ D̀ϕ0

obtainable from ϕ D̀ϕ0
by application of some number

of the tableau rules.
For any definition constant (U = σX.α(X)) ∈ Dϕ0 , let Cl(U) be the set

of all formulas which can occur in a sequent Σ D̀ϕ0
obtainable from ϕ D̀ϕ0

by application of some number of the tableau rules accept regeneration of
constants older then U .

The set of states of our nondeterministic Büchi automaton will contain
the set

{(ψ,Γ) : ψ ∈ FL(ϕ0),Γ ⊆ FL(ϕ0), ψ ∈ Γ}
and sets

{(U, ψ,Γ) : ψ ∈ Cl(U),Γ ⊆ FL(ϕ0), ψ ∈ Γ}
for any µ-constant, U in D. We also add an artificial start start state ε.
After reading the next input, Σ D̀ from a path P , the automaton will be
in a state (ψ,Σ) or (U, ψ,Σ). Intuitively the meaning of such a state is

4.1. AUTOMATON 57

that automaton has chosen formula ψ as a next formula of the trace under
construction. If the state is a triple (U, ψ,Σ) then it also means that the
automaton has decided that on the trace it constructs U will be the oldest
constant regenerated infinitely often. We will denote the set of all states by
Q. Observe that Q is finite.

The transition function of the automaton, δ, should be rather obvious.
From a state (ψ,Σ) on input Σ′ D̀ it can go to a state (ψ′,Σ′) or (U, ψ′,Σ′),
where U is some µ-constant and ψ′ is a formula obtained from ψ if a reduction
of ψ took place, or ψ′ = ψ otherwise. The transition function behaves
similarly if a state is a triple (U, ψ,Σ) but in this case the next possible state
must be of the form (U, ψ′,Σ′) that is it can be only a triple with the same
definition constant. Observe that in this case there is no possible next state
if ψ is a definition constant older then U and it is regenerated in the input
sequent. Form the start state ε there is only one transition, on the input
ϕ0 D̀ it goes to the state (ϕ0, {ϕ0}).

The accepting set of the automaton is the set of states F = {(U, U,Σ) :
Σ ∈ FL(ϕ0)}. It is easy to see that this automaton accepts exactly those
paths of a tableau for ϕ0 which have a µ-trace on them.

As we mentioned earlier we would like to have a deterministic automaton
and we are going to apply Safra’s determinization construction [45]. Let us
look what will be the result of this procedure.

The states of the obtained automaton will be labeled trees, i.e., tuples
T = 〈N, r, p,≺,nl〉 where:

• N is a set of vertices,

• r ∈ N the root of the tree,

• p : (N \ {r})→ N a parenthood function,

• ≺ is a sibling ordering, i.e., left-to-right ordering of nodes with a com-
mon father,

• nl(v), for any vertex v ∈ N , is a non-empty set of states of the nonde-
terministic automaton. It is called a node label of v.

Additionally each vertex can be colored white or green and the following
conditions hold:

1. The union of the node labels of the sons of any vertex is a subset of
the label of the father.

58 CHAPTER 4. PROOF OF COMPLETENESS

2. Any two sons of the same vertex have disjoint node labels.

Being in a state s and given a next input sequent Σ D̀ the next state is
obtained by performing the following sequence of actions:

1. Set color of all vertices to white.

2. For every vertex v of s replace nl(v) by
⋃
p∈nl(v) δ(p,Σ D̀).

3. If for some vertex v and constant U , a state (U, U,Σ) is in nl(v) then
create a rightmost son of v with the label {(U, U,Σ)}.

4. For every vertex v, if some p ∈ nl(v) belongs to a vertex to the left of
v in the tree s then delete p from nl(v).

5. Remove all vertices with empty labels.

6. For every vertex v whose label is equal to the union of the labels of its
sons, remove all descendants of v and light v green.

The accepting condition is that some vertex lights green infinitely often
on the run and disappears only finitely many times on the run.

From the results of Safra it follows that described deterministic automa-
ton accepts exactly the paths of a tableau for ϕ0 with µ-trace on them. To
see why it is the case it is probably convenient to think about the vertex
of a state s as representing a property that for each state (of the nondeter-
ministic automaton) occurring in the label of the vertex there is a run to it
(of the nondeterministic automaton) on which accepting states appear some
number of times. This number is exactly the depth of the vertex plus the
number of times the vertex lighted green since it disappeared last time.

Let us look at the states of the above deterministic automaton. Of course
it will be always the case that after reading a sequent Σ D̀ the automaton
will be in a state s such that each pair (ψ,Ω) or triple (U, ψ,Ω) occurring in
it will have the property that Ω = Σ. It will be also the case that for every
ψ ∈ Σ there will be a pair (ψ,Σ) in the label of the root. This means that
the last element of a state is redundant – it can be reconstructed from the
state. In the label of any son of the root of s there will be only triples, and
all triples in one label will have the same first component. Hence keeping U
in each triple (U, ψ,Σ) of a label is also somehow redundant. We can label
the whole vertex with U instead. Another redundancy is that for a fixed
ψ there can be many states (U, ψ,Σ) in s for different U . What’s more if

4.1. AUTOMATON 59

(U, ψ,Σ) appears in some label of s then also (U ′, ψ,Σ) will appear in s,
for any µ-constant U ′ older then U . This triples will appear in different
subtrees of s. All this redundancies make coding of the states into formulas
more difficult.

Below we will describe the construction which will give us the desired
automaton Aϕ0 , whose states are trees labeled just with formulas. Each
formula will appear on at most one path of a state. This means that for
any formula ϕ in the state there will be the lowest vertex containing this
formula. The price to pay is additional complexity of the states resulting
from adding a new labeling of vertices with definition constants from Dϕ0 .

States of the automaton Aϕ0 will be labeled ordered trees, i.e., tuples
T = 〈N, r, p,≺,nl, el〉 where:

• N is a set of vertices,

• r ∈ N the root of the tree,

• p : (N \ {r})→ N a parenthood function,

• ≺ is a sibling ordering, i.e., partial ordering relation which linearly
orders nodes with a common father,

• nl(v), for any vertex v ∈ N , is a non-empty subset of FL(ϕ0) called a
node label of v.

• el(v), for any vertex v ∈ N \ {r}, is a definition constant from Dϕ0

called an edge label of v.

Additionally each vertex can be colored white or green and the following
conditions hold:

1. The union of the node labels of the sons of any vertex is a subset (not
necessarily proper) of the label of the father.

2. For any vertex v the union of the node labels of those sons of v which
edge labels are equal el(v) is a proper subset of nl(v).

3. Any two sons of the same vertex have disjoint node labels.

4. If v is a son of w then el(v) is not older than el(w) with respect to the
definition list Dϕ0 .

5. If el(v) is a ν-constant then v has no ν-sons, i.e., sons with the edge
label being a ν-constant.

60 CHAPTER 4. PROOF OF COMPLETENESS

6. For any two sons, v and w, of the same vertex, if el(v) is older than
el(w) with respect to Dϕ0 , then v ≺ w.

Ordering ≺ can be extended to an ordering between not necessarily an-
cestral vertices. We say that v is to the left of w iff some (not proper)
ancestor of v is smaller in ≺ ordering then some (not proper) ancestor of
w. If v is a son of w and el(v) = W then we say that v is a W -son of w.
Conditions 1 and 3 guarantee that for any formula ψ occurring in a state s
there is the lowest vertex v such that ψ ∈ nl(v). We will call such a vertex
the ψ-vertex of s. Node and edge labels of a node v of a state s will be
denoted as nls(v) and el s(v) respectively.

The initial state of the automaton, s0 will be a tree consisting only of
the root labeled {ϕ0}. We do not introduce any artificial start state, as we
have done in the previous automaton, in order to simplify the description.
Instead we will assume that a path of a tableau starts not from the root but
from the next node. If we added artificial start state ε, then all the runs of
the automaton would have the same first two elements ε, s0.

It might be worth to compare the set of states obtained by this construc-
tion with that obtained by Safra’s construction. Vertices are now labeled
with formulas and not with pairs or triples, but we have added new label-
ing. Because of introduction of this labeling states have now more additional
properties. Property 1 is weaker than corresponding property in Safra’s con-
struction. We need additional properties 2, 4 and 5 to guarantee that states
are finite trees. The property 3 did not change and new property 6 describes
the behavior of the edge labeling with respect to the encoding.

In this new form of states, a vertex v, such that el(v) is a µ-constant U ,
represents the property that there exists a trace to it on which, from some
point, U is the oldest regenerated constant. This constant was regenerated
as many times as the vertex lighted green plus the number of ancestors with
the same edge label. Similarly we can interpret vertices labeled with ν-
constants except that we are not interested in the number of regenerations
in this case. There is also some similarity between edge labels of ancestors
of a vertex with last appearance records introduced in [16].

Next we describe the deterministic transition function of the automaton.
It will be always the case that after reading a sequent Σ D̀ϕ0

the automaton
will enter a state with the root labeled by Σ. Suppose the automaton is in
a state s after reading Σ D̀ϕ0

and the next input is Σ′ D̀ . The next state
is obtained by applying, to the tree s, the following sequence of actions:

4.1. AUTOMATON 61

1. Set color of all vertices to white.

2. Look at the next sequent Σ′ D̀ϕ0
on the path and locally transform

the labels of some vertices, depending on the rule applied to obtain
this sequent:

— for all rules other then (cons) just replace the reduced formula with
the resulting formulas, appearing in Σ′, in all vertices of s. This means
that for all rules other then (〈〉) the reduced formula is replaced by at
most two resulting formulas and other formulas remain intact. In case
of the (〈〉) rule:

〈a〉α,Σ D̀
α, {β : [a]β ∈ Σ} D̀ϕ0

we first delete all formulas not of the form [a]β, for some β, except the
formula 〈a〉α. Then we replace 〈a〉α with α and [a]β with β in each
node label of s

— if we apply regeneration rule (cons):

U,Γ D̀ϕ0

α(U),Γ D̀ϕ0

then let v be the lowest vertex of s such that U ∈ nl(v) and el(v) is
not younger (older or equal with respect to Dϕ0) than U . If there is
no such vertex then let v be the root of s. First replace U with α(U)
in the node labels of v and all ancestors of v. Next delete U from
node labels of all proper descendants of v. Additionally, if U or el(v)
is not a ν-constant, create a son w of v, with labels el(w) = U and
nl(w) = {α(U)}. Finally make w ≺-bigger than all its brothers with
edge labels not younger than U and smaller from all other brothers.

3. For any vertex v, if a formula ϕ occurs already in a vertex to the left
of v then delete ϕ from the node label of v.

4. Delete all vertices with empty labels.

5. For any vertex v such that el(v) = U is a µ-constant and nl(v) is
equal to the sum of the labels of its U -sons, light v green and delete
all descendants of v from the tree.

62 CHAPTER 4. PROOF OF COMPLETENESS

Automaton Aϕ0 accepts a run iff there is a vertex which disappears only
finitely many times and lights green infinitely many times on the run.

One word must be said about “vertex management”. In clause 2 of the
definition of the transition function we are at some point required to add a
new vertex to the state, i.e., a one not occurring in it already. Clearly we
could not have an infinite supply of vertices because the number of states of
the automaton must be finite. The solution is to “reuse” vertices, i.e., when
a vertex is deleted we put it into a common pool and when a new vertex is
needed just take any vertex from the pool. If we put initially into the pool
more vertices then the size of the largest possible state then we would be
sure that there is always something in the pool when needed. Hence our first
step is to find the bound on the size of the states of Aϕ0 .

Lemma 4.1.2 For any formula ϕ the size of FL(ϕ) is linear in the size of
ϕ.

Lemma 4.1.3 The size of a state tree is bounded by n ∗m + 1 where n is
the number of formulas in FL(ϕ0) and m the number of definition constants
in Dϕ0 . The number of states is finite.

Proof
Let s be any state of Gϕ0 . With every vertex v of s, except the root, we can
assign a pair (el(v), ϕ), where ϕ ∈ nl(v) is a formula not occurring in any
el(v)-son of v. This shows the upper bound on the number of states because
the assignment is injective.

The second part of the lemma follows directly from the first if we apply
the strategy for “reusing vertices” described above.

Hence what we have described is a Rabin automaton on strings. Before
proving correctness of the construction let us focus on one more specialized
property of the Aϕ0 which we will need in the future.

Lemma 4.1.4 For any µ-constant Ui = µX.αi(X) in Dϕ0 and vertex v of a
state s, reachable from the start state of the automaton Aϕ0 , s.t. el(v) = Ui,
the formula µX.αi(X) does not belong to nl(v).

Proof
Let us take a µ-constant Ui as above and define the set of formulas Cl as a
smallest set such that:

• α(Ui) belongs to Cl,

4.1. AUTOMATON 63

• if ψ ∈ Cl then all subformulas of ψ belong to Cl,

• if σX.β(X) ∈ Cl and there is a definition constant W such that W =
σX.β(X) is in Dϕ0 then β(W) belongs to Cl.

Observe that µX.αi(X) 6∈ Cl because all formulas in Cl are shorter. For
any state s and its vertex v s.t. el(v) = Ui we show by induction on the
number of steps needed to reach state s, that nls(v) ⊆ Cl.

The base step is when the vertex v is created in a state s. It’s label is
then exactly {α(Ui)}. The induction step is straightforward.

Finally we show correctness of the construction

Proposition 4.1.5 The automaton accepts a path P of a tableau for ϕ0 iff
there exists an infinite µ-trace on P .

The proof of the proposition is divided into left to right and right to left
implications.

Lemma 4.1.6 If the automaton Aϕ0 accepts a path P of a tableau for ϕ0
then there exists an infinite µ-trace on the path.

Proof
Consider an accepting run of the automaton S0, S1, ... We will denote by
nl i, eli the node labeling and the edge labeling of the state Si respectively.
Let v be a vertex which lights green i.o. in this run and disappears only
finitely many times. Consider two positions i, j, after v disappears last time,
such that v lights green in Si and next time it lights green in Sj .

First we would like to show that for every formula in nlj(v) there exists a
trace from some formula in nl i(v) such that the oldest constant regenerated
on the trace is el i(v) = elj(v). Clearly el i(v) is a µ-constant.
To do this we show that for any Sk, between Si and Sj , and any formula
ϕ ∈ nlk(v):

• if ϕ ∈ nlk(w) for some son w of v, then there is a part of a trace to ϕ
from some formula in nl i(v) such that the highest regeneration on it
is that of elk(w)

• otherwise there is a part of a trace to ϕ from some formula in nl i(v)
without any regeneration at all.

64 CHAPTER 4. PROOF OF COMPLETENESS

The proof is by induction on the distance from Si

• Base step when k = i is trivial.

• All steps except of regenerations are rather straightforward.

• If the last step was regeneration of a constant V then we have two
cases. The first is when V 6∈ nlk(v) or V is older than elk(V). This
case is easy because the only thing which can happen is that some
formula can be removed from the labels of all vertices in the subtree
of v.

In the other case when V ∈ nlk(v) and elk(v) is not younger than V
we have two possibilities

– If there is a son w of v, such that V ∈ nlk(w) and elk(w) is not
younger than V then no new son of v is created and V is replaced
by an appropriate α(V) in the label of w. This is sound as there
is a trace to α(V) with oldest regeneration being that of el k(w)
because there was one to V by induction hypothesis.

– If, on the other hand, V is older than elk(w) or there is no w at
all then from the induction hypothesis there is a trace to V on
which no constant older than V was regenerated. Hence there
is a trace to α(V) where V is the oldest regenerated constant.
According to the definition of the transition function a new son
of v, w′ is created with the node label {α(V)} and edge label
V . Additionally V is deleted from the label of w. These are
exactly the steps which must be done to make the induction thesis
satisfied.

Observe that vertices with edges labeled with ν-constants were needed in
the last step of the above induction.

Now consider a graph with the set of nodes

{(ϕ, k) : ϕ ∈ nlk(v), v lights green in Sk}

and an edge from (ϕ1, k1) to (ϕ2, k2) when there is a trace from ϕ1 in Sk1 to
ϕ2 in Sk2 on which el(v) is the oldest regenerated constant. Please remember
that v is our node which lights green infinitely often on the run. From what
we have shown above it follows that at for any (ϕ, k) there is an edge leading
to it from some (ψ, k′). This is because v lights green only when the sum

4.1. AUTOMATON 65

of the labels of its el(v)-sons is equal nl(v). This means that at least a part
of this graph is an infinite connected directed acyclic graph. The degree of
every vertex of it is of course finite hence there must exist an infinite path
in this graph. This path is a µ-trace we were looking for.

Lemma 4.1.7 If there is a µ-trace on a path P of a tableau for ϕ0 then the
automaton Aϕ0 accepts P .

Proof
Let us consider a path P with a µ-trace and the run of the automaton,
S0, S1, . . . on it. The trace on P is a sequence of formulas {αi}i∈I s.t. αi
occurs in the i-th tableau sequent of P . On the other hand the automaton
Aϕ0 has the property that after reading a tableau sequent Σ D̀ϕ0

, the root
of its current state is labeled by Σ. Hence αi is always present in the root
of the state Si.

From some moment j0, the oldest constant regenerated on the trace is
some µ-constant U . We can assume, without loss of generality, that αj0
occurs in a son of the root with edge label, not younger than U . Indeed,
otherwise we just have to wait, in the worst case, for the next regeneration
of U . From that moment formulas from the trace can only move to the
left according to clause 3 of the description of the transition function. But
because they can do it only finitely many times, after some time the trace
must settle in some son of the root, say v0, forever.

If v0 lights green i.o. then we are done. If not then let j1 be the last
moment v0 lights green. Not later than the next regeneration of U the
formula from the trace will appear in some W1-son of v0 where W1 is not
younger than U . After some moves to the left it must settle in some v1
forever. If v1 lights green i.o. we are done if not we repeat the reasoning and
find a son of v1, v2 an so on. Observe that we cannot go this way forever
because each state is a tree of bounded size.

Together Lemmas 4.1.7 and 4.1.6 prove Proposition 4.1.5 thereby showing
correctness of the construction.

The automaton Aϕ0 expands to a nondeterministic automaton on trees
over one letter alphabet TAϕ0 , such that its accepting runs closely corre-
spond to the refutations of ϕ0. Automaton TAϕ0 nondeterministically con-
structs a quasi-refutation for ϕ0 and runs Aϕ0 on each path. There is no
need to remember tableau separately because sequents which are read by

66 CHAPTER 4. PROOF OF COMPLETENESS

Aϕ0 are remembered in the roots of the corresponding states. Hence states
of TAϕ0 are exactly the states of Aϕ0 . The roots of an accepting run of TAϕ0

give us a refutation of ϕ0. Other way around given a refutation of ϕ0 we can
run the path automaton Aϕ0 on each path of the refutation separately and
because it is deterministic we will obtain a tree which is an accepting run of
TAϕ0 .

In [5] the following theorem is (implicitly) stated

Theorem 4.1.8 (Emerson) Suppose A is a Rabin automaton over a single
letter alphabet. If A accepts some tree then there is a graph G with states of
A as nodes which unwinds to an accepting run of A.

Because we know that there is a refutation of ϕ0, from this theorem
we conclude that there is a graph Gϕ0 , with states of Aϕ0 as nodes, which
unwinds to an accepting run of TAϕ0 . In the next sections we will show how
to construct a proof of ϕ0` from this graph.

4.2 Constructions on the graph

In this section we investigate the properties of the graph Gϕ0 . We define
several concepts which in turn will allow us to define the unwinding of Gϕ0

to a finite tree with “back edges” Tϕ0 . This tree will simplify our induction
argument in the completeness proof.

Since the unwinding of Gϕ0 is accepted by TAϕ0 , we know that on any
infinite path of it there is a confirming vertex, i.e. a vertex which lights
green i.o. and disappears only finitely many times. The crucial observation
is that for any state s of Gϕ0 and any path P passing i.o. through s, a
confirming vertex of P belongs to s and that we can linearly order such
confirming vertices. Intuitively, if we have this ordering Ord(s) = (v1, . . . , vi)
we know that on any infinite path passing i.o. through the state s, some vj
is a confirming vertex and that none of v1, . . . , vj−1 will ever disappear on
this path.

More formally let us start by fixing some arbitrary linear ordering on the
set of all vertices occurring in Gϕ0 , then Ord(s) can be described as follows:

Definition 4.2.1 For any node s of Gϕ0 we define an ordering of some of
the vertices from s. Let Ord(s) be the list (v1, . . . , vk) such that for each
i = 1, . . . , k, vi is defined by the following rule:

4.2. CONSTRUCTIONS ON THE GRAPH 67

Consider a graph obtained from Gϕ0 by deleting all nodes where
one of the vertices v1, . . . , vi−1 lights green. Let C be a nontrivial
strongly connected component, of this graph containing node s.
Then vi is the smallest vertex, in our fixed linear ordering on all
vertices, such that vi does not disappear in any node of C and
lights green in some node of C.

Observe that we can always find a vertex vi required in the above def-
inition because otherwise if we took a cycle through all the nodes of the
strongly connected component and unwind it to an infinite path, it would
not be accepted by the automaton Aϕ0 which contradicts our initial assump-
tions.

The ordering Ord(s) allows us to distinguish some special nodes of Gϕ0 ,
namely such that a vertex from Ord(s) lights green in s. Observe that such
a vertex must be the last vertex in Ord(s).

Definition 4.2.2 A node s of Gϕ0 is a loop node if Ord(s) = (v1, . . . , vi)
and vi lights green in s. The vertex vi will be called the green vertex of s

This notions allow us, among others, to define a special unwinding of
Gϕ0 .

Definition 4.2.3 We will unwind the graph Gϕ0 to the finite “tree with
loops” Tϕ0 =< T, S >, labeled with nodes of Gϕ0 , such that Gϕ0 and Tϕ0

unwind to the same infinite tree. We proceed as follows:

• The root of Tϕ0 will be labeled by the start node of Gϕ0 .

• Suppose n is already constructed node labeled by S(n). If there is an
edge from S(n) to a state s in Gϕ0 then we add a son of n labeled by s
to Tϕ0 . The only exception to this rule is when s is a loop node, there
is already an ancestor m of n labeled with s, and the only vertex from
Ord(s) which lights green on the path from m to n is the green vertex
of s. In this case we just add a back edge from n to m without creating
any son for s.

Fact 4.2.4 The tree Tϕ0 constructed above is finite.

Proof
Suppose that there is an infinite path in Tϕ0 without taking a back edge. Let
us take any state s of Gϕ0 which occurs infinitely often on this path. Consider

68 CHAPTER 4. PROOF OF COMPLETENESS

Ord(s) = (v1, . . . , vk). Between any two occurrences of s some vertex from
v1, . . . , vk must light green. Let us take the smallest i s.t. vi lights green i.o.
on the path.

Let s′ be the state which occurs i.o. on the path and where vi lights green.
This means that there is a cycle from s to s′ and back to s on which none of
v1, . . . , vi−1 lights green. It follows from the definition of Ord(s) that none
of v1, . . . , vi disappears on such a cycle. Hence Ord(s′) = (v1, . . . , vi). So s′

is a loop node and vi is its green vertex. In this case we can find two nodes
m,n of Tϕ0 labeled with s′, such that vi does not disappear and v1, . . . , vi−1
do not light green on the path from m to n. From the definition of Tϕ0 it
follows that the path should end before the node n. Contradiction.

The next concept is very important although quite straightforward. The
idea is to distinguish, for a node of Gϕ0 , these loop nodes to which we can
eventually arrive by taking back edges.

Definition 4.2.5 For any node m of Tϕ0 we define the set of active nodes
of m, AN (m) as the smallest set such that:

• For any, maybe not proper, ancestor n of m such that there is a back
edge from some, maybe not proper, descendant of m to n, let n ∈
AN (m)

• if n ∈ AN (m) then AN (n) ⊆ AN (m)

Let AV (m), the set of active vertices of m, be the set of the green vertices
of all the nodes from AN (m). Observe that only loop nodes can belong to
AN(m).

Final lemma of this section presents the properties of active vertices and
loop nodes we will need in the definition of the coding and in the final
induction argument.

Lemma 4.2.6 For any node m of Tϕ0 and v ∈ AV (m), v is a vertex of
S(m). If there is an edge from m to m′ in Tϕ0 then: if there is no back edge
to n then AN (m′) ⊆ AN (m); otherwise AN (m′) ⊆ AN (m) ∪ {m′}.

Proof

To prove the first point of the lemma we will show that for any node
n ∈ AN (m), Ord(S(n)) is a prefix of Ord(S(m)) hence a green node of S(n)

4.3. CODING STATES INTO FORMULAS 69

occurs in Ord(S(m)). Directly from the definition it follows that all vertices
from Ord(S(m)) occur in S(m).

We do the proof by induction on the height of the vertex m. We only
present induction step because it is more general. Observe that all vertices in
AN (m) are ancestors of m hence by yet another induction on the distance
from m we can prove that for any n ∈ AN (m), Ord(S(n)) is a prefix of
Ord(S(m)). We have two cases:

— There is a back edge from some, maybe not proper, descendant of m, say
m′, to n. From the definition of Tϕ0 , we know that n is a loop node and on
the path from n to m′, going through m, none of the vertices from Ord(S(n))
disappears and the last one lights green. Directly from the definition of the
ordering follows that Ord(S(n)) is a prefix of Ord(S(m)).

— There is a node n′ ∈ AN (m) such that n ∈ AN (n′). Then because n′ is an
ancestor of m we have that Ord(n) is a prefix of Ord(n′) from the outermost
induction assumption. On the other hand because n′ is closer to m than n
then Ord(n′) is a prefix of Ord(m) from the nested induction assumption.
From this two facts we have that Ord(n) is a prefix of Ord(m).

The second part of the lemma follows directly from the definition of
AN (m).

4.3 Coding states into formulas

The next step is to develop some means to code the states occurring in Gϕ0

as a formulas of the µ-calculus. This is the object of this section together
with presenting the main properties of the defined coding.

The coding Ff (n) of a node n, will depend on a function f designating
the part of the structure which needs to be coded. The coding will allow us
to reduce the task of proving Ff (n)`∆ to constructing proofs for Ff (m1)`
∆, . . . , Ff(mi)`∆, where m1, . . . , mi are all sons of n in Gϕ0 . Of course the
coding must be such that proving sequents constructed for the sons is simpler
then the original one. As we will see in the next section rule (ind) allows
to “remember” some regenerations in sequents. This information takes the
form of a fresh variable Z introduced in the rule. The coding must be such
that the important part of this information, i.e. this designated by function
f , is not forgotten.

70 CHAPTER 4. PROOF OF COMPLETENESS

We will use here a convention that Ui will stand for the i-th µ-constant
in Dϕ0 and µX.αi(X) for the formula it defines. Additionally let dµ denote
the number of µ–constants in Dϕ0 .

Definition 4.3.1 Let s be any state of Gϕ0 . A function from vertices oc-
curring in the states of Gϕ0 to N ∪{∞} will be called admissible for s iff for
any vertex v of s, such that f(v) =∞, the vertex v has no el(v)-sons in s.

For any vertex v of s we also define the set of close ancestors of v

{v}↑s = {u : u ancestor (maybe not proper) of v in s, el(u) = el(v)}

Intuitively, an admissible function f designates the part of a state which
has to be coded. This can be seen in the following notion of the signature
of a vertex. This syntactic signature has some degree of resemblance to the
semantic signature from the Definition 2.3.1. Instead of ordinals we use here
fresh variables to distinguish approximations of fixpoints.

Definition 4.3.2 For any state s of Gϕ0 , f admissible function for s and
any vertex v of s, we define a signature of v, denoted ‖ v ‖fs , as a sequence of
formulas (δ1, . . . , δdµ). Formula δi is defined as follows. Let u be the lowest
(maybe not proper) ancestor of v, such that el(u) = Ui, or the root if there
is no such ancestor. Then:

• if f(u) =∞ then δi = ff ,

• if f(u) = 0 then δi = µX.V ∧ αi(X),

• if ∞ > f(u) > 0 then δi = V ′ ∧ αi(µX.V ∧ αi(X)) ,

where:
V=

∧{Zjw : w ∈ {u}↑s , 1 ≤ j ≤ f(w)}
V ′=∧

(
{Zjw : w ∈ {u}↑s , 1 ≤ j ≤ f(w)} \ {Zf(u)

u }
)

The variablesZjw , we have used, are assumed to be variables not occurring
free in ϕ0.

If s is a loop node then we also define the signature ‖ v ‖fs . The signature

‖ v ‖fs differs from ‖ v ‖fs only if v is the green vertex of s and∞ > f(v) > 0.
In this case signatures differ only at position i, such that Ui = el(v). Namely,
the i-th coordintate of ‖ v ‖fs is µX.V∧αi(X) instead of V ′∧αi(µX.V∧αi(X))
in the signature ‖ v ‖fs . Here

V ′ = ∧({Zjw : w ∈ {v}↑s , 1 ≤ j ≤ f(w)} \ {Zf(v)
v }

)
V = V ′ ∧ Zf(v)

v

4.3. CODING STATES INTO FORMULAS 71

Using our “syntactical” signatures the coding of states is defined below.

Definition 4.3.3 Let ψ be a formula occurring in a state s of Gϕ0 . Let v
be a ψ-vertex of s, i.e. the lowest vertex of s containing ψ, and let ‖ v ‖fs =
(δ1, . . . , δdµ). We define

‖ ψ ‖fs = ψ[γ ′d/Wd] . . . [γ ′1/W1]

where Dϕ0 = (W1 = γ1) . . .(Wd = γd) and γ ′i = γi if Wi is a ν-constant or
γ ′i = δj if Wi = Uj is the j-th µ-constant of Dϕ0 .

If Γ is a set of formulas occurring in vertices of s then let

‖ Γ ‖fs = {‖ ψ ‖fs : ψ ∈ Γ}

Finally Ff (s) will stand for
∧ ‖ Σ ‖fs , i.e. the conjunction of all formulas

from ‖ Σ ‖fs , where Σ is the set of all formulas occurring in s. By definition
of the states, Σ is also the label of the root of s.

If s is a loop node then we define ‖ ψ ‖fs and F f (s) in a similar way using

‖ v ‖fs instead of ‖ v ‖fs in the above clauses.

The following lemma expresses the fact that lower vertices contain more
information in its signature then their ancestors. If we look closer, this
additional information is a “regeneration history” of a formula.

Lemma 4.3.4 Let s be a state of Gϕ0 , let f be admissible function for s
and let v, w be two vertices of s, such that v is an ancestor of w. For any
i = 1, . . . , dµ, if δi is the i-th element of ‖ v ‖fs and δ′i is the i-th element of
‖ w ‖fs then the sequent δ′i`δi is provable.

Proof
Let us choose any i ∈ {1, . . . , dµ}. If w′, the lowest ancestor of w s.t. el(w′) =
Ui, is also an ancestor of v then δi = δ′i and we are done. Otherwise let v′

be either the lowest ancestor of v s.t. el(v′) = Ui or the root if there is no
such ancestor.

• if f(w′) =∞ then δ′i = ff and of course δ′i`δi is provable.

• if f(w′) = 0 then

δ′i = µX.V ∧ α(X) V =
∧({Zju : u ∈ {w′}↑s , 1 ≤ j ≤ f(u)})

72 CHAPTER 4. PROOF OF COMPLETENESS

and there are two possibilities for δi

δi = V1 ∧ α(µX.V2 ∧ α(X)) or δi = µX.V2 ∧ α(X)
V1 =

∧({Zju : u ∈ {v′}↑s , 1 ≤ j ≤ f(u)} \ {Zf(v′)
v′ }

)
V2 = V1 ∧ Zf(v′)

v′

But clearly V ` V2 is provable because w′ is a proper descendant of
v′. Hence, because all occurrences of V ,V1,V2 are positive we have the
proof of δ′i`δi by Lemma 3.1.4.

• If f(w′) > 0 then the reasoning is very similar.

As was already mentioned the amount of information about s which is
coded in Ff (s) depends on the function f . There is a natural ordering of
functions which reflects this dependence.

Definition 4.3.5 Let v be a binary relation on functions from vertices oc-
curring in the nodes of Gϕ0 to N ∪ {∞} such that f v g iff f(v) ≤ g(v) for
every vertex v . Let ⊥ denote the function constantly equal 0.

Lemma 4.3.6 For any state s of Gϕ0 and functions f, g admissible for s
such that f v g, the sequents Fg(s)`Ff(s) and F g(s)`F f (s) are provable.

Proof
The lemma follows directly from the observation that if f v g then {Z ju :
u ∈ {v}↑s , 1 ≤ j ≤ f(u)} ⊆ {Zju : u ∈ {v}↑s , 1 ≤ j ≤ g(u)}, for any vertex
v of s. Hence the sequent ‖ ψ ‖gs `‖ ψ ‖fs is provable for any ψ occurring in
s.

Finally we show the most important fact about our labeling. It will allow
us to transfer the labeling from one node of the graph to the other.

Lemma 4.3.7 For any state s of Gϕ0 and function f , admissible for s and
equal 0 for all vertices not occurring in s, we have:

1. if there is an edge from s to t and a vertex w of t s.t. f(w) =∞, then
Ff (s)`ff is provable if either w lights green in t or w has an el(w)-son
in t.

2. Ff (s)`Ff(t) is provable if the tableau rule other then (〈〉) or (or) was
used in s and t is the resulting state.

4.3. CODING STATES INTO FORMULAS 73

3. Ff (s)` 〈a〉Ff(t) is provable if the reduction of the action a was used
in s and t is the resulting state.

4. Ff (s)`Ff(t1), Ff(t2) is provable if the tableau (or) rule was used and
t1, t2 are the resulting states.

5. if t is a loop node then we can replace Ff (t) by F f (t) in the above
clauses (and similarly Ff(t1), Ff(t2) by F (t1) and F (t2) respectively in
the last clause).

Proof

Proof will proceed by cases depending on the rule which was used in a
node s but first we will show the lemma which will be used in each of the
cases.

Lemma 4.3.8 Suppose r is obtained from s by applying all but the last
fifth step of the transition function and t is the state resulting after the
application of this last step, i.e., some of the vertices of r might light green
in t and have all its sons deleted. For any f as in Lemma 4.3.7: if t is a loop
node of Gϕ0 then the sequent Ff (r)`F f(t) is provable and if t is not a loop
node then Ff (r)`Ff(t) is provable

Proof
Let Γ be the label of the root of r which is the same as the label of the
root of t. By the construction of the states, Γ is also the set of all formulas
occurring in r as well as in t. For any formula ψ ∈ Γ, the ψ-vertex in t,
denoted vt is an ancestor of the ψ-vertex in r, denoted vr or vertices vt and
vr are the same. If they are the same then ‖ ψ ‖fr = ‖ ψ ‖ft . Otherwise
let (δ1, . . . , δdµ) = ‖ vt ‖fr = ‖ vt ‖ft and (δ′1, . . . , δ

′
dµ) = ‖ vr ‖fr . Because vr

is a descendant of vt in r then from Lemma 4.3.4 it follows that δ′i ` δi is
provable for i = 1, . . . , dµ. Hence the sequent ‖ ψ ‖fr `‖ ψ ‖ft is provable by
Lemma 3.1.4 because all occurrences of definition constants are positive.

This shows that Ff (r) ` Ff (t) is provable. To see why Ff (r) ` F f(t)

is provable when t is a loop node, first observe that ‖ ψ ‖ft = ‖ ψ ‖ft if a
ψ-vertex of t is not the green vertex of t.

Let u be the green vertex of t, ψ ∈ nl(u) and let el(u) = Ui be the i-th
µ-defintion constant in Dϕ0 . Because u lights green in t there must be a son
u′ of u, in r s.t. ψ ∈ nl(u′) and el(u′) = el(u). The only difference between
‖ u ‖ft = (δ1, . . . , δdµ) and ‖ u′ ‖fr = (δ′1, . . . , δ

′
dµ) is at position i. But from

74 CHAPTER 4. PROOF OF COMPLETENESS

the definition of signatures it follows that δ ′i`δi is provable. Then using once
again Lemma 3.1.4 we have that ‖ ψ ‖fr `‖ ψ ‖

f

t is provable. This completes
the proof.

Going back to the proof of Lemma 4.3.7 we consider the rules of the
tableau system Sref one by one.

— Suppose the rule applied in s is:

α ∧ β,Γ D̀ϕ0

α, β,Γ D̀ϕ0

Let r be a state obtained from s by applying all but the last fifth step of the
transition function on the input α, β,Γ D̀ϕ0

. This means that the color of
all vertices in s is set to white, the formula α∧β is replaced by two formulas,
α and β. Next, if a formula α or β occurs in a vertex v and occurs in a vertex
to the left of it then the formula is deleted from the label of v. Finally the
vertices with empty labels are removed. Observe that in r there may still
occur vertices which would light green and have all its sons removed if the
last step of transition function were applied. We will show that

‖ α ∧ β,Γ ‖fs `
∧
‖ α, β,Γ ‖fr

is provable.

For any formula ϕ ∈ Γ, ϕ 6= α, ϕ 6= β we have ‖ ϕ ‖fs = ‖ ϕ ‖fr because
ϕ-vertices in s and r are the same.

If also α∧β-vertex in s is the same as α-vertex in r then clearly ‖ α ∧ β ‖fs `
‖ α ‖fr . If it is not the case then it must be because α ∈ Γ and α occurs
to the left of α ∧ β in s. But then α-vertices in s and r are the same and
‖ α ‖fs = ‖ α ‖fr . We can use similar argument for formula β.

This shows that the sequent ‖ α ∧ β,Γ ‖fs `
∧ ‖ α, β,Γ ‖fr is provable. From

Lemma 4.3.8 we obtain the hypothesis.

— If the rule applied in s is:

µX.αi(X),Γ D̀ϕ0

Ui,Γ D̀ϕ0

4.3. CODING STATES INTO FORMULAS 75

then, as before, let r be a state obtained form s by applying all but the last
fifth step of the transition function on the input Ui,Γ D̀ϕ0

. We will show
that the sequent

‖ µX.αi(X),Γ ‖fs `
∧
‖ Ui,Γ ‖fr

is provable.

For any ϕ ∈ Γ, ϕ 6= Ui, ϕ-vertices in s and r are the same hence ‖ ϕ ‖fs =
‖ ϕ ‖fr . For the formula Ui we have two possibilities. The first possibility is
that Ui-vertices in s and r are the same. In this case also ‖ Ui ‖fs = ‖ Ui ‖fr .

Otherwise the Ui-vertex in r is a µX.α(X)-vertex in s, call it v. By defini-
tion 4.3.3, ‖ µX.αi(X) ‖fs = µX.αi(X)[γd/Wd] . . . [γ1/W1] where each γi is
determined using the signature ‖ v ‖fs . Now ‖ Ui ‖fr = Ui[γd/Wd] . . . [γ1/W1]
for the same formulas γj , j = 1, . . . , d, because v is the Ui-vertex in r.

It is enough to show that ‖ µX.αi(X) ‖fs = ‖ Ui ‖fr . By construction of the
definition list, only constants older then Ui can appear in µX.αi(X). From
Lemma 4.1.4 it follows that there is no ancestor of v, with edge label Ui.
This means that in signature ‖ v ‖fs = (δ1, . . . , δdµ), its i-th coordinate δi is
µX.αi(X). Hence

‖ µX.αi(X) ‖fs = µX.αi(X)[γj/Wj] . . . [γ1/W1]

‖ Ui ‖fr = Ui[µX.αi(X)/Ui][γj/Wj] . . . [γ1/W1]

where Wj is the youngest definition constant older than Ui.

Having shown that ‖ µX.αi(X),Γ ‖fs `
∧ ‖ Ui,Γ ‖fr is provable it is enough

to use Lemma 4.3.8 to complete this case.

— If the rule applied in s is:

νX.βi(X),Γ D̀ϕ0

Vi,Γ D̀ϕ0

then the reasoning is entirely the same as in the preceding case

— Suppose the rule applied in s is:

Ui,Γ D̀ϕ0

αi(Ui),Γ D̀ϕ0

76 CHAPTER 4. PROOF OF COMPLETENESS

where Ui is the i-th µ-constant in the definition list Dϕ0 . Let, as before,
r be a state obtained form s by applying all but the last fifth step of the
transition function on the input αi(Ui),Γ D̀ϕ0

and t be a state obtained by
applying this last step to r.

Till now we have not considered clause 1 of the lemma’s hypothesis because
in order to satisfy the premise of the clause some new vertex must be created
or light green. To light green, a vertex must first have some sons. If a vertex
w has no el(w)-sons in s and lights green in t then it must have some el(w)-
son in an intermediate state r. The rule we consider now is the only rule
when this can happen.

Let v be the lowest vertex in s such that Ui ∈ nl(v) and el(v) is not younger
than Ui, or let v be the root of s if there is no such vertex. By the definition
of transition function only one new vertex is added and it becomes a son of
v. Hence for the conditions of clause 1 to be satisfied, v must have a Ui son
in r, f(v) =∞ and el(v) = Ui.

If f(v) = ∞ then from the definition of a signature the i-th element of
‖ v ‖fs is ff and, because Ui ∈ nl(v), we have that ff ∈ Ff (s) and Ff (s)`ff
is provable. This completes the proof for the case when the assumptions of
clause 1 are satisfied.

We focus now on the proof of clause 2. We will show that:

‖ Ui,Γ ‖fs `
∧
‖ αi(Ui),Γ ‖fr

is provable.

For any ϕ ∈ Γ, such that ϕ 6= αi(Ui), the ϕ-vertices in s and r are the same
hence ‖ ϕ ‖fs = ‖ ϕ ‖fr . If also αi(Ui)-vertices of r and s are the same then
we are done.

If this is not the case then let w be the Ui-vertex in s and let v be the lowest
vertex in s such that Ui ∈ nl(v) and el(v) not younger Ui or let v be the
root of s if there is no such vertex. By the definition of transition function
the α(Ui)-vertex u in r, is a son of the vertex v.

Observe that only definition constants not younger than Ui can appear in
αi(Ui). Hence by definition of the signature:

‖ Ui ‖fs = Ui[γk/Ui] . . . [γ1/W1]

‖ αi(Ui) ‖fr = αi(Ui)[γ ′k/Ui] . . . [γ
′
1/W1]

4.3. CODING STATES INTO FORMULAS 77

where, according to Definition 4.3.3, γ1, . . . , γk, γ
′
1, . . . , γ

′
k are defined using

the first i elements of signatures ‖ w ‖fr and ‖ u ‖fr respectively. Because v
is the lowest ancestor of w s.t. el(v) is not younger Ui, the signatures ‖ v ‖fs
and ‖ w ‖fs are the same up to position i. Hence we can compare ‖ u ‖fr with
‖ v ‖fs not with ‖ w ‖fs .

Because u is a son of v and el(u) = Ui, the signatures of ‖ v ‖fs and ‖ u ‖fr
may differ at most on the position i. That is, γl = γ ′l for l ∈ {1, . . . , k− 1}.
Let us denote by δi and δ′i the formulas at the i-th position in the signatures
‖ v ‖ft and ‖ u ‖ft respectively.

We have already considered the case when f(v) =∞ and v has an el(v)-son
in r when we took clause 1 into account. Hence we can assume that either
f(v) < ∞ or el(v) 6= Ui. Because u is a new vertex by assumption of the
lemma we know that f(u) = 0 and the i-th element of ‖ u ‖fr is

δ′i = µX.V ′ ∧ αi(X) where V ′ =∧{Zjw : w ∈ {u}↑s , 1 ≤ j ≤ f(w)}

If el(v) 6= Ui then V ′ = true and δi = µX.αi(X) = δ′i in this case. Otherwise
we have two cases depending on whether f(v) = 0 or ∞ > f(v) > 0:

• If f(v) = 0 then

δi = µX.V ∧ αi(X) where V =
∧{Zjw : w ∈ {v}↑s , 1 ≤ j ≤ f(w)}

But of course V ′ = V and

‖ Ui ‖fs = µX.V ∧ αi(X)[γk−1/Wk−1]..[γ1/W1]

‖ αi(Ui) ‖fr = αi(µX.V ∧ αi(X))[γk−1/Wk−1]..[γ1/W1]

Hence the sequent ‖ Ui ‖fs `‖ αi(Ui) ‖fr is provable in this case.

• If f(v) > 0 then
δi = V1 ∧ αi(µX.V ∧ αi(X))

where V is as above and V1 = V ∧ Zf(v)
v . Furthermore we have:

‖ Ui ‖fs = V1 ∧ αi(µX.V ∧ αi(X))[γk−1/Wk−1]..[γ1/W1]

‖ αi(Ui) ‖fr = αi(µX.V ∧ αi(X))[γk−1/Wk−1]..[γ1/W1]

Hence the sequent ‖ Ui ‖fs `‖ αi(Ui) ‖fr is provable also in this case.

78 CHAPTER 4. PROOF OF COMPLETENESS

Having shown that the sequent ‖ Ui,Γ ‖fs `
∧ ‖ αi(Ui),Γ ‖fr is provable we

apply Lemma 4.3.8 to show the desired conclusion.

— If the rule applied is:
V,Γ D̀ϕ0

β(V),Γ D̀ϕ0

where V is a ν-constant then the reasoning is the same as in the preceding
case.

— If the rule applied in s is

〈a〉α,Γ D̀
α, {β : [a]β ∈ Γ} D̀ϕ0

then let, as before, r be a state obtained form s by applying all but the last
fifth step of the transition function on the input α, {β : [a]β ∈ Γ} D̀ϕ0

. To
show that

‖ 〈a〉α,Γ ‖fs `〈a〉
∧
‖ α, {β : [a]β ∈ Γ} ‖fr

is provable it is enough to show that we can prove:

‖ 〈a〉α,Γ ‖fs `〈a〉‖ α ‖fr ∧
∧
{[a]‖ β ‖fr : [a]β ∈ Γ}

For each formula ϕ ∈ {β : [a]β ∈ Γ}, ϕ 6= α we have that the [a]ϕ-vertex in
s is the same as the ϕ-vertex in r. Hence ‖ [a]ϕ ‖fs = [a]‖ ϕ ‖fr .

Looking at the formula α, the α-vertex in r can be either the same as the
[a]α-vertex in s (if [a]α ∈ Γ and occurred to the left of 〈a〉α in s) or the same
as the 〈a〉α-vertex in s. In the first case ‖ [a]α ‖fs = [a]‖ α ‖fr . In the second
‖ 〈a〉α ‖fs = 〈a〉‖ α ‖fr .

As before we use Lemma 4.3.8 to finish the proof of the hypothesis.

— If the rule applied in s is:

α ∨ β,Γ D̀ϕ0

α,Γ D̀ϕ0
β,Γ D̀ϕ0

then let r1 and r2 be the states obtained from s by applying all but the last
fifth step of the transition function on the inputs α,Γ D̀ϕ0

and β,Γ D̀ϕ0
respectively. We will show how to prove:

4.4. COMPLETENESS PROOF 79

‖ α ∨ β,Γ ‖fs `
∧
‖ α,Γ ‖fr1 ,

∧
‖ β,Γ ‖fr2

For every formula ϕ ∈ Γ, such that ϕ 6= α, ϕ 6= β we know that ϕ-vertices r1
and r2, in s are the same, hence ‖ ϕ ‖fs = ‖ ϕ ‖fr1 = ‖ ϕ ‖fr2 . If the α-vertex
in r1 and the β-vertex in r2 are the same as the α ∨ β-vertex in s then of
course ‖ α ∨ β ‖fs = ‖ α ‖fr1 ∨ ‖ β ‖

f
r2

and we are done.

If the α-vertex in r1 is different from the α∨β-vertex in s then it must be the
case that α ∈ Γ and the α-vertices in s and r1 are the same. Then of course
‖ α ‖fs = ‖ α ‖fr1 . The same reasoning shows that ‖ α ∨ β,Γ ‖fs `‖ β,Γ ‖fr2 is
provable. An application of Lemma 4.3.8 gives us the desired conclusion.

4.4 Completeness proof

In this final section we describe the construction of a proof of the sequent
ϕ0` in our system. As we will see this proof can be “read” from the tree Tϕ0 ,
i.e., a finite tree with back edges labeled with states of Aϕ0 as described in
definition 4.2.3. This means that using our coding of states the construction
of the proof of ϕ0` will be directed by the structure of Tϕ0 .
Tϕ0 = 〈T, S〉, as we have already mentioned during its construction, is

not a real tree but rather a finite tree with “loops”, i.e., back edges from
leaves to some ancestors. Sometimes we prefer to treat Tϕ0 as a finite tree
and when we say, for example, that a node is an ancestor of some other node
we mean that it is an ancestor in the tree without back edges. We write
Ff (n) instead of Ff (S(n)) and similarly F f (n) for F f(S(n)). We will also
use one more abbreviation, let a1, . . . , ak be all actions occurring in ϕ0, then
P will stand for the PDL program a1 ∪ . . .∪ ak .

Let us assume that ϕ0 ` is unprovable. We will show that from this
assumption it follows that we can find an infinite path in Tϕ0 without taking
back edges, i.e. that Tϕ0 is infinite, which contradicts Fact 4.2.4. This infinite
path will start in n0, the root of Tϕ0 . The following lemma will allow us to
extend the path

Lemma 4.4.1 Suppose that we have constructed a path up to a node m
of Tϕ0 and to each node m′ on the path we have assigned a function fm′ ,
admissible for S(m′). Assume also that the sequent:

80 CHAPTER 4. PROOF OF COMPLETENESS

Ffm(m)`〈P ∗〉F f1(n1), . . . , 〈P ∗〉F fj (nj) (4.1)

is not provable, and moreover the following conditions hold:

I1 {v : fm(v) > 0} = AV (m)

I2 {n1, .., nj} = {n : n ∈ AN (m),∞ > fm(v) > 0, v green vertex of n}

I3 for each i = 1, . . . , j, fi is the function assigned to ni, fi v fm.

Then we can find a son n of m, in the tree Tϕ0 without back edges, and
an admissible function fn such that for node n sequent similar to (4.1) sat-
isfying conditions I1, I2 and I3 can be constructed. This sequent is uniquely
determined by n and fn.

If n0 is the root of Tϕ0 then S(n0), the start state of Aϕ0 , consists only
of the root labeled {ϕ0}. Of course n0 cannot be a loop node because it
has no vertices to light green. From the definition of the coding follows that
F⊥(n0) = ϕ0. Therefore, if ϕ0 ` is unprovable, we can start our path from
the node n0 with the function ⊥ and the sequent F⊥(n0)` . It remains to
prove Lemma 4.4.1 to obtain a contradiction. We will call conditions I1, I2
and I3 invariants.

Proof of Lemma 4.4.1

Let us suppose that we have extended our path up to a node m and have
an admissible function f and an unprovable sequent:

Ff (m)`〈P ∗〉F f1(n1), . . . , 〈P ∗〉F fj (nj) (4.2)

which satisfy all the conditions of Lemma 4.4.1. We will show that there
must be a son n of m, in Tϕ0 without back edges, for which an unprovable
sequent satisfying all the invariants can be constructed. We reason by cases
depending on the status of node m.

1 If m is a leaf of Tϕ0 , i.e. there are no edges of any kind going from m, then
by definition of the refutation the label of the leaf is a tableau axiom, i.e., a
tableau sequent where some constant p and its negation occur. In this case
p,¬p ∈ Ff (m). We obtain a contradiction with the unprovability of (4.2).

4.4. COMPLETENESS PROOF 81

2 If there are edges going from m then by Lemma 4.2.6 and invariant I1, f
is zero for all vertices not occurring in S(m). This means that we can use
Lemma 4.3.7 to find an edge leading from m to some n such that if no back
edge leads to n, the sequent:

Ff (n)`〈P ∗〉F f1(n1), . . . , 〈P ∗〉F fj(nj) (4.3)

is unprovable and if there are back edges leading to n, the sequent

F f (n)`〈P ∗〉F f1(n1), . . . , 〈P ∗〉F fj (nj) (4.4)

is unprovable. Observe that in the last case S(n) is a loop node.

To finish the proof it is enough to construct an unprovable sequent for n
satisfying all the invariants. It is also important to make sure that n is not
an ancestor of m in the tree Tϕ0 without back edges.

2.a If no back edges lead to n then it is easy to force the sequent (4.3) to
satisfy all the invariants.

Because AV (n) ⊆ AV (m), by Lemma 4.2.6, invariant I1 will be satisfied
if we just make f equal 0 for all vertices not occurring in AV (n). Let
us call the resulting function g. Clearly g is admissible for S(n), because
otherwise, by first clause of Lemma 4.3.7 the sequent Ff (m) ` would be
provable. We have also that g v f , hence the sequent Ff (n) ` Fg(n) is
provable by Lemma 4.3.6.

Because AN (n) ⊆ AN (m), we must throw away some formulas from the
right side of the sequent (4.3) to satisfy invariant I2. Let {nl1 , . . . , nlk} =
{n′ : n′ ∈ AN (n),∞ > g(v) > 0, v is the green vertex of n′}.

To see why invariant I3 still holds one must observe that directly from
the definition of AV (n) it follows that if ni ∈ AN (n) then AV (ni) ⊆ AV (n).
Hence g(v) = f(v) for every v ∈ AV (ni) and because fi v f then fi v g.
Therefore the sequent

Fg(n)`〈P ∗〉F fl1 (nl1), . . . , 〈P ∗〉F flk (nlk)

satisfies all the invariants and is unprovable if only sequent (4.3) is.

2.b If there are back arcs leading to n then the operation is a little bit
more difficult. Let vn be the green vertex of S(n). The first observation is
that f(vn) 6=∞. This follows directly from Lemma 4.3.7 because otherwise
Ff (m)`ff would be provable.

82 CHAPTER 4. PROOF OF COMPLETENESS

2.b.i We must show that n is really a descendant of m. Lemma 4.3.7 guar-
antees only that there is an edge from m to n in Tϕ0 . But this edge can be
a back edge, i.e. n can be an ancestor of m in the tree Tϕ0 without back
edges.

Suppose that we have taken a back edge from m to n. According to
the definition of AN (m), it holds that n ∈ AN (m) and from invariant I1 it
follows that f(vn) > 0. Because f(vn) 6=∞ then also f(vn) <∞.

Now from invariant I2 we know that n ∈ {n1, . . . , nj}, suppose n = nk
for some k. From invariant I3 we have fk v f , hence by Lemma 4.3.6 the
sequent

F f (n)`F fk(nk)
is provable which implies that sequent (4.4) is provable, a contradiction.

2.b.ii So we know that n is not an ancestor of m. We must construct an
unprovable sequent for n satisfying all the invariants. The difficulty we face
is that in this case, by Lemma 4.2.6, AN (n) ⊆ AN (m) ∪ {n}, i.e. a new
node to take care of is added. One more difficulty is that the green vertex
vn of n, may be already in use, i.e., vn ⊆ AV (m). This last observation is
the reason why the range of admissible functions is N ∪∞ rather then just
{0, 1,∞}. Intuitively f(v) = i > 0 means that v is the green vertex of i loop
nodes among those we consider.

For simplicity we can assume that f(v) = 0 for all v 6∈ AV (n). If it is not
the case then we can always take a function h equal to f on AV (n) and equal
0 for other vertices. Then because h v f we would have that F f (n)`F h(n)
Hence from the assumption that the sequent (4.4) is unprovable, the sequent:

F h(n)`〈P ∗〉F f1(n1), .., 〈P ∗〉F fj (nj)

would be unprovable.
We know that f(vn) <∞ and we can define two functions g, g′:
• g(vn) = f(vn) + 1, g′(vn) =∞.
• g(u) = g′(u) = f(u) for u 6= vn,

Clearly functions g and g′ are admissible for S(n) because vn is the green
vertex of S(n) which means that it lights green in S(n) and has no sons in
this state.

We would like to show that from the assumption that the sequent (4.4)
is unprovable we can deduce that one of the sequents

Fg′(n)`〈P ∗〉F f1(n1), . . . , 〈P ∗〉F fj(nj) (4.5)

Fg(n)`〈P ∗〉F f1(n1), . . . , 〈P ∗〉F fj(nj), 〈P ∗〉F g(n) (4.6)

4.4. COMPLETENESS PROOF 83

must be unprovable. The reason is that, as we will show, sequents (4.5)
and (4.6) are assumptions and (4.4) is the conclusion in an instance of the
(ind) rule.

Let ∆ = nl(vn) and let Γ be the set of all formulas occurring in S(n)
which are not in nl(vn). We have

Fh(n) =
∧ ‖ Γ ∪∆ ‖hS(n) =

∧ ‖ Γ ‖hS(n) ∧
∧ ‖ ∆ ‖hS(n) for h = g, g′

F h(n) =
∧ ‖ Γ ∪∆ ‖hS(n) =

∧ ‖ Γ ‖hS(n) ∧
∧ ‖ ∆ ‖hS(n) for h = f, g

But
‖ Γ ‖fS(n) = ‖ Γ ‖gS(n) = ‖ Γ ‖gS(n) = ‖ Γ ‖g′S(n)

because Γ is the set of formulas not occurring in nl(vn) and the signatures
‖ u ‖fS(n), ‖ u ‖

g
S(n), ‖ u ‖

g

S(n), ‖ u ‖
g′

S(n) differ only when u = vn.
To compare

‖ ∆ ‖hS(n) = {‖ ϕ ‖hS(n) : ϕ ∈ ∆}, h = g, g′

‖ ∆ ‖hS(n) = {‖ ϕ ‖hS(n) : ϕ ∈ ∆}, h = f, g

we must look at

‖ vn ‖hS(n)=(δh1 , . . . , δ
h
dµ) h = g, g′

‖ vn ‖
h

S(n)=(γh1 , . . . , γ
h
dµ) h = f, g

because vn is the lowest vertex in S(n) containing formulas from ∆. From
the definition of signatures it follows that the only difference between these
signatures is at position i s.t. Ui = el(vn) is the i-th definition constant in
Dϕ0 , namely

δg
′
i = ff δgi = V ∧ αi(µX.Zg(vn)

vn ∧ V ∧ αi(X))
γ
f
i = µX.V ∧ αi(X) γ

g
i = µX.Z

g(vn)
vn ∧ V ∧ αi(X)

where

V =
∧
{Zjw : w ∈ {vn}↑S(n) , 1 ≤ j ≤ f(w)}

=
∧(
{Zjw : w ∈ {vn}↑S(n) , 1 ≤ j ≤ g(w)} \ {Zg(vn)

vn }
)

Using our notation that Dϕ0 = (W1 = γ1) . . .(Wd = γd) we can see that

F f(n) = ‖ Γ ‖fS(n) ∧
∧
{δ[γd/Wd]..[µX.α(X)/Ui]..[γ1/W1] : δ ∈ ∆}

Fg′(n) = ‖ Γ ‖fS(n) ∧
∧
{δ[γd/Wd]..[ff /Ui]..[γ1/W1] : δ ∈ ∆}

Fg(n) = ‖ Γ ‖fS(n) ∧
∧
{δ[γd/Wd]..[α(µX.Z ∧ α(X))/Ui]..[γ1/W1] : δ ∈ ∆}

F g(n) = ‖ Γ ‖fS(n) ∧
∧
{δ[γd/Wd]..[µX.Z ∧ α(X)/Ui]..[γ1/W1] : δ ∈ ∆}

84 CHAPTER 4. PROOF OF COMPLETENESS

where α(X) = V∧αi(X), Z = Z
g(vn)
vn and γd, . . . , γ1 are formulas constructed

from ‖ vn ‖fS(n) according to Definition 4.3.3. Hence sequents 4.4, 4.5 and 4.6
can be respectively presented as

ψ(µX.β(X))` 〈P ∗〉F f1(n1), . . . , 〈P ∗〉F fj(nj)
ψ(ff) ` 〈P ∗〉F f1(n1), . . . , 〈P ∗〉F fj(nj)

ψ(β(µX.Z ∧ β(x)))` 〈P ∗〉F f1(n1), . . . , 〈P ∗〉F fj(nj), 〈P ∗〉ψ(µX.Z ∧ β(x))

for suitable ψ and β. Of course Z = Z
g(vn)
i is a new variable because

g(vn) = f(vn) + 1 and from invariant I3 it follows that fk(vn) ≤ f(vn) for
k = 1, .., j.

In conclusion, sequents (4.5) and (4.6) are assumptions and (4.4) is the
conclusion in an instance of (ind) rule. This means that either (4.5) or (4.6)
must be unprovable.

If sequent 4.6 is unprovable then we transform it to the sequent satisfying
all the invariants in a similar way as we did in the case 2a.

Because we have assumed that f(v) = 0 for all v 6∈ AV (n) invariant I1
is already satisfied.

Because AN (n) ⊆ AN (m)∪{n} we must throw away some formulas from
the right side of the sequent 4.6 to satisfy invariant I2. Let {nl1 , . . . , nlk} =
{n′ : n′ ∈ AN (n) \ {n},∞ > f(v) > 0, v is the green vertex of n′}.

To see why invariant I3 still holds one must observe that directly from
the definition of AV (n) it follows that if ni ∈ AN (n) then AV (ni) ⊆ AV (n).
Hence for any vertex v if fi(v) > 0 then g(v) > 0. Thus because fi v f
holds then also fi v g holds. Therefore the sequent

Fg(n)`〈P ∗〉F fl1 (nl1), .., 〈P ∗〉F flk (nlk), 〈P ∗〉F g(n)

satisfies all the invariants and is unprovable. The function g is the function
assigned to n.

If sequent (4.5) is unprovable then the transformations are exactly the
same as above. The function assigned to n in this case will be the function
g′.

We can summarize this section with the thorem:

Theorem 4.4.2 (Completeness) For ever unsatisfiable formula ϕ0 of the
µ-calculus, the sequent ϕ0` is provable.

Proof
By Proposition 3.1.6 we can restrict ourselfs to possitive guarded formulas.

4.4. COMPLETENESS PROOF 85

Suppose conversely that a possitive guarded formula ϕ0 is unsatisfiable but
the sequent ϕ0` is unporvable.

To the root n0 of Tϕ0 , as defined in Definition 4.2.3, we can assign an
addmissable function ⊥. It is easy to see that ϕ0 = F⊥(n0), where n0 is
the root of Tϕ0 . It is also strightforward to check that the seuqent F⊥(n0)`
satisfies all the conditions of Lemma 4.4.1.

This means that we can find a son n1 of n0 and an addmissable function
fn1 such that a sequent, as (4.1) but for node n1, will be unprovable and
invariants I1, I2 and I3 will be satisfied. Then we can find a son n2 of n1 with
the same property and so on. This way we can construct an infinite path in
the tree Tϕ0 without back edges. This is a contradiction with Fact 4.2.4.

86 CHAPTER 4. PROOF OF COMPLETENESS

Chapter 5

Conclusions

Propositional µ-calculus is a very interesting logic from the viewpoint of
program verification and specification. It is as expressive as very strong
monadic second order logic S2S and yet checking the satisfiability of the µ-
calculus formulas is as easy as for much weaker logic PDL. This can be done
in EXPTIME which is surprisingly close to the lower bound on checking the
satisfiability of classical propositional logic. In contrast checking satisfiability
of S2S formulas is not elementary.

The other property of the µ-calculus which facilitates description of pro-
gram properties is that the recursion operator is a basic operator in this
logic. This means that translations of programs into formulas can be very
natural.

These features of the µ-calculus make it a logic widely used for program
verification. The problem of efficient model checking in the µ-calculus was
and still is an important issue from the practical as well as theoretical point
of view.

If program verification using model-checking in the µ-calculus received
a great deal of attention it was not so with “proof-theoretic” approach to
this task. In this approach one codes a program as a formula of a logic
which reduces the problem of verifying that the program has a property α
to proving that α follows from the formula describing the program.

One of the obvious reasons for this was the lack of a complete axiom
system for the µ-calculus. This obstacle was solved in this work and the
presented system is, in our opinion, quite “user friendly”. With such a
system it may be worth revising the idea of Manna and Pnueli [28] which
may result in some new methods for program verification. One immediate

87

88 CHAPTER 5. CONCLUSIONS

gain is that while model checkers are completely automatic, provers can
be made to interact with the user who can help in what is essentially an
exponential task.

We hope that the presented axiomatization gives or will give some in-
sight into the µ-calculus. Because of close relationship between µ-calculus,
automata on infinite objects and S2S it may also help in better understand-
ing of these theories. It must be mentioned that we do not know whether
Kozen’s axiomatization of the µ-calculus [24] is complete or not. The ques-
tion of a complete axiom system for S2S also remains open.

The presented method of completeness proof is also quite different from
that used for other propositional logics of programs. It must be mentioned
that there is a degree of resemblance between this proof and the proof of
Kozen [24] for the fragment of the µ-calculus.

Our approach has this advantage over completeness proofs by Henkin
method that it is direct. That is for a valid formula it gives a method for
constructing a proof of it. Of course a proof constructed by this method can
be sometimes quite large.

The size of the proof is mainly due to restrictions on a proof shape. If
effectiveness is important, refutations can serve as a proof “substitute” with
their good exponential bound on their size. As completeness proof shows,
refutations have all the information needed to construct a proof. We think
that this information is also quite apparent, i.e. refutations can be as human
readable as proofs.

Further research topics are numerous. One could try to obtain complete
axiomatizations of CTL∗ or ECTL∗ possibly by modification of the presented
method. Axiomatizations of this logics are still interesting because no simple
and direct codings from CTL∗ or ECTL∗ to the µ-calculus are known.

There are various decidable extensions of S2S usually obtained by adding
some new predicates to the logic. Similar predicates can be added to the
µ-calculus. Some of this extensions can be interesting both from the the-
oretical and practical point of view. For most of them it is not even clear
whether there is a finite model property, not to mention complexity of deci-
sion procedures, axiomatization and other more specific issues.

The other extension, suggested by the induction rule (ind), is to intro-
duce a new sort of variables {τ, ς, . . .} which we call index variables. Then we
add to the µ-calculus a new construct τX.α(X), let us call it approximation
formula. Index variables range in the model over natural numbers (or over
all ordinals if one prefers to) and the intended meaning of τX.α(X) is the
n-fold iteration of α(X) on ff , where n is the value of τ .

89

In this extended calculus we can formulate an induction rule similar to
(ind) but without need to use additional fresh variable. The obtained system
can be shown complete for the formulas of the µ-calculus but it is not clear
whether it is complete for the whole extension. On the other hand if we
restrict valuation of index variables to natural numbers then the small model
property for such a logic is a consequence of the small model property of the
µ-calculus. It remains to be seen whether extensions of this sort possess
some interesting properties.

The ability to perform “surgery” on models, i.e. cutting or expanding
models in such a way that the truth of some formulas remain intact, can be
very important especially in such topics as model checking. Traditionally
one used sets of formulas to distinguish important properties of states of a
model. This approach has some drawbacks when used to such an expressive
logic as the µ-calculus. Using trees of formulas, representing states of an
automaton, as opposed to sets of formulas can possibly solve some of the
problems.

90 CHAPTER 5. CONCLUSIONS

Acknowledgments

Unfortunately it is not possible to mention all the people who helped me
in work on this thesis, but I would like to mention few of them. I should
start with Leszek Holenderski, who helped me from the very beginning of my
studies, being my first guide to the computer science world. His influence
is hard to overestimate. Professor Grażyna Mirkowska, my first supervisor,
introduced me to the modal logics and served with her guidance and advice
during my years of study. I would like also to thank professor Dexter Kozen
for his introduction to the µ-calculus. Damian Niwiński was the one from
whom I learned automata theory. His openness and ability to share the
knowledge had great influence on the ideas of my thesis. Professor Jerzy
Tiuryn guided development of the thesis and was always ready with help and
advise. I am greatly obliged for his time and effort he devoted to my work.
Finally I would like to thank all the people from the professor Tiuryn’s group
at the Institute of Informatics, Warsaw University, for creating wonderful
environment to learn and work in.

91

92

Bibliography

[1] J.Richard Büchi. On the decision method in restricted second-order
arithmetic. In Proc. Internat. Congr. on Logic, Methodology and Phi-
losophy of Science, pages 1–11. Stanford Univ. Press, 1960.

[2] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Workshop on Logics
of Programs, volume 131 of Lecture Notes in Computer Science, pages
52–71. Springer-Verlag, 1981.

[3] Mads Dam. CTL∗ and ECTL∗ as a fragments of the modal µ-calculus.
In CAAP’92, volume 581 of LNCS, pages 145–165, 1992.

[4] E. Allen Emereson. Temporal and modal logic. In J.van Leeuven,
editor, Handbook of Theoretical Computer Science Vol.B, pages 995–
1072. Elsvier, 1990.

[5] E. Allen Emerson. Automata, tableaux and temporal logic. In Colledge
Conference on Logic of Programs, volume 193 of LNCS. Springer-Verlag,
1985.

[6] E. Allen Emerson and C.L.Lei. Efficient model checking in fragments of
propositional mu-calculus. In First IEEE Symp. on Logic in Computer
Science, pages 267–278, 1986.

[7] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree au-
tomata and logics of programs. In 29th IEEE Symp. on Foundations of
Computer Science, 1988.

[8] E. Allen Emerson and Charanjit S. Jutla. On simultaneously deter-
minizing and complementing ω-automata. In LICS’89, 1989.

93

94 BIBLIOGRAPHY

[9] E.Allen Emerson and J. Halpern. “Sometimes” and “not never” revis-
ited: On branching versus linear time temporal logic. Journal of the
ACM, 33:175–211, 1986.

[10] E.Allen Emerson and J.Y. Halpern. Decision procedures and expres-
siveness in the temporal logic of branching time. Journal of Computer
and System Sciences, 30(1):1–24, 1985.

[11] E.Allen Emerson and C.S. Jutla. Tree automata, mu calculus and de-
terminacy. In Proc. FOCS 91, 1991.

[12] M.J. Fisher and R.E. Ladner. Propositional modal logic of programs. In
9th ACM Ann. Aymp. on Theory of Computing, pages 286–294, 1977.

[13] M.J. Fisher and R.E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18:194–211, 1979.

[14] D. Gabbay. Axiomatizations of logics of programs. Unpublished
manuscript, Bar-Ilan Univ., 1977.

[15] D. Gabbay. Expressive functional completeness in tense logic. In Aspects
of Philosophical Logic, pages 91–117. Reidel, 1981.

[16] Yuri Gurevich and Leo Harrington. Trees, automata and games. Journal
of the ACM, 1982.

[17] D. Harel, D Kozen, and R. Parikh. Process logic: Expressiveness, de-
cidability and completeness. Journal of Computer and System Sciences,
25:144–201, 1982.

[18] David Harel. Dynamic logic. In Handbook of Philosophical Logic Vol II,
pages 497–604. D.Reidel Publishing Company, 1984.

[19] M. Henessy and R. Milner. Algebraic laws for nondeterminism and
concurency. Journal of the ACM, 32:137–161, 1985.

[20] P. Hitchcock and D. Park. Induction rules and termination proofs. vol-
ume Proc. 1st Internat. Coll. on Autoamta, Languages and Program-
ming, pages 225–251, 1973.

[21] H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
University of California, 1968.

BIBLIOGRAPHY 95

[22] Nils Klarund. Progress measures, immediate determinacy and a subset
construction for tree automata. In IEEE LICS, pages 382–393, 1992.

[23] P.M.W. Knijnenburg and J. van Leeuwen. On models for propositional
dynamic logic. Theoretical Computer Science, 91:181–203, 1991.

[24] Dexter Kozen. Results on the propositional mu-calculus. Theoretical
Computer Science, 27:333–354, 1983.

[25] Dexter Kozen. A completeness theorem for Kleene algebras and the
algebras of regular events. In IEEE LICS, pages 214–225, 1992.

[26] Dexter Kozen and R. Parikh. An elementary proof of the completeness
of the PDL. Theoretical Computer Science, 14:113–118, 1981.

[27] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In J.van Leeuven,
editor, Handbook of Theoretical Computer Science Vol.B, pages 789–
840. Elsvier, 1990.

[28] Z. Manna and A. Pnueli. Verification of the concurrent programs: the
temporal framework. In R.Boyer and J.Moore, editors, The Correctness
Problem in Computer Scince, pages 215–273. Academic Press, 1981.

[29] D.A. Martin. Borel determinacy. Ann. Math., 102:363–371, 1975.

[30] R. McNaughton. Testing and generating infinte sequences by a finite
automaton. Information & Computation, 9:521–530, 1966.

[31] A.R. Meyer. Weak monadic second order theory of one successor is
not elementary. In Lecture Notes in Mathematics, volume 453, pages
132–154. Springer-Verlag, 1975.

[32] Grażyna Mirkowska. PAL — propositional algorithmic logic. In LNCS
125, pages 23–101. Springer-Verlag, 1981.

[33] Y.N. Moschovakis. Descriptive Set Theory, volume 100 of Studies in
Logic. North-Holand, 1980.

[34] A.A. Muchnik. Games on infinite trees and automata with dead ends.
Semiotics and Information, 24:17–44, 1984. in Russian.

[35] D. Niwiński and I. Walukiewicz. Games for µ-calculus. To appear.

96 BIBLIOGRAPHY

[36] Damian Niwiński. The propositional µ-calculus is more expressive than
the PDL with looping. Unpublished manuscript, 1984.

[37] Damian Niwiński. On fixed-point clones. In Proc. 13th ICALP, volume
226 of LNCS, pages 464–473, 1986.

[38] Damian Niwiński. Fixed points vs. infinite generation. In Proc. 3rd.
IEEE LICS, pages 402–409, 1988.

[39] R. Parikh. The completeness of propositional dynamic logic. In Proc 7th
Symp on Mathematical Foundations of Computer Science, volume 64 of
LNCS, pages 403–415, 1978.

[40] D. Park. Finiteness is µ-ineffable. Theoretical Computer Science, 3:173–
181, 1976.

[41] V.R. Pratt. Semantical considerations on Floyd-Hoare logic. In 17th
Ann. IEEE Symp. on Foundations of Computer Science, pages 109–121,
1976.

[42] V.R. Pratt. Models of program logics. In 20th IEEE Symp. Found.
Comput. Sci., pages 115–122, 1979.

[43] V.R. Pratt. A decidable µ-calculus: preliminary report. In Proc. 22nd
Ann IEEE Symp. on Foundations of Computer Science, pages 421–427,
1981.

[44] M.O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969.

[45] Shmuel Safra. On the complexity of ω-automata. In 29th IEEE Symp.
on Foundations of Computer Science, 1988.

[46] Andrzej Salwicki. Formalized algorithmic languages. Bull. Acad. Polon.
Sci., Ser. Sci. Math. Astron. Phys., 18:227–232, 1970.

[47] D.S. Scott and J.W. de Bakker. A theory of programs. Unpublished
notes, IBM, Vienna, 1969.

[48] Dirk Siefkes. Büchi’s Monadic Second Order Successor Arithmetic, vol-
ume 120 of Lecture Notes in Mathematics. Springer-Verlag, 1970.

BIBLIOGRAPHY 97

[49] A.P Sistla, M.Y. Vardi, and P. Wolper. The complementation problem
for Büchi automata with application to temporal logic. Theoretical
Computer Science, 49:217–237, 1987.

[50] Colin P. Stirling and David J. Walker. Local model checking in the
modal mu-calculus. In International Joint Conference in Theory and
Practice of Software Development, volume 351 of LNCS, pages 369–382.
Springer-Verlag, 1989.

[51] C.S. Stirling. Modal and temporal logics. In S.Abramsky, D.Gabbay,
and T.Maibaum, editors, Handbook of Logic in Comuter Science, pages
477–563. Oxford University Press, 1991.

[52] Robert S. Streett. Propositional dynamic logic of looping and converse
is elementary decidable. Information & Computation, 54:121–141, 1982.

[53] Robert S. Streett and E. Allan Emerson. An automata theoretic pro-
cedure for the propositional mu-calculus. Information & Computation,
81:249–264, 1989.

[54] Wolfgang Thomas. Computation tree logic and regular ω-languages. In
LNCS 354, pages 690–713. Springer-Verlag, 1988.

[55] M.Y. Vardi and L.Stockmeyer. Improved upper and lower bounds for
modal logics of programs. In 17th ASM STOC, pages 240–251, 1985.

[56] M.Y Vardi and P.Wolper. Reasoning about infite computation paths.
to appear.

[57] M.Y. Vardi and P.Wolper. Automata theoretic techniques for modal
logics of programs. In Sixteenth ACM Symposium on the Theoretical
Computer Science, 1984.

[58] M.Y. Vardi and P.Wolper. Yet another process logic. In Proc. Workshop
on Logics of Programs, volume LNCS 164, pages 501–512, 1984.

[59] G. Winskel. Model checking in the modal nu-calculus. volume 372 of
LNCS. Springer-Verlag, 1989.

[60] P. Wolper. Temporal logic can be more expressive. Information and
Control, 56:72–99, 1983.

