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Abstract

We study the reachability problem for timed automata. A standard solution to
this problem involves computing a search tree whose nodes are abstractions of
zones. These abstractions preserve underlying simulation relations on the state
space of the automaton. For both effectiveness and efficiency reasons, they are
parameterized by the maximal lower and upper bounds (LU -bounds) occurring
in the guards of the automaton.

One such abstraction is the a4LU abstraction defined by Behrmann et al.
Since this abstraction can potentially yield non-convex sets, it has not been
used in implementations. Firstly, we prove that a4LU abstraction is the coarsest
abstraction with respect to LU -bounds that is sound and complete for reacha-
bility. Secondly, we provide an efficient technique to use the a4LU abstraction
to solve the reachability problem.
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1. Introduction

Timed automata are finite automata extended with clocks whose values can
be compared with constants and set to zero. The clocks measure delays between
different steps of execution of the automaton. The reachability problem for
timed automata asks if there exists a path from its initial state to a given
target state. This problem cannot be solved by a simple state exploration since
clocks are real-valued variables. The standard solution to this problem involves
computing the zone graph of the automaton which in principle could be infinite.
In order to make it finite, zones are approximated using an abstraction operator.
Till recently it has been generally assumed that for reasons of efficiency an
abstraction of a zone should always be a zone. Here we avoid this assumption.
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We first show that a4LU abstraction defined by Behrmann et al. [4] is the coarsest
sound and complete abstraction. We then present a method of constructing the
abstracted zone graph using the a4LU abstraction. Even though this abstraction
can yield non-convex sets, we show that our method is at least as efficient as
any other currently known method based on abstractions.

The reachability problem is a basic problem in verification. It is histori-
cally the first problem that has been considered for timed-automata, and it is
still a lively subject of research [4, 23, 19, 14]. Apart from being interesting
by itself, the advances on this problem may give new methods for verification
of more complicated models, like priced timed-automata [10], or probabilistic
timed automata [13, 9, 17].

All approaches to solving the reachability problem for timed automata should
ensure termination. To tackle this, most of them use abstractions to group to-
gether bisimilar valuations of clock variables, that is, valuations not distinguish-
able by the automaton as far as reachability to the final state is concerned. The
first solution has been based on regions, which are certain equivalence classes
of clock valuations [2]. Their definition is parameterized by a threshold up to
which the clock values should be considered. A great improvement in efficiency
has been obtained by adopting zones instead of regions. These are sets of valu-
ations defined by conjunctions of differences between pairs of clocks. They can
be efficiently implemented using difference bound matrices (DBMs) [7, 12]. A
challenge with zone based approach is that they are not totally compatible with
regions, and moreover a forward exploration algorithm can produce infinitely
many zones. The union of regions intersecting a zone is a natural candidate for
a finitary abstraction. Indeed this abstraction would make the forward explo-
ration algorithm terminate. However such an union of regions is not necessarily
a zone and so it is not clear how to represent it. For this reason a number of
abstraction operators have been proposed that give an approximation of the
union of regions intersecting a zone. A coarser approximation would make the
abstracted zone graph smaller. So potentially it would give a more efficient
algorithm.

An important observation made in [4] is that if reachability is concerned
then we can consider simulation instead of bisimulation. Indeed, it is safe
to add configurations that can be simulated by those that we have already
reached. Simulation relations in question depend on the given automaton, and
it is Exptime-hard to calculate the biggest one [18]. A pragmatic approach
is to abstract some part of the structure of the automaton and define a simu-
lation based on this information. The most relevant information is the set of
bounds with which clocks are compared to in the guards of the automaton. Since
lower and upper bounds are considered separately, they are called LU -bounds.
In [4] the authors define an abstraction based on simulation with respect to LU -
bounds; it is denoted a4LU . Theoretically a4LU is very attractive: it has clear
semantics and, as we show here, it is always a union of regions. The problem is
that a4LU abstraction of a zone is seldom a convex set, so one cannot represent
the result as a zone.

In this paper we give another very good reason to consider a4LU abstraction.
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Figure 1: A comparison of abstraction operators for zones.

We show that it is actually the coarsest abstraction that is sound and complete
with respect to reachability for all automata with the same LU -bounds. In
other words, it means that in order to get coarser (that is better) abstractions
one would need to look at some other structural properties of automata than
just LU -bounds. Our main technical result is an effective algorithm for dealing
with a4LU abstraction. It allows to manipulate this abstraction as efficiently as
purely zone based ones. We propose a forward exploration algorithm working
with zones that constructs the a4LU abstraction of the transition graph of the
automaton. This algorithm uses standard operations on zones, plus a new test of
inclusion of a zone in the a4LU abstraction of another zone. The test is quadratic
in the number of clocks and not more complex than that for just testing an
inclusion between two zones. Since a4LU abstraction is the coarsest sound and
complete abstraction, it can potentially give smallest abstract systems.

1.1. Related Work

Forward analysis is the main approach for the reachability testing of real-
time systems. The use of zone-based abstractions for termination has been
introduced in [11]. In recent years, coarser abstractions have been introduced
to improve efficiency of the analysis [4]. An approximation method based on LU-
bounds, called Extra+

LU , is used in the current implementation of UPPAAL [5].
In [14] it has been shown that it is possible to efficiently use the region closure
of Extra+

LU , denoted Closure+
LU . This has been the first efficient use of a non-

convex abstraction. In comparison, a4LU approximation has a well-motivated
semantics, it is also region closed, coarser than Closure+

LU and the resulting
inclusion test is even simpler than that of Closure+

LU . A comparison of these
abstractions is depicted in Fig. 1.

Let us mention that abstractions are not needed in backward exploration of
timed systems. Nevertheless, any feasible backward analysis approach needs to
simplify constraints. For example [19] does not use approximations and relies
on an SMT solver instead. Clearly this approach is very difficult to compare
with the forward analysis approach we study here.

Another related approach to verification of timed automata is to build a
quotient graph of the semantic graph of the automaton with respect to some
bisimulation relation [22, 1, 24]. For reachability properties, this approach is
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not a priori competitive with respect to using the simulation-based abstraction
a4LU . It is more adapted to checking branching time properties.

1.2. Organization of the Paper

The paper is organized as follows.

Section 2 presents the preliminary definitions. It introduces the notion of
sound and complete abstractions parameterized by LU-bounds. It also
explains how these abstractions could be used to solve the reachability
problem.

Section 3 proposes absLU abstraction, and proves that it is the coarsest sound
and complete abstraction for all automata with given LU -bounds.

Section 4 shows that the a4LU abstraction actually coincides with this coarsest
abstraction absLU .

Section 5 presents an efficient inclusion test for a4LU abstraction, which allows
for its use in implementations.

A preliminary version of this paper appeared in the conference on Logic in
Computer Science [15]. This version includes all missing proofs and gives a more
elaborate discussion about the inclusion test (Section 5).

2. Preliminaries

After recalling some preliminary notions, we introduce a concept of abstrac-
tion as a means to reduce the reachability problem for timed-systems to the one
for finite systems. We then observe that simulation relation is a convenient way
of obtaining abstractions with good properties.

2.1. Timed automata and the reachability problem

Let X be a set of clocks, i.e., variables that range over R≥0, the set of non-
negative real numbers. A clock constraint is a conjunction of constraints x#c for
x ∈ X, # ∈ {<,≤,=,≥, >} and c ∈ N, e.g. (x ≤ 3 ∧ y > 0). Let Φ(X) denote
the set of clock constraints over clock variables X. A clock valuation over X is
a function v : X → R≥0. We denote by RX≥0 the set of clock valuations over X,
and by 0 the valuation that associates 0 to every clock in X. We write v � φ
when v satisfies φ ∈ Φ(X), i.e. when every constraint in φ holds after replacing
every x by v(x). For δ ∈ R≥0, let v+ δ be the valuation that associates v(x) + δ
to every clock x. For R ⊆ X, let [R]v be the valuation that sets x to 0 if x ∈ R,
and that sets x to v(x) otherwise.

A Timed Automaton (TA) is a tuple A = (Q, q0, X, T,Acc) where Q is a
finite set of states, q0 ∈ Q is the initial state, X is a finite set of clocks, Acc ⊆ Q
is a set of accepting states, and T ⊆ Q × Φ(X) × 2X × Q is a finite set of
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transitions (q, g, R, q′) where g is a guard, and R is the set of clocks that are
reset on the transition.

The semantics of A is a transition system of its configurations. A configura-
tion of A is a pair (q, v) ∈ Q× RX≥0 and (q0,0) is the initial configuration. We
have two kinds of transitions:

Delay: (q, v)→δ (q, v + δ) for some δ ∈ R≥0;

Action: (q, v) →t (q′, v′) for some transition t = (q, g, R, q′) ∈ T such that
v � g and v′ = [R]v.

We will denote by SA the transition system describing the semantics of a
timed automaton A. In this paper we are interested in the reachability problem:
does there exist a configuration (q, v) with accepting state q ∈ Acc that is
reachable from (q0,0) by some finite sequence of delay and action transitions?

The class of TA we consider is usually known as diagonal-free TA since clock
comparisons like x − y ≤ 1 are disallowed. Notice that if we are interested in
state reachability, considering timed automata without state invariants does not
entail any loss of generality as the invariants can be added to the guards. For
state reachability, we can also consider automata without transition labels.

2.2. Abstractions

Since the transition system determined by the automaton is infinite, we
usually try to find a finite approximation of it by grouping valuations together.
In consequence we work with configurations consisting of a state and a set of
valuations. For every transition t, we have a transition:

(q,W )⇒t (q′,W ′) where W ′ = {v′ : ∃v ∈W, ∃δ ∈ R≥0 s.t. v →t→δ v′}

We will write⇒ without superscript to denote the union of all⇒t relations. The
transition relation defined above considers each valuation v ∈ W that can take
the transition t, obtains the valuation after the transition, and then collects the
time-successors from this obtained valuation. Therefore the symbolic transition
⇒ always yields sets closed under time-successors.

The initial configuration of the automaton is (q0,0). Starting from the initial
valuation 0 the set of valuations reachable by a time elapse at the initial state
are given by {0 + δ | δ ∈ R≥0}. Call this W0.

From (q0,W0) as the initial node, computing the symbolic transition relation
⇒ leads to different nodes (q,W ) wherein the sets W are closed under time-
successors. Although the transition relation ⇒ talks about sets of valuations
and not valuations themselves, it could still be potentially infinite. A further
grouping of valuations is necessary to get finiteness.

An abstraction operation [3] is a convenient way of expressing a grouping of

valuations. It is a function a : P(R|X|≥0 ) → P(R|X|≥0 ) such that W ⊆ a(W ) and
a(a(W )) = a(W ). An abstraction operator defines an abstract semantics:

(q,W )⇒a (q′, a(W ′))

where a(W ) = W and (q,W )⇒ (q′,W ′).
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If a has a finite range then this abstraction is said to be finite. We write⇒∗a
for the transitive closure of ⇒, similarly we write ⇒∗ and →∗ respectively for
the transitive closure of ⇒ and → (where → denotes the union of →t and →δ).

Of course we want this abstraction to reflect some properties of the original
system. In order to preserve reachability properties we can require the following
two properties (recall that 0 ∈W0):

Soundness: if (q0, a(W0))⇒∗a (q,W ) then there is a v ∈W such that (q0,0)→∗
(q, v).

Completeness: if (q0,0) →∗ (q, v) then there is a W such that v ∈ W and
(q0, a(W0))⇒∗a (q,W ).

It can be easily verified that if an abstraction satisfies W ⊆ a(W ) then the
abstracted system is complete. However soundness is more delicate to obtain.

Naturally, it is important to be able to efficiently compute the abstract
transition system. A standard way to do this is to use zones. A zone is a set of
valuations defined by a conjunction of two kinds of constraints: comparison of
differences between two clocks with an integer like x − y#c, or comparison of
a single clock with an integer like x#c, where # ∈ {<,≤,=,≥, >} and c ∈ N.
For instance (x−y ≥ 1)∧ (y < 2) is a zone. Zones can be efficiently represented
using difference bound matrices (DBMs) [7, 12]. This suggests that one should
consider abstractions that give zones. As zones are convex, abstractions that
range over zones are called convex abstractions. This is an important restriction
as abstractions based on regions are usually not convex [8].

We propose a way to use non-convex abstractions and zone representations
at the same time. We will only consider sets W of the form a(Z) and represent
them simply by Z. This way we can represent states of an abstract transition
system efficiently: we need just to store a zone. In order for this to work we
need to be able to compute the transition relation ⇒a on this representation.
We also need to know when two zone representations stand for the same node
in the abstract system. This is summarized in the following two requirements:

Transition compatibility: for every transition (q, a(Z))⇒a (q′,W ′) and the
matching transition (q, Z)⇒ (q′, Z ′) we have W ′ = a(Z ′).

Efficient inclusion test: for every two zones Z,Z ′, the test Z ′ ⊆ a(Z) is
efficient. Ideally, it has the same complexity O(|X|2) as the inclusion Z ′ ⊆ Z.

The first condition is quite easy to satisfy: We will show quickly below
that every abstraction relation coming from time-abstract simulation [21] is
transition compatible. The second condition is the main topic of the paper.

Definition 1 (Time-abstract simulation) A (state based) time-abstract sim-
ulation between two states of a transition system SA is a relation (q, v) �t.a.
(q′, v′) such that:

• q = q′,

• if (q, v) →δ (q, v + δ) →t (q1, v1), then there exists a δ′ ∈ R≥0 such that

(q, v′)→δ′ (q, v′ + δ′)→t (q1, v
′
1) satisfying (q1, v1) �t.a. (q1, v

′
1).
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For two valuations v, v′, we say that v �t.a. v′ if for every state q of the
automaton, we have (q, v) �t.a. (q′, v′). An abstraction a�t.a. based on a simu-
lation �t.a. can be defined as follows:

Definition 2 (Abstraction based on simulation) Given a set W , we de-
fine a�t.a.

(W ) = {v | ∃v′ ∈W. v �t.a. v′}.

Definition 3 (Timed-elapsed zone) A zone Z is said to be time-elapsed if
it is closed under time-successors: that is Z = {v + δ | v ∈ Z, δ ∈ R≥0}.

We had previously noted that all nodes (q,W ) reachable through ⇒∗ from
the initial node (q0,W0) are all time elapsed. We can now show that transition
relations coming from abstractions based on time-abstract simulations satisfy
the transition compatibility condition.

Lemma 4 Let a�t.a.
be an abstraction based on a time-abstract simulation rela-

tion and let Z be a time-elapsed zone. For every transition (q, a�t.a.
(Z))⇒a�t.a.

(q′,W ′) and the matching transition (q, Z)⇒ (q′, Z ′), we have W ′ = a�t.a.
(Z ′).

Proof
Let t be the transition corresponding to ⇒a�t.a.

and ⇒. We first prove that
W ′ ⊆ a�t.a.(Z

′). Let v′ ∈W ′. We will show that there exists a valuation in Z ′

that simulates v′ with respect to �t.a..
By the definition of the abstract symbolic transition (q, a�t.a.

(Z)) ⇒a�t.a.

(q′,W ′), there is a valuation v1 ∈ a�t.a.
(Z) and a time elapse δ1 ∈ R≥0 such

that:

(q, v1)→t→δ1 (q′, v′1) and v′ �t.a. v′1

Firstly consider the intermediate configuration obtained after the→t transition
from (q, v1). Call it (q′, v′1). We know that v′1 ∈ W ′. This valuation v′1 can
elapse a time δ1 and become v′1. Given that �t.a. is a time-abstract simulation,
this intermediate valuation v′1 can simulate v′ too:

(q, v1)→t (q′, v′1) and v′ �t.a. v′1 (1)

Recall that v1 ∈ a�t.a.
(Z). Therefore, there exists a valuation v2 ∈ Z such that

v1 �t.a. v2. As (q, v1) can take the transition →t, by definition of time-abstract
simulation, there exists a time elapse δ2 such that (q, v2) can take the transition
after the time elapse δ2:

(q, v2)→δ2→t (q′, v′2) and v′1 �t.a. v′2 (2)

From (1) and (2), we see that v′ �t.a. v′2. Note that as Z is a time-elapsed zone
and since v2 ∈ Z, we also have v2 +δ2 ∈ Z and this in turn implies that v′2 ∈ Z ′.
This shows that v′ ∈ a�t.a.

(Z ′) and hence W ⊆ a�t.a.
(Z ′).

We will now show the converse: a�t.a.
(Z ′) ⊆ W ′. Let v ∈ a�t.a.

(Z ′). Then,
there exists v1 ∈ Z and a δ1 ∈ R≥0 such that (q, v1)→t→δ1 (q′, v′1) and v �t.a.
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v′1. By the property of an abstraction operator, we will have v1 ∈ a�t.a.(Z) too.
Now, directly by the definition of (q, a�t.a.(Z)) ⇒a�t.a. (q′,W ′), we get that
v ∈W ′ and hence a�t.a.

(Z ′) ⊆W ′.
�

This paper is essentially about how to satisfy the “efficient inclusion test”
condition and get as good abstraction as possible at the same time. In this
context, let us highlight an important remark that describes when an abstraction
is better than another.

Remark 5 If a and b are two abstractions such that for every set of valuations
W , we have a(W ) ⊆ b(W ), we prefer to use b since the graph induced by it is a
priori smaller than the one induced by a (sic [4]). In such a case, the abstraction
b is said to be coarser than abstraction a.

2.3. Bounds as parameters for abstraction

Remark 5 suggests to make use of the coarsest possible abstraction. For a
given automaton it can be computed if two configurations are in a simulation
relation. It should be noted though that computing the biggest simulation
relation is Exptime-hard [18]. Since the reachability problem can be solved in
Pspace, this suggests that it may not be reasonable to try to solve it using the
abstraction based on the biggest simulation.

We can get simulation relations that are computationally easier if we con-
sider only a part of the structure of the automaton. The simplest is to take a
simulation based on the maximal constant that appears in guards. More refined
is to take the maximum separately over constants from lower bound constraints,
that is in guards of the form x > c or x ≥ c, and those from upper bound con-
straints, that is in guards x < c or x ≤ c. If one moreover does this for every
clock x separately, one gets for each clock two integers Lx and Ux. The abstrac-
tion that is currently most used is a refinement of this method by calculating
Lx and Ux for every state of the automaton separately [3]. For simplicity of
notation we will not consider this optimization but it can be incorporated with
no real difficulty in everything that follows. We summarize this presentation in
the following definition.

Definition 6 (LU-bounds) The L bound for an automaton A is the function
assigning to every clock a maximal constant that appears in a lower bound guard
for x in A. Similarly U but for upper bound guards. An LU-guard is a guard
where lower bound guards use only constants bounded by L and upper bound
guards use only constants bounded by U . An LU-automaton is an automaton
using only LU-guards.

In the rest of the paper, we try to find good abstractions parameterized
by LU-bounds that also have an efficient inclusion test. Section 3 defines an
abstraction absLU and proves that this is the optimal sound and complete ab-
straction that is based on LU-bounds. Section 4 then shows that the a4LU
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abstraction is the same as absLU when zones closed under time successors are
considered. We then give an efficient test Z ⊆ a4LU(Z ′) in Section 5, which
enables the use of a4LU in implementations.

3. The coarsest LU abstraction

We call an abstraction that is based on LU bounds an LU abstraction. A
natural question is to know what is the coarsest LU-abstraction sound and
complete for reachability testing. Given L and U bounds, we know that the
automata under consideration have guards only of the following form (with
l ∈ {<,≤} and m ∈ {>,≥}) :

xm 0, xm 1 , . . . , xm Lx

xl 0, xl 1 , . . . , xl Ux

However, we do not know the shape of the automata, in particular, the order in
which the above guards appear in the paths of the automata.

An abstraction a is sound if for every possible path using the above guards
that a valuation v ∈ a(W ) can execute, there is a representative v′ ∈ W that
can execute the same path. If this rule is not followed, there is one possible au-
tomaton with guards respecting the given LU-bounds for which this abstraction
is not sound. Hence our question can be reworded as follows:

Given L and U bounds, what is the coarsest abstraction that is
sound and complete for all LU-automata?

We answer this question in four steps:

Step 1. We define a generic simulation relation vLU (Definition 7) which
is a union over all time-abstract simulation relations on LU-automata.
Roughly the simulation relation says that v vLU v′ if all paths, using LU-
guards, executed by v can be executed by v′. We define an abstraction
absLU that is based on LU-simulation (Definition 8). The definition of
LU-simulation is difficult to work with as it talks about infinite sequences
of transitions.

Step 2. The next aim is to characterize this LU-simulation using a finite
sequence of transitions (Definition 11). We want to come up with a se-
quence of LU-guards seq(v) executed by a valuation v for which we can
say v vLU v′ iff v′ executes this characteristic sequence seq(v). To achieve
this, we go through an intermediate definition of what we call LU-regions
(Definition 9). We define this sequence in Definition 11.

Step 3. Steps 1 and 2 have defined the necessary notions. We now observe
that the following are equivalent (Proposition 12, Corollary 13):

• v vLU v′,
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• v′ can execute seq(v).

Step 4. The previous step gives a finite characterization of the generic LU-
simulation vLU . We use this to prove that every sound abstraction should
be contained in absLU , in other words absLU is the coarsest abstraction
sound and complete for all LU-automata (Theorem 14).

Section 3.1 handles Step 1; Section 3.2 defines the LU-regions as mentioned
in Step 2; Sections 3.3 and 3.4 handle Steps 3 and 4 respectively.

3.1. LU-simulation

Using LU-bounds we define a simulation relation on valuations without re-
ferring to any particular automaton; or to put it differently, by considering all
LU-automata at the same time.

Definition 7 (LU-simulation) Let L, U be two functions giving an integer
bound for every clock. The LU-simulation relation between valuations is the
biggest relation vLU such that if v vLU v′ then for every LU-guard g, and set
of clocks R ⊆ X we have

• if v
g,R−→ v1 for some v1 then v′

g,R−→ v′1 for v′1 such that v1 vLU v′1.

where v
g,R−→ v1 means that for some δ ∈ R≥0 we have v + δ � g and v1 =

[R](v + δ).

Note that in the above definition, the time elapse δ′ required for v′ to sat-
isfy the guard g could be different from the time elapse δ required for v to
satisfy the guard g. It is immediate that vLU is the biggest relation that is
a time-abstract simulation for all automata with given LU bounds. We define
abstraction operator absLU to be the abstraction based on this LU-simulation.

Definition 8 (Abstraction based on LU-simulation) For a zone Z we de-
fine: absLU (Z) = {v | ∃v′ ∈ Z. v vLU v′}.

The definition of LU-simulation is sometimes difficult to work with since it
talks about infinite sequences of actions. We will present a useful characteriza-
tion implying that actually we need to consider only very particular sequences of
transitions that are of length bounded by the number of clocks (Corollary 13).
Essentially, we are interested in the following question: given a valuation v,
when does a valuation v′ LU -simulate it, that is, when is v vLU v′. We start
with a preparatory definition of what we call LU -regions.

3.2. LU-regions

We introduce the notion of LU-regions. The classical notion of regions [2]
depends on the maximum bounds function M . Given only the maximum bounds
M , we know that there could be guards xlc and xmc for c ∈ {0, . . . ,Mx} in the
automaton. Let us call them the M-guards. However, with the LU-bounds, there

10



is more information and consequently fewer guards: x l c for c ∈ {0, . . . , Ux},
and xmc for c ∈ {0, . . . , Lx}. Note that for each x, we have Mx = max(Lx, Ux).

Let us denote the region of a valuation v by [v]M . A valuation v′ belongs to
the region [v]M if two properties are satisfied:

Invariance by guards: v′ satisfies all M -guards that v satisfies,

Invariance by time-elapse: for every time elapse δ ∈ R≥0, there is a δ′ ∈
R≥0 such that v′ + δ′ ∈ [v + δ]M .

We would like to define a notion of LU-regions in the same spirit, now with the
additional information on the guards. For this discussion let us fix some L and
U functions.

Definition 9 (LU-region) For a valuation v we define its LU-region, denoted
〈v〉LU , to be the set of valuations v′ such that:

• v′ satisfies all LU -guards that v satisfies.

• For every pair of clocks x, y with bv(x)c = bv′(x)c, bv(y)c = bv′(y)c,
v(x) ≤ Ux and v(y) ≤ Ly we have:

– if 0 < {v(x)} < {v(y)} then {v′(x)} < {v′(y)}.
– if 0 < {v(x)} = {v(y)} then {v′(x)} ≤ {v′(y)}.

The first invariance with respect to guards has been directly incorporated
in the first condition of the definition. The second condition in the definition
of LU-regions has been added in order to obtain the invariance by time-elapse
property mentioned. Note that it is possible to have v′ ∈ 〈v〉LU but v /∈ 〈v′〉LU .
The following lemma will now show that with the two conditions specified in
the definition, one can achieve the invariance with respect to time-elapse.

Lemma 10 Let v, v′ be valuations such that v′ ∈ 〈v〉LU . For all δ ∈ R≥0, there
exists a δ′ ∈ R≥0 such that v′ + δ′ ∈ 〈v + δ〉LU .

Proof
We are given valuations v and v′ such that v′ ∈ 〈v〉LU . Therefore, v′ satisfies all
the LU-guards that v satisfies, and the property given by second condition of
Definition 9 is true for the ordering of fractional parts. Let us call it the order
property. Additionally, we are given a time elapse δ ∈ R≥0 from the valuation
v. We need to construct a value δ′ ∈ R≥0 such that v′ + δ′ ∈ 〈v + δ〉LU .

Assume δ < 1. Without loss of generality, we can assume that δ < 1. If δ ≥ 1,
then we can put bδ′c = bδc and consider the valuations v+bδc and v′+bδ′c. As
we are not altering the fractional parts in these valuations, the order property
is true for v + bδc and v′ + bδ′c. It is also easy to see that as v′ satisfies all
LU-guards that v does, the valuation v′+bδ′c satisfies all LU-guards that v+bδc
does. This gives us v′ + bδ′c ∈ 〈v + bδc〉LU and we need to consider the time
elapse {δ} from v + bδc. Therefore, in the rest of the proof, without loss of
generality, we can assume that δ < 1.
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Assume bv(z)c = bv′(z)c for all clocks z. Suppose for a clock z, we have
bv(z)c < bv′(z)c. Then, as v′ satisfies all guards which v does, it should be
the case that Uz < bv(z)c. All guards having constants in between bv(z)c and
bv′(z)c would be lower bound guards. So, irrespective of what we choose for
δ′, the value v′(z) + δ′ will satisfy all the LU-guards with respect to z that
v(z) + δ satisfies. Also, z does not concern the order property at all. Similarly,
if bv′(z)c < bv(z)c, as v′ satisfies all LU-guards that v satisfies, it should be the
case that Lz < bv′(z)c < bv(z)c. In both the cases, we can safely ignore the
clock z.

Assume bv(z)c ≤ max(Lz, Uz) for all clocks z. For a clock z such that bv(z)c
is greater than both Lz and Uz, we know that v′(z) should be greater than
Lz in order to satisfy the same LU-guards. Hence any amount of time elapse
would maintain this property and additionally such clocks do not concern order
property. Hence, we assume without loss of generality that all clocks are less
than at least one of the bounds.

Constructing δ′. We now have v and v′ such that for all clocks z, the integral
parts match, that is bv(z)c = bv′(z)c and bv(z)c ≤ max(Lz, Uz). Moreover, the
time elapse δ < 1.

Let 0 ≤ λ1 < λ2 < · · · < λk < 1 be the fractional parts of clocks in v.
Let us denote by Xi the set of clocks z that have {v(z)} = λi. Similarly, let
0 ≤ λ′1 < λ′2 < · · · < λ′k′ < 1 denote the fractional parts in v′ and we define
the set X ′i to be the set of clocks z such that {v′(z)} = λ′i. This is pictorially
illustrated below.

0 X1 X2 . . . Xk 1

In v

0 X′1 X′2 . . . X′
k′ 1

In v′

After a time elapse δ from v, some of the clocks cross the next integer,
whereas some of them do not. Let us say that clocks in Xj ∪ · · · ∪ Xk have
crossed the integer. Now the fractional parts of these clocks would be smaller
than those of X1 ∪ · · · ∪Xj−1 as shown below:

0 Xj . . . Xk X1 . . . Xj−1 1

In v + δ

We need to choose a value δ′ so that for all clocks y ∈ Xj∪· · ·∪Xk such that
(v+δ)(y) ≤ Ly, the time elapse δ′ takes v′ to the next integer. Correspondingly
for all the clocks x ∈ X1 ∪ · · · ∪Xj−1 such that (v+ δ)(x) ≤ Ux, the time elapse
δ′ still keeps v′ within the same integer. Clearly we need this property to be

12



satisfied so that v′ + δ′ satisfies the same LU-guards as v + δ. To this regard,
we define the following two values:

l = min{ {v′(y)} | (v + δ)(y) ≤ Ly and y ∈ Xj ∪ · · · ∪Xk}
u = max{ {v′(x)} | (v + δ)(x) ≤ Ux and x ∈ X1 ∪ · · · ∪Xj−1}

Firstly note that u < l. If not, there exist clocks y and x such that v(y) ≤
Ly and v(x) ≤ Ux, for which the order property is not true, thus giving a
contradiction. Let δ be a value between u and l. Set δ′ = 1−δ. By construction,
v′ + δ′ satisfies the same LU-guards as v + δ.

We will now see that this choice of δ′ also satisfies order property for v′ + δ′

and v+ δ. Due to δ′ some clocks in v′ would have crossed the next integer. Let
us say that clocks in Xj′ ∪ · · · ∪Xk′ have crossed and the others stay within the
same integer. We pictorially depict the scenario with the two valuations v + δ
and v′ + δ′ below.

0 Xj . . . Xk X1 . . . Xj−1 1

In v + δ

0 X
′
j′ . . . X

′
k′ X′1 . . . X

′
j′−1 1

In v′ + δ′

Pick two clocks x, y such that:

b(v + δ)(x)c = b(v′ + δ′)(x)c and b(v + δ)(y)c = b(v′ + δ′)(y)c (3)

(v + δ)(x) ≤ Ux and (v + δ)(y) ≤ Ly
{(v + δ)(x)} < {(v + δ)(y)}

Consider the case when both x, y ∈ X1 ∪ · · · ∪ Xj−1. As they have not
crossed integer in v, they should not have crossed integer in v′ too because of
(3). Therefore both x, y ∈ X ′1 ∪ · · · ∪X ′j′−1. We know from order property that
{v′(x)} < {v′(y)}. Clearly the time elapse of δ′ has not changed this ordering
for these clocks and hence {(v′+δ′)(x)} < {(v′+δ′)(y)}. We can prove similarly
when both x, y ∈ Xj ∪ · · · ∪Xk.

Let us now consider the case when y ∈ X1∪· · ·∪Xj−1 and x ∈ Xj∪· · ·∪Xk.
As x has crossed integer in v, it should have crossed integer in v′ too by the
hypothesis (3). Therefore x ∈ X ′j′ ∪· · ·∪X ′k′ . Again by hypothesis (3) the clock
y should not have crossed integer and hence y ∈ X ′1 ∪ · · · ∪X ′j′−1. Hence we get
that {(v′ + δ′)(x)} < {(v′ + δ′)(y)}.

This way we have proved the order property for v+ δ and v′+ δ′ for the case
of the strict inequality. The case of the equality can be handled in a similar
way. �

3.3. Finite paths characterizing LU-simulation

The previous section took a digression to define the notion of LU-regions.
Now, we are in a position to answer the question: given two valuations v, v′,
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when is v vLU v′. This section is devoted to show the link between this question
and the definition of LU-regions. For valuations v, v′, we will show that v vLU v′

if and only if v′ can elapse some amount of time and fall into the LU-region of v
(Proposition 12). Before that, we will define a sequence of guards that succinctly
describes the LU-region 〈v〉LU .

Definition 11 (LU-sequence) For a valuation v, let gint be the conjunction
of all LU guards that v satisfies. For every pair of clocks x, y such that v(x) ≤
Ux, v(y) ≤ Ly, consider guards:

• if 0 < {v(x)} < {v(y)} then we take a guard gxy ≡ (x < bv(x)c+1)∧ (y >
bv(y)c+ 1).

• if 0 < {v(x)} = {v(y)} then we take a guard gxy ≡ (x ≤ bv(x)c+1)∧ (y ≥
bv(y)c+ 1).

For every y with v(y) ≤ Ly put gy =
∧
{gxy : v(x) ≤ Ux}. Consider all the clocks

y with v(y) ≤ Ly and suppose that y1, . . . , yk is the ordering of these clocks with
respect to the value of their fractional parts: 0 ≤ {v(y1)} ≤ · · · ≤ {v(yk)}. The

LU-sequence seq(v) is defined to be the sequence of transitions
gint−→

gyk−→ . . .
gy1−→

Proposition 12 For every two valuations v and v′:

v vLU v′ iff there is δ′ ∈ R≥0 with v′ + δ′ ∈ 〈v〉LU .

Proof
First let us take v and consider its LU-sequence seq(v). The sequence seq(v)
can be performed from v (the symbol τ denotes a time elapse):

v
gint−−→ v

τ−→ v + δk
gyk−−→ v + δk

τ−→ v + δk−1
gyk−1−−−−→ . . .

. . .
τ−→ v + δ1

gy1−−→ v + δ1

when choosing δi = (1− {v(yi)}) or δi = (1− {v(yi)}) + ε for some sufficiently
small ε > 0; depending on whether we test for non-strict or strict inequality in
gyi . Delay δi makes the value of yi integer or just above integer.

If v vLU v′, then there exists a δ′ such that v′ + δ′ can do the sequence
of transitions given by seq(v). The guard gint ensures that v′ + δ′ satisfies the
same LU -guards as v. Note that in particular, this entails that for every pair
of clocks x, y such that v(x) ≤ Ux, v(y) ≤ Ly and {v(x)} > 0, we have:

• b(v′ + δ′)(x)c < bv(x)c+ 1, and

• b(v′ + δ′)(y)c ≥ bv(y)c.

Following transition gint, valuation v′+δ′ can satisfy guards gyk to gy1 by letting
some time elapse:

v′ + δ′
gint−−→ v′ + δ′

τ−→ v + δ′k
gyk−−→ v + δ′k

τ−→ v + δ′k−1
gyk−1−−−−→ . . .

. . .
τ−→ v′ + δ1

gy1−−→ v′ + δ′1

14



Consider the clock yi. If the integral part b(v′ + δ′)(yi)c is strictly greater
than bv(yi)c, time elapse is not necessary to cross the guard gyi . On the other
hand, if b(v′+ δ′)(yi)c = bv(yi)c, then for the guard gyi to be crossed, δ′i should
be sufficiently large to make the value of (v′ + δ′i)(yi) integer or just above
integer. But at the same time, the guard gxyi is satisfied, which entails that for
all x such that v(x) ≤ Ux, bv(x)c = b(v′ + δ′)(x)c, we get:

• if 0 < {v(x)} < {v(yi)}, then {(v′ + δ′)(x)} < {(v′ + δ′)(yi)} and

• if 0 < {v(x)} = {v(yi)}, then {(v′ + δ′)(x)} ≤ {(v′ + δ′)(yi)}

Therefore, from the definition of LU -regions, we get that v′ + δ′ ∈ 〈v〉LU . This
shows left to right implication.

For the right to left implication we show that the relation S = {(v, v′) : v′ ∈
〈v〉LU} is an LU-simulation relation. For this we take any (v, v′) ∈ S, any LU

guard g, and any reset R such that v
g,R−→ v1. We show that v′

g,R−→ v′1 for some
v′1 with (v1, v

′
1) ∈ S. The only non-trivial part in this is to show that if v+δ � g

for some δ, then there exists a δ′ such that (v + δ, v′ + δ′) ∈ S and v′ + δ′ � g.
But this is exactly given by Lemma 10. �

In particular the proof shows the following.

Corollary 13 For two valuations v, v′:

v vLU v′ iff v′ can execute the sequence seq(v).

3.4. Proof of optimality

We are now ready to show that absLU (Z) (Definition 8), the abstraction
based on vLU simulation, is the coarsest sound and complete abstraction that
uses solely the LU information.

Theorem 14 The absLU abstraction is the coarsest abstraction that is sound
and complete for all LU-automata. It is also finite.

Proof
Suppose that we have some other abstraction a′ that is not included in absLU on
at least one LU -automaton. This means that there is some LU automaton A1

and its reachable configuration (q1, Z) such that a′(Z) \ absLU (Z) is not empty.
We suppose that a′ is complete and show that it is not sound.

Take v ∈ a′(Z) \ absLU (Z). Consider the test sequence seq(v) as in Corol-
lary 13. From this corollary we know that it is possible to execute this sequence
from v but it is not possible to do it from any valuation in Z since otherwise we
would get v ∈ absLU (Z).

As illustrated in Fig 2 we add toA1 a new sequence of transitions constructed
from the sequence seq(v). We start this sequence from q1, and let qf be the
final state of this new sequence. The modified automaton A1 started in the
initial configuration arrives with (q1, Z) in q1 and then it can try to execute the
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q0
. . .

• . . .

• . . .

• q1

. . .

Automaton A1

• • • qf
gint gyk gy1

seq(v)

Figure 2: Adding the sequence seq(v) to A1.

sequence we have added. From what we have observed above, it will not manage
to reach qf . On the other hand from (q1, v) it will manage to complete the

sequence. But then by completeness of the abstraction (q1, a
′(Z))

seq(v)−→ (qf ,W )
for a nonempty W . So a′ is not a sound abstraction.

That absLU is finite is easy to see. The set absLU (Z) is a union of classical
regions. Recall that we denote by M the bound function that assigns to each
clock x, the maximum of Lx and Ux. Let v′ be a valuation in Z. If v′ ∈ [v]M

then it is easy to see that v′ ∈ 〈v〉LU and by definition v′ ∈ absLU (Z). �

4. The a4LU abstraction

Since absLU is the coarsest abstraction, we would like to use it in a reacha-
bility algorithm. The definition of absLU , or even the characterization referring
to LU-regions, are still too complicated to work with. It turns out though that
there is a close link to an existing abstraction.

The a4LU abstraction proposed by Behrmann et al. in [4] has a much sim-
pler definition. Quite surprisingly, in the context of reachability analysis the
two abstractions coincide (Theorem 19). The a4LU abstraction is based on a
simulation relation 4LU .

Definition 15 (LU-preorder [4]) Let L,U : X → N ∪ {−∞} be two bound
functions. For a pair of valuations we set v 4LU v

′ if for every clock x:

• if v′(x) < v(x) then v′(x) > Lx, and

• if v′(x) > v(x) then v(x) > Ux.

It has been shown in [4] that 4LU is a simulation relation. The a4LU ab-
straction is based on this relation.

Definition 16 (a4LU-abstraction [4]) Given L and U bound functions, for a
set of valuations W we define:

a4LU(W ) = {v | ∃v′ ∈W. v 4LU v
′}.

Figure 3 gives an example of a zone Z and its abstraction a4LU(Z). It can
be seen that a4LU(Z) is not a convex set.

16



Ux Lx

Ly

Uy

0 x

y

Z

Z :

a4LU (Z) : ∪

Figure 3: Zone Z is given by the grey area. Abstraction a4LU (Z) is given by the grey area
along with the dotted area

4.1. Abstractions absLU and a4LU coincide

Our goal is to show that when we consider zones closed under time-successors,
a4LU and absLU coincide. To prove this, we would first show that there is a
very close connection between valuations in 〈v〉LU and valuations that simulate
v with respect to 4LU . The following lemma says that if v′ ∈ 〈v〉LU then by
slightly adjusting the fractional parts of v′ we can get a valuation v′1 such that
v 4LU v

′
1. We start with a preliminary definition.

Definition 17 A valuation v1 is said to be in the neighborhood of v, written
v1 ∈ nbd(v) if for all clocks x, y:

• bv(x)c = bv1(x)c,

• {v(x)} = 0 iff {v1(x)} = 0,

• {v(x)}l {v(y)} implies {v1(x)}l {v1(y)} where l is either < or =.

Notice that the neighborhood of v is the same as the region of v with respect
to the classical region definition with maximal bound being ∞.

We give a brief intuition before proving the following lemma which gives
the relation between LU-regions and 4LU simulation. Consider a valuation v
shown in Figure 4. Its LU-region 〈v〉LU is given by the shaded portion. Pick a
valuation v′ that belongs to 〈v〉LU and let us see if it satisfies v 4LU v

′.
As we can see in Figure 4, the value of v′(x) > v(x) and additionally v′(x) ≤

Ux. This shows that v 64LU v′ due to its x-coordinate. However, by slightly
adjusting the fractional parts: that is, reducing {v′(y)} to move it down a bit
and then reducing {v′(x)} to make v′(x) equal to v(x) leads us to a valuation
v′1 which is in the neighborhood of v′ but now v 4LU v′1. The adjustment is
depicted in Figure 4. Essentially, the following lemma claims that the LU-region
〈v〉LU can be obtained as the downward closure of 4LU over the set nbd(v), in
other words, a4LU(nbd(v)).
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Lx Ux

Uy

Ly

0 x

y

v

v′1

v′

v(x) v′(x)

Figure 4: Intuition for the adjustment lemma.

Lemma 18 (Adjustment) Let v be a valuation and let v′ ∈ 〈v〉LU . Then,
there exists a v′1 ∈ nbd(v′) such that v 4LU v

′
1.

Proof
Let v′ ∈ 〈v〉LU . The goal is to construct a valuation v′1 ∈ nbd(v′) that satisfies
v 4LU v′1. To be in the neighborhood, the valuation v′1 should have the same
integral parts as that of v′ and should agree on the ordering of fractional parts.
So for all x, we put bv′1(x)c = bv′(x)c. It remains to choose the fractional parts
for v′1. But before, we will first see that there are clocks for which irrespective
of what the fractional part is, the two conditions in Definition 15 would be true.

Consider a clock x that has bv′(x)c < bv(x)c. Since v′ satisfies all LU-guards
as v, we should have v′(x) > Lx. The first condition of 4LU for x becomes true
and the second condition is vacuously true. Similarly, when bv′(x)c > bv(x)c,
we should have v(x) > Ux and the second condition of 4LU becomes true and
the first condition is vacuously true. Therefore, clocks x that do not have the
same integral part in v and v′ satisfy the 4LU condition directly thanks to
the different integral parts. Whatever the fractional parts of v′1 are, the 4LU

condition for these clocks would still be true.
Let us therefore now consider only the clocks that have the same integral

parts: bv′(x)c = bv(x)c. If this integer is strictly greater than both Lx and Ux,
the two conditions of 4LU would clearly be satisfied, again irrespective of the
fractional parts. So we consider only the clocks x that have the same integral
part in both v and v′ and additionally either bv(x)c ≤ Ux or bv(x)c ≤ Lx.

We prune further from among these clocks. Suppose there is such a clock
that has {v′(x)} = 0. To be in the neighborhood, we need to set {v′1(x)} = 0.
If {v(x)} is 0 too, we are done as the 4LU condition becomes vacuously true.
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Otherwise, we would have v′(x) = v′1(x) < v(x). But recall that v′ ∈ 〈v〉LU and
so it satisfies the same LU-guards as v does. This entails that v′1(x) > Lx and
we get the first condition of 4LU to be true. Once again, the other condition is
trivial. So we eliminate clocks that have zero fractional parts in v′. A similar
argument can be used to eliminate clocks that have zero fractional parts in v.

So finally, we end up with the set of clocks x that have:

• bv′(x)c = bv(x)c,

• {v′(x)} > 0 and {v(x)} > 0,

• v(x) < max(Ux, Lx).

Call this set Xf . The task is to select non-zero fractional values {v′1(x)}
for all clocks x in Xf so that they match with the order in v′. This is the
main challenge and this is where we would be using the second property in the
definition of v′ ∈ 〈v〉LU , which we restate here:

∀x, y ∈ Xf such that v(x) ≤ Ux and v(y) ≤ Ly (4)

0 < {v(x)} < {v(y)} ⇒ {v′(x)} < {v′(y)}
0 < {v(x)} = {v(y)} ⇒ {v′(x)} ≤ {v′(y)}

Let 0 < λ′1 < λ′2 < · · · < λ′n < 1 be the fractional values taken by clocks of
Xf in v′, that is, for every clock x ∈ Xf , the fractional value {v′(x)} = λ′i for
some i ∈ {1, . . . , n}. Let Xi be the set of clocks x ∈ Xf that have the fractional
value as λ′i:

Xi = {x ∈ Xf | {v′(x)} = λ′i}

for i ∈ {1, . . . , n}.
In order to match with the ordering of v′, one can see that for all clocks xi

in some Xi, the value of {v′1(xi)} should be the same, and if xj ∈ Xj with i 6= j,
then we need to choose {v′1(xi)} and {v′1(xj)} depending on the order between
λ′i and λ′j .

Therefore, we need to pick n values 0 < σ1 < σ2 < · · · < σn < 1 and assign
for all xi ∈ Xi, the fractional part {v′1(xi)} = σi. We show that it can be done
by an induction involving n steps.

After the kth step of the induction we assume the following hypothesis:

• we have picked values 0 < σn−k+1 < σn−k+2 < · · · < σn < 1,

• for all clocks x ∈ Xn−k+1∪Xn−k+2 · · ·∪Xn, the 4LU condition is satisfied,

• for all clocks y ∈ X1 ∪X2 · · · ∪Xn−k, we have

v(y) ≤ Ly ⇒ {v(y)} < σn−k+1 (5)
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Let us now perform the k+ 1th step and show that the induction hypothesis
is true for k + 1. The task is to pick σn−k. We first define two values 0 < l < 1
and 0 < u < 1 as follows:

l = max
{
{v(z)} | z ∈ Xn−k and v(z) ≤ Lz

}
u = min

{
{ {v(z)} | z ∈ Xn−k and v(z) ≤ Uz } ∪ σn−k+1

}
We claim that l ≤ u. Firstly, l < σn−k+1 from the third part of the induction
hypothesis. So if u is σn−k+1 we are done. If not, suppose l > u, this means
that there are clocks x, y ∈ Xn−k with v(x) ≤ Ux and v(y) ≤ Ly such that
{v(x)} < {v(y)}. From Equation 4, this would imply that {v′(x)} < {v′(y)}.
But this leads to a contradiction since we know they both equal λ′n−k in v′.

This leaves us with two cases, either l = u or l < u. When l = u, we pick
σn−k = l = u. Firstly, from the third part of the hypothesis, we should have
l < σn−k+1 and so σn−k < σn−k+1. Secondly for all z ∈ Xn−k, if v′1(z) < v(z),
then z should not contribute to l and so v(z) > Lz, which is equivalent to
saying, v′1(z) > Lz. Similarly, if v′1(z) > v(z), then z should not contribute
to u and so v(z) > Uz, thus satisfying the 4LU condition for z. Finally, we
should show the third hypothesis. Consider a clock y ∈ X1 ∪ · · · ∪Xn−k−1 with
v(y) < Ly. If {v(y)} ≥ σn−k, it would mean that {v(y)} ≥ u and from Equation
4 gives a contradiction. So the three requirements of the induction assumption
are satisfied after this step in this case.

Now suppose l < u. Consider a clock y ∈ X1 ∪ · · · ∪ Xn−k−1 such that
v(y) < Ly. From Equation 4, we should have {v(y)} < u. Take the maximum
of {v(y)} over all such clocks:

λ = max{{v(y)} | y ∈ X1 ∪ · · · ∪Xn−k−1 and v(y) < Ly}

Choose σn−k in the interval (λ, u). We can see that all the three assumptions
of the induction hold after this step.

�

We can now prove the main result of this section. Recall Definition 3 of
time-elapsed zones.

Theorem 19 If Z is time-elapsed then

absLU (Z) = a4LU(Z)

Proof
Suppose v ∈ a4LU(Z). There exists a v′ ∈ Z such that v 4LU v′. It can be
easily verified that 4LU is a LU -simulation relation. Since vLU is the biggest
LU-simulation, we get that v vLU v′. Hence v ∈ absLU (Z).

Suppose v ∈ absLU (Z). There exists v′ ∈ Z such that v vLU v′. From
Proposition 12, this implies that there exists a δ′ such that v′ + δ′ ∈ 〈v〉LU . As
Z is time-elapsed, we get v′+ δ′ ∈ Z. Moreover, from Lemma 18, we know that
there is a valuation v′1 ∈ nbd(v′+δ′) such that v 4LU v

′
1. Every valuation in the
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(q0, Z0)

(q1, Z1)

(q4, Z4)

...

(q5, Z5)

...

(q2, Z2)

(q6, Z6)

...

(q3, Z3)

(q7, Z7)

...

(q8, Z8)

...

Figure 5: A reachability tree of zones computed by a forward exploration

neighborhood of v′+ δ′ satisfies the same constraints of the form y− xl c with
respect to all clocks x, y and hence v′1 belongs to Z too. Therefore, we have a
valuation v′1 ∈ Z such that v 4LU v

′
1 and hence v ∈ a4LU(Z). �

4.2. Using a4LU to solve the reachability problem

A forward exploration algorithm for solving the reachability problem con-
structs the reachability tree starting from the initial node (q0, Z0) (cf. Figure 5),
with Z0 = {0+δ | δ ∈ R≥0}. The successor with respect to⇒ can be computed
in time O(|X|2) where X is the number of clocks [25]. By definition⇒ computes
a time-elapsed zone. Therefore, all nodes that are explored by the algorithm
have time-elapsed zones.

Before continuing exploration from a node (q, Z), the algorithm first checks
if q is accepting. If not, the algorithm checks if for some visited node (q, Z ′), we
have Z ⊆ a4LU(Z ′). If this is the case, (q, Z) need not be explored. Otherwise,
the successors of (q, Z) are computed as stated above. This way we ensure
termination of the algorithm since a4LU is a finite abstraction [4].

Since the reachability algorithm refers to only time-elapsed zones, Theo-
rems 14 and 19 show that a4LU is the coarsest sound and complete abstraction
provided the only thing we know about the structure of the automaton are its
L and U bounds. Recall that coarser abstractions make abstract graph smaller,
so the exploration algorithm can finish faster.

In Definition 6, we introduced LU -bounds that associate an L bound and
a U bound to every clock in an automaton A. Those bounds are the same
in every state of the automaton. Instead, state-of-the-art algorithms calculate
LU -bounds for each state of the automaton separately [3], or even on-the-fly
during exploration [14, 16]. The maximality argument in favor of a4LU is of
course true also in this case.

The last missing piece is an efficient inclusion test Z ⊆ a4LU(Z ′). This is
the main technical contribution of this paper.

5. An O(|X|2) algorithm for Z ⊆ a4LU(Z′)

In this section, we present an efficient algorithm for the inclusion test Z ⊆
a4LU(Z ′) (Theorem 32). In the algorithm for the reachability problem as ex-
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plained in Section 4.2, each time a new node (q, Z) is seen, it is checked if there
exists an already visited node (q, Z ′) such that Z ⊆ a4LU(Z ′). This means
that a lot of such inclusion tests need to be performed during the course of
the algorithm. Hence it is essential to have a low complexity for this inclusion
procedure. We are aiming at quadratic complexity as this is the complexity
incurred in the existing algorithms for inclusions of the form Z ⊆ Z ′ used in the
standard reachability algorithm. It is well known that all the other operations
needed for forward exploration, can be done in at most quadratic time [25].

We will now characterize when Z 6⊆ a4LU(Z ′) holds. The main steps are
outlined below.

Step 1. As a first step, we reduce the inclusion problem to a problem of
intersection in Section 5.1. The question Z 6⊆ a4LU(Z ′) boils down to
asking if there exists a valuation v ∈ Z such that its LU-region 〈v〉LU does
not intersect Z ′ (Proposition 21).

Step 2. As a next step, we consider the intersection 〈v〉LU ∩ Z ′. We aim to
show that this intersection can be decided by looking at projections on
every pair of clocks (Proposition 28). This is the most difficult step in
the way to the inclusion test and spans three sections. We first describe a
convenient graph representation of zones in Section 5.2. We call this the
distance graph and will use it to represent Z ′. Subsequently, in Section 5.3,
we see how we can represent LU-regions as distance graphs. This gives a
distance graph representation for 〈v〉LU . Finally, in Section 5.4, we analyze
the graph representations of 〈v〉LU and Z ′ to see when the intersection
〈v〉LU ∩ Z ′ is empty. We show that for this it is enough to look at two
clocks at a time.

Step 3. The previous step gives the condition for 〈v〉LU ∩Z ′ to be empty. We
now look at the zone Z to find out quickly the valuation v ∈ Z that can
potentially satisfy this condition (Proposition 31).

Step 4. We substitute the valuation obtained from Step 3 to the condition of
Step 2 to give the efficient test for inclusion (Theorem 32). Both steps 3
and 4 appear in Section 5.5.

Notation. For notational convenience, we denote v(x) by vx for a valuation v
and clock x.

5.1. Reducing inclusion to intersection

The aim of this chapter is to reduce the question of inclusion to a question
of intersection. The adjustment lemma (Lemma 18) shows a close connection
between LU -regions and 4LU -simulation in one direction: that is, if v′ ∈ 〈v〉LU

then we can find a valuation v′1 in the neighborhood of v′ such that v 4LU v′1.
We show below a connection in the other direction too.

Lemma 20 Let v, v′ be valuations. If v 4LU v
′, then v′ ∈ 〈v〉LU .

22



Proof
It is not difficult to see from the definition of 4LU (Definition 15) that both v
and v′ satisfy the same LU-guards. It remains to show the second property for
v′ to be in 〈v〉LU .

Let x, y be clocks such that bvxc = bv′xc, bvyc = bv′yc, and vx ≤ Ux, vy ≤ Ly.
Suppose {vx} l {vy}, for l being either < or =. As v 4LU v′, if v′x > vx, we
need vx > Ux which is not true. Hence we can conclude that v′x ≤ vx. Similarly,
for y, one can conclude that v′y ≥ vy. As the integer parts are the same in v and
v′, we get {v′x} < {v′y} or {v′x} ≤ {v′y} depending on whether l is < or =. �

The above along with the adjustment lemma help us to reduce the question
of inclusion as a question of intersection.

Proposition 21 Let Z,Z ′ be zones. Then, Z 6⊆ a4LU(Z ′) iff there exists a
valuation v ∈ Z such that 〈v〉LU ∩ Z ′ is empty.

Proof
Consider the left-to-right direction. Suppose Z 6⊆ a4LU(Z ′). Then there exists a
valuation v ∈ Z such that for every valuation v′ ∈ Z ′ we have v 64LU v

′. Pick an
arbitrary v′ ∈ Z ′. In particular, every valuation v′1 ∈ nbd(v′) satisfies v 64LU v

′
1.

From the Adjustment lemma 18, we get that v′ 6∈ 〈v〉LU . Since v′ is arbitrary,
we get that 〈v〉LU ∩ Z ′ is empty.

Now for the right-to-left direction. Suppose 〈v〉LU ∩ Z ′ is empty. Then by
Lemma 20, we get that v 64LU v′ for every valuation v′ ∈ Z ′. This shows that
Z 6⊆ a4LU(Z ′). �

5.2. Distance graphs

Thanks to Proposition 21, we know that to solve Z 6⊆ a4LU(Z ′), we need to
check if there exists a valuation v ∈ Z such that its LU-region 〈v〉LU does not
intersect with the zone Z ′. The focus now is to study this intersection.

We will begin with a convenient representation of zones that we use to solve
this intersection question. The standard way to represent a zone is using a
DBM. An equivalent representation is in terms of graphs [20] which we call here
distance graphs.

Definition 22 (Distance graph) A distance graph G has clocks as vertices,
with an additional special vertex x0 representing constant 0. Between every
two vertices there is an edge with a weight of the form (l, c) where c ∈ Z
and l ∈ {≤, <} or (l, c) = (<,∞). An edge x

lc−→ y represents a constraint
y − x l c: or in words, the distance from x to y is bounded by c. We let [[G]]
be the set of valuations of clock variables satisfying all the constraints given by
the edges of G with the restriction that the value of x0 is 0. We also say that
the y − x-constraint of [[G]] is lc if the weight of the x −→ y edge in G is lc.

For readability, we will often write 0 instead of x0. Figure 6 illustrates a
zone with its constraints and the corresponding distance graph.

An arithmetic over the weights (l, c) can be defined as follows [6].
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Figure 6: An arbitrary zone with its constraints and distance graph

Equality (l1, c1) = (l2, c2) if c1 = c2 and l1 = l2.

Addition (l1, c1) + (l2, c2) = (l, c1 + c2) where l =< iff either l1 or l2 is
<.

Minus −(l, c) = (l,−c).

Order (l1, c1) < (l2, c2) if either c1 < c2 or (c1 = c2 and l1 =< and l2 =≤).

This arithmetic lets us talk about the weight of a path as a weight of the sum
of its edges.

A cycle in a distance graph G is said to be negative if the sum of the weights
of its edges is at most (<, 0); otherwise the cycle is positive. The following
proposition is folklore.

Proposition 23 A distance graph G has only positive cycles iff [[G]] 6= ∅.

A distance graph is in canonical form if the weight of the edge from x to y is
the lower bound of the weights of paths from x to y. Given a distance graph, its
canonical form can be computed by using an all-pairs shortest paths algorithm
like Floyd-Warshall’s [6] in timeO(|X|3) where |X| is the number of clocks. Note
that the number of vertices in the distance graph is |X| + 1. For computing
the successors of a node in the zone graph, the most complex operation is the
computation of Z ∧ g which involves a canonicalization operation. However,
since g has diagonal free constraints, the canonicalization procedure involved to
compute Z ∧ g is easier and costs only O(|X|2) [25].

Recall that we have reduced the problem Z 6⊆ a4LU(Z ′) to checking if there
exists v such that 〈v〉LU ∩ Z ′ is empty. For this, we need to know when the
intersection of an LU-region and a zone is empty. In the next section we will
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see that an LU-region is a zone and can be represented using a distance graph.
Therefore, it boils down to asking given two distance graphs G1 and G2 when
is [[G1]] ∩ [[G2]] empty.

For two distance graphs G1, G2 which are not necessarily in canonical form,
we denote by min(G1, G2) the distance graph where each edge has the weight
equal to the minimum of the corresponding weights in G1 and G2. Even though
this graph may be not in canonical form, it should be clear that it represents
intersection of the two arguments, that is, [[min(G1, G2)]] = [[G1]] ∩ [[G2]]; in
other words, the valuations satisfying the constraints given by min(G1, G2) are
exactly those satisfying all the constraints from G1 as well as from G2.

Proposition 23 tells us that the intersection [[G1]] ∩ [[G2]] is empty iff the
distance graph min(G1, G2) has a negative cycle.

5.3. LU-regions as distance graphs

Our aim is to check when the intersection of 〈v〉LU and Z ′ is empty. We saw
in the previous subsection that zones can be conveniently and canonically rep-
resented by distance graphs. Here, we will see how we can canonically represent
an LU -region of a valuation as a distance graph.

We will first recall a constructive definition of Alur-Dill regions.

Definition 24 (Regions: constructive definition) A region with respect to
bound function M is the set of valuations specified as follows:

1. for each clock x ∈ X, one constraint from the set:
{x = c | c = 0, . . . ,Mx} ∪ {c− 1 < x < c | c = 1, . . . ,Mx} ∪ {x > Mx}

2. for each pair of clocks x, y having interval constraints: c− 1 < x < c and
d − 1 < y < d, it is specified if {x} is less than, equal to or greater than
{y}.

The distance graph representing a region can be constructed using the above
constructive definition of a region. For a valuation v, let GM

v denote the canoni-
cal distance graph representing the region [v]M . We are now interested in getting
the LU-region of v, that is, 〈v〉LU as a distance graph. For convenience, we will
recall below the definition of LU-regions.

IDefinition 9. (LU-region)
For a valuation v we define its LU-region, denoted 〈v〉LU , to be the set of

valuations v′ such that:

• v′ satisfies the same LU -guards as v.

• For every pair of clocks x, y with bv(x)c = bv′(x)c, bv(y)c = bv′(y)c,
v(x) ≤ Ux and v(y) ≤ Ly we have:

– if 0 < {v(x)} < {v(y)} then {v′(x)} < {v′(y)}.
– if 0 < {v(x)} = {v(y)} then {v′(x)} ≤ {v′(y)}.

25



Ux

x

y

0

v [v]M

(a)

Ux

x

y

0

v

〈v〉LU

(b)

Ly

x

y

0

v
[v]M

(c)

Ly

x

y

0

v

〈v〉LU

(d)

Figure 7: 〈v〉LU can be thought of as a transformation of [v]M by altering select constraints.
Pictures (a) and (b) handle the case when vx > Ux; pictures (c) and (d) handle the case when
vy > Ly

For a valuation v, we need to collect all valuations v′ satisfying the above
two conditions to get 〈v〉LU . We begin with a motivating example in Figure 7.
In the (a) part of the figure, we consider a valuation v such that vx > Ux. The
shaded portion in Figure 7 (a) shows the region [v]M and the finite valued x− y
and x − 0 constraints bounding this region (c.f. Definition 22 for definition
of x − y-constraints and Figure 6 for an illustration). The LU-region 〈v〉LU is
shown in Figure 7 (b). Observe that it matches with the definition given above.
But more importantly, note that it can be seen as a transformation of [v]M by
moving its x− y and x− 0 constraints to infinity and keeping the rest same.

We now consider a valuation v with vy > Ly in Figure 7 (c). Once again, the
shaded portion shows the region [v]M and the relevant boundary constraints.
We depict the LU-region 〈v〉LU in Figure 7 (d) matching the definition given
above. Note that it can be seen as a transformation of [v]M by moving the x−y
constraint to infinity and the 0−y constraint up to Ly. However, when we move
x− y to infinity, the graph that we get would no longer be canonical. We could
then consider the canonicalization of the transformed graph.
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These examples lead us to the definition of the distance graph GLU
v for 〈v〉LU

as a transformation of the distance graph GM
v .

Definition 25 (Distance graph GLU
v ) Let v be valuation. Given the distance

graph of the region [v]M in canonical form GM
v = (lxy, cxy)x,y∈X , first define

the distance graph G′ = (l′xy, c′xy)x,y∈X as follows:

(l′yx, c′yx) =


(<,∞) if vx > Ux

(<,∞) if vy > Ly and x 6= 0

(<,−Ly) if vy > Ly and x = 0

(lyx, cyx) otherwise

Then, the distance graph GLU
v is defined to be the canonical form of G′.

The following lemma confirms that the distance graph defined above indeed
represents 〈v〉LU .

Lemma 26 Let v be a valuation. Let GLU
v be the graph obtained by Defini-

tion 25. Then the sets 〈v〉LU and [[GLU
v ]] are equal.

Proof
Let v′ ∈ 〈v〉LU . We will now show that v′ ∈ [[GLU

v ]]. First observe that [[GLU
v ]] =

[[G′]] where G′ is the graph as in Definition 25. Therefore it is sufficient to show
that v′ satisfies the constraints given by G′. From the definition, it is clear that
an edge y −→ x is finite valued in G′ only if vx ≤ Ux. Additionally when vy ≤ Ly,
the value of the edge y −→ x is the same as that in GM

v . Otherwise if vy > Ly,
the only finite value is (<,−Ly) for the edge y −→ x0.

Since v′ ∈ 〈v〉LU , it satisfies all the LU -guards that v satisfies. If y is a clock
such that vy > Ly then v′y > Ly too. So v′ satisfies constraints of the form

y
<−Ly−−−−→ x0. It now remains to look at edges y

ld−−→ x with vy ≤ Ly, vx ≤ Ux
and the weight (l, d) coming from GM

v . Let bvxc and bvyc be denoted as cx and
cy respectively. As v′ satisfies the same LU -guards as v, we have:

v′x < cx + 1

v′y ≥ cy
(6)

Therefore v′x − v′y < cx + 1 − cy. Since GM
v represents the region containing v,

by definition of regions, the constant in the weight (l, d) is either cx − cy + 1
or cx − cy. If it is the former, then clearly, v′ also satisfies x− y l d. We need
to consider the latter case, that is, d is cx − cy. Thanks to (6) above, if either
v′x < cx or v′y ≥ cy + 1, we are done. We are left with considering the case when
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bv′xc = cx and bv′yc = cy. We have:

vx − vy l cx − cy
⇒ {vx} − {vy}l 0

⇒ {v′x} − {v′y}l 0 (as v′ ∈ 〈v〉LU)

⇒ bv′xc+ {v′x} − (bv′yc+ {v′y}) l cx − cy
⇒ v′x − v′y l d

This proves that if v′ ∈ 〈v〉LU , then v′ satisfies the constraints of G′ and hence
v′ ∈ [[G′]].

Now for the other direction, assume v′ ∈ [[G′]]. We will show that v′ ∈ 〈v〉LU .
Let x, y be clocks such that vx ≤ Ux and vy ≤ Ly. From the definition of [[G′]],
edges of the form y −→ x0 and x0 −→ x are retained as in GM

v . Since v′ ∈ [[G′]],
it is clear that v′ satisfies the same LU -guards as v. We now consider the order
property for LU -regions. From Definition 9, the order property only need to be
considered when bv′xc = bvxc and bv′yc = bvyc. Let us denote cx = bv′xc = bvxc
and cy = bv′yc = bvyc By definition of G′, the edge y −→ x in G′ has the same
weight as that in GM

v . Let the edge weight y −→ x be (l, d). We have:

vx − vy l d

⇒ {vx} − {vy}l d− (cx − cy)

If {vx} < {vy} then either d − (cx − cy) < 0 or if it is 0 then l is the strict
inequality. As this edge remains in G′, the valuation v′ satisfies v′x − v′y l d.
Moreover, since the integral parts of v′ match, we get {v′x}−{v′y}ld−(cx−cy).
By the aforementioned property, we get {v′x} < {v′y}. A similar argument
follows for the case when {vx} = {vy}. �

Before we use the distance graph GLU
v for further analysis, recall that we first

defined a graph G′ in Definition 25 and then obtained GLU
v by canonicalizing it.

We will now observe some properties of GLU
v that are either retained from G′

or obtained thanks to canonicalization. These observations would be important
in the next section when we do the analysis on the distance graph representing
LU-region 〈v〉LU and zone Z ′.

Lemma 27 Let v be a valuation. Let GM
v , GLU

v be the canonical distance
graphs of [v]M and 〈v〉LU respectively. For variables x, y, if the edge y −→ x has
a finite value in GLU

v , then:

1. vx ≤ Ux,

2. if vy ≤ Ly, the value of y −→ x in GLU
v and GM

v are equal,

3. if vy > Ly, the value of y −→ x in GLU
v equals the value of the path

y −→ x0 −→ x in GLU
v .

Proof
The graph GLU

v is the canonical form of the graph G′ defined in Definition 25.
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By definition, if vx > Ux, all incoming edges to x in G′ have weight (<,∞). So,
the shortest path in this graph G′ from a variable y to a variable x such that
vx > Ux is (<,∞). Therefore, if in the canonical form GLU

v , the edge y −→ x is
finite valued, we should have vx ≤ Ux. This gives the first part of the lemma.

Consider the second part of the lemma. We know that vy ≤ Ly and from
the first part of the lemma, we know that vx ≤ Ux. The weight of y −→ x in G′

is the same as that of GM
v according to Definition 25. Note that the finite values

in the graph G′ are either the same as that of GM
v or of the form (<,−Lz) for

some edges z −→ 0. In the latter case, we also know by definition that vz > Lz.
Therefore the value (<,−Lz) is greater than the corresponding value in GM

v .
As GM

v is canonical, the shortest path from y to x in G′ cannot reduce from its
value in GM

v and hence equals just the edge value y −→ x. This gives the second
part of the lemma.

Finally consider the third part. Assume vy > Ly. From Part 1, we know
that vx ≤ Ux. By Definition 25, the weight of y −→ x equals (<,∞) if x is not
x0. The only finite valued outgoing edge from y is y −→ x0. Therefore, we can
infer two things: the shortest path from y to x0 is given by the edge y −→ x0;
and the shortest path from y to x should contain this edge y −→ x0. Secondly,
note that variable x0 has vx0 ≤ Lx0 (vx0 = 0 = Lx0). By definition, the value
of x0 −→ x in G′ is given by the corresponding value in GM

v and by Part 2, we
know that this value stays in GLU

v , that is, the shortest path from x0 to x in G′

is given by the direct edge. Summing up, the shortest path from y to x in G′ is
given by y −→ x0 −→ x, where both y −→ x0 and x0 −→ x are values coming from
GLU
v . �

5.4. When does an LU -region intersect a zone.

We are now in a position to characterize the intersection 〈v〉LU ∩ Z ′. Let
GLU
v as defined in the previous section be the canonical distance graph of 〈v〉LU

and let GZ′ be the canonical distance graph of Z ′. By Proposition 23, the
intersection 〈v〉LU ∩ Z ′ is empty iff min(GLU

v , GZ′) has a negative cycle.
We will now state a necessary and sufficient condition for the distance graph

min(GLU
v , GZ′) to have a negative cycle. We denote by Z ′xy the weight of the

edge x −→ y in GZ′ . Similarly we denote 〈v〉LU
xy for the weight of x −→ y in GLU

v .
When a variable x represents the special clock x0, we define 〈v〉LU

0x and 〈v〉LU
x0 to

be (≤, 0). Since by convention x0 is always 0, this is consistent. We also denote
[v]Mxy for the weight of x −→ y in GM

v with the same convention when x = x0.
The next proposition is the most important observation used in getting the

final inclusion test.

Proposition 28 Let v be a valuation and Z ′ a zone. The intersection 〈v〉LU∩Z ′
is empty iff there exist two variables x, y such that vx ≤ Ux and Z ′xy + 〈v〉LU

yx <
(≤, 0).

To prove the above proposition, we need a small but a crucial observation
that exploits the special structure of regions. A variable x is said to be bounded
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Figure 8: A bounded region is either totally contained in a zone Z or totally disjoint from
it. It can never intersect partially. For example, the bounded region B is totally inside Z,
however the bounded region A is totally disjoint from Z.

in valuation v if vx ≤ max(Lx, Ux). If x, y are bounded in v, then the projection
of the region [v]M onto x, y has very specific boundaries. Call it a bounded
region. The following lemma makes use of the fact that a bounded region is
either fully contained in a zone or is totally disjoint from it, that is, there
cannot be a partial intersection of the bounded region and zone, as illustrated
in Figure 8.

Lemma 29 Let x, y be bounded variables of v appearing in some negative

cycle N of min(GLU
v , GZ′). Let the edge weights be x

lxycxy−−−−−→ y and y
lyxcyx−−−−−→ x

in GM
v . If the value of the path x −→ . . . −→ y in N is strictly less than (lxy, cxy),

then x −→ . . . −→ y
lyxcyx−−−−−→ x is a negative cycle.

Proof
Let the path x −→ . . . −→ y in N have weight (l, c). Now, since x and y are
bounded variables in v, we can have either y − x = d or d − 1 < y − x < d for
some integer d in GM

v .

In the first case, we have edges x
≤d−−→ y and y

≤−d−−−→ x in GM
v , that is

(lxy, cxy) = (≤, d) and (lyx, cyx) = (≤,−d). Since by hypothesis (l, c) is
strictly less than (≤, d), we have either c < d or c = d and l is the strict

inequality. Hence (l, c) + (≤,−d) < (≤, 0) showing that x −→ . . . −→ y
lyxcyx−−−−−→ x

is a negative cycle.

In the second case, we have edges x
<d−−→ y and y

<−d+1−−−−−→ x in GM
v , that is,

(lxy, cxy) = (<, d) and (lyx, cyx) = (<,−d). Here c < d and again x −→ . . . −→
y

lyxcyx−−−−−→ x gives a negative cycle. �

We can now prove Proposition 28.
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Proof of Proposition 28

The distance graph min(GLU
v , GZ′) represents the set 〈v〉LU ∩Z ′. By Propo-

sition 23, the intersection is empty iff min(GLU
v , GZ′) has a negative cycle. If

there exist variables x, y such that Z ′xy+〈v〉LU
yx < (≤, 0), then there is a negative

cycle x −→ y −→ x in min(GLU
v , GZ′) and hence 〈v〉LU ∩ Z ′ is empty. This shows

the right-to-left direction.
The left-to-right direction is less trivial. Assume that 〈v〉LU ∩ Z ′ is empty.

Then, there is a negative cycle N in min(GLU
v , GZ′). To prove the proposition,

we aim to show the following.

Aim. We show that the negative cycle N of min(GLU
v , GZ′) can be reduced to

the form:

x
Z′xy−−−−→ y

〈v〉LU
yx−−−−−→ x (7)

Firstly, since both GLU
v and GZ′ are canonical, we can assume without loss

of generality that no two consecutive edges in N come from the same graph.
Suppose there are two edges y1 −→ x1 and y2 −→ x2 in N with weights coming

from GLU
v :

y1
〈v〉LU

y1x1−−−−−−−→ x1 −→ · · · −→ y2
〈v〉LU

y2x2−−−−−−−→ x2 −→ · · · −→ y1 (8)

Since they are part of a negative cycle, their edge weights should be a finite
value and by Part 1 of Lemma 27, this means:

vx1 ≤ Ux1 and vx2 ≤ Ux2

1. Suppose vy1 ≤ Ly1 and vy2 ≤ Ly2 . By Part 2 of Lemma 27, the edge values
y1 −→ x1 and y2 −→ x2 are the same as in GM

v . Consider the edge:

y1 −→ x2 in GLU

v

Again, from the same lemma, this edge value comes from GM
v too.

If the value of this edge y1 −→ x2 is smaller than the value of the path
y1 −→ x1 −→ · · · −→ y2 −→ x2 in N , then this path can be replaced by the single
edge y1 −→ x2 to get a smaller negative cycle in min(GLU

v , GZ).
However, if the value of the path y1 −→ x1 −→ · · · −→ y2 −→ x2 is less than the

edge value y1 −→ x2, then by Lemma 29:

y1 −→ x1 −→ . . . −→ y2 −→ x2 −→ y1, where x2 −→ y1 comes from GM

v

is a negative cycle. The edge x2 −→ y1 might be infinity in GLU
v . But as GM

v is
canonical, we can replace y2 −→ x2 −→ y1 −→ x1 by y2 −→ x1. From Lemma 27,
this edge is retained in GLU

v and hence we get a smaller negative cycle.
Therefore in this case, we can eliminate the two edges y1 −→ x1 and y2 −→ x2

to get a smaller negative cycle containing either y1 −→ x2 or y2 −→ x1. If N does
not contain a variable z such that vz > Lz, this elimination can be repeatedly
applied and N can be reduced to a negative cycle of the form y −→ x −→ y with
vy ≤ Ly, vx ≤ Ux and the edge weights y −→ x coming from GLU

v and x −→ y
coming from GZ′ , exactly as required by (7).
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2. Suppose vy1 > Ly1 . Consider again the two edges y1 −→ x1 and y2 −→ x2 of
(8) and now suppose that vy1 > Ly1 . By Part 3 of Lemma 27, the edge y1 −→ x1
can be replaced by:

y1 −→ x0 −→ x1 of GLU

v

If there is another variable in N that is greater than its L bound, then the vertex
x0 would occur twice in the negative cycle. From this negative cycle, we can
obtain a smaller negative cycle containing only one occurrence of x0. Hence,
without loss of generality, we can assume that x0 occurs only once in N . In
particular, this gives us that:

vy2 ≤ Ly2

Note that the special variable x0 has vx0
≤ Lx0

as its value is always sup-
posed to be 0 and Lx0

is defined to be 0. Now consider the two edges:

x0 −→ x1 and y2 −→ x2

This corresponds to Case 1 as vx0 ≤ Lx0 and vy2 ≤ Ly2 . As we have seen, these
two edges can be eliminated to give a smaller negative cycle containing either
x0 −→ x2 or y2 −→ x1, with the respective value coming from GLU

v .
If it is the latter edge y2 −→ x1, the smaller negative cycle does not contain

y1 and hence all variables are bounded by L. By Case 1, it can be reduced to a
cycle as required by the proposition.

Let us now consider the former edge x0 −→ x2. We have the cycle:

y1 −→ x0 −→ x2 −→ . . . −→ y1

All the variables other than y1 in the path x0 −→ . . . −→ y1 are bounded by their
L bound. We can therefore assume that all edges in x2 −→ . . . −→ y1 come from
GZ′ , because if not, we can apply the argument of Case 1 to further reduce the
cycle. As GZ′ and GLU

v are canonical, this cycle reduces to y1 −→ x2 −→ y1 with
y1 −→ x2 coming from GLU

v and x2 −→ y1 coming from Z ′. This again conforms
to the form of the cycle required by (7). �

5.5. Final steps

Proposition 28 gives a useful characterization of when 〈v〉LU ∩ Z ′ is empty.
To lift this characterization to Z 6⊆ a4LU(Z ′) and Proposition 21, we need to
find the least value of 〈v〉LU

yx from among the valuations v ∈ Z and see if this
satisfies the condition given in Proposition 28.

For the moment, assume that L = U so that the LU-regions coincide with
the classic regions. Consider a zone Z lying within the M bounds, as shown in
Figure 9. The values of [v]Myx for different valuations in the zone are shown. The
value decreases as we move towards the “left boundary”. In the figure, since
the y − x constraint of Z is given by y − x ≤ −1, there exists a valuation v4
on the “boundary” and hence the least value of [v]Myx among all v ∈ Z would
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Figure 9: Value of [v]Myx decreases as we move left

be given by [v4]Myx which is (≤, 1). If the y − x constraint of Z was y − x < −1
with a strict inequality, then the least value of [v]Myx from v ∈ Z is no longer
(≤, 1) as there is no valuation attaining this value. In this case, the least value
of [v]Myx would be (<, 2), given by the open region containing v5 with constraints
y − x < −1 and x− y < 2.

Due to this asymmetry, we need to define the following notion to handle
weights in a convenient way. For a weight (l, c) we define −(l, c) as (l,−c)
and a ceiling function d·e as follows.

Definition 30 For a real c, let dce denote the smallest integer that is greater
than or equal to c. We define the ceiling function d(l, c)e for a weight (l, c)
depending on whether l equals ≤ or <, as follows:

d(≤, c)e =

{
(≤, c) if c is an integer

(<, dce) otherwise

d(<, c)e =

{
(<, c+ 1) if c is an integer

(<, dce) otherwise

The following proposition is one of the two cores for the proof of the main
theorem. It gives the least value of 〈v〉LU

yx from among the valuations v present
in a zone Z.
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Proposition 31 Let Z be a non-empty zone, and let x, y be two clocks. The
least value of 〈v〉LU

yx among the valuations v ∈ Z such that vx ≤ Ux is given by:{
(<,∞) if Zx0 < (≤,−Ux)

max{d−Zxye, d−Zx0e − (<,Ly)} otherwise

Proof
Let G be the canonical distance graph representing the zone Z. We denote
the weight of an edge i −→ j in G by (lij , cij). Recall that this means Zij =
(lij , cij).

We are interested in computing the smallest value of the x − y constraint
defining an LU -region intersecting Z. Additionally we want to restrict to LU -
regions in which all its valuations satisfy x ≤ Ux, that is, we need to find:

β := min{〈v〉LU

yx | v ∈ Z and vx ≤ Ux}

Clearly, if vx > Ux for all valuations v ∈ Z, then β is (<,∞). When Zx0 <
(≤,−Ux), it means that all valuations v ∈ Z satisfy 0 − vx lx0 cx0 and cx0 ≤
−Ux. Moreover lx0 is the strict inequality if cx0 = −Ux. In consequence, all
valuations v ∈ Z satisfy vx > Ux when Zx0 < (≤,−Ux). Whence β = (<,∞).
This corresponds to the first case in the statement of the lemma.

Let now restrict to the case when Zx0 ≥ (≤,−Ux). By definition of regions
(cf. Definition 24) and Lemma 27, we have for a valuation v:

〈v〉LU

yx =

{
d(≤, vx − vy)e if vx ≤ Ux and vy ≤ Ly
(<,−Ly) + d(≤, vx)e if vx ≤ Ux and vy > Ly

(9)

LetG′ be the graph in which the edge 0 −→ x has weight min{(≤, Ux), (l0x, c0x)}
and the rest of the edges are the same as that of G. This graph G′ represents
the valuations of Z that have vx ≤ Ux: [[G′]] = {v ∈ Z | vx ≤ Ux}. We show that
this set is not empty. For this we check that G′ does not have negative cycles.
Since G does not have negative cycles, every negative cycle in G′ should include
the newly modified edge 0 −→ x. Note that the shortest path value from x to 0
does not change due to this modified edge. So the only possible negative cycle
in G′ is 0 −→ x −→ 0. But then we are considering the case when Zx0 ≥ (≤,−Ux),
and so Zx0 + (≤, Ux) ≥ (≤, 0). Hence this cycle cannot be negative either. In
consequence all the cycles in G′ are positive and [[G′]] is not empty.

To find β, it is sufficient to consider only the valuations in [[G′]]. As seen
from Equation 9, among the valuations in [[G′]], we need to differentiate between
those with vy ≤ Ly and the ones with vy > Ly. We proceed as follows. We first
compute min{〈v〉LU

yx | v ∈ [[G′]] and vy ≤ Ly}. Call this β1. Next, we compute
min{[v]yx | v ∈ [[G′]] and vy > Ly} and set this as β2. Our required value β
would then equal min{β1, β2}.

To compute β1, consider the following distance graph G′1 which is obtained
from G′ by just changing the edge 0 −→ y to min{(≤, Ly), (l0y, c0y)} and keeping
the remaining edges the same as in G′. The set of valuations [[G′1]] equals
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{v ∈ [[G′]] | vy ≤ Ly}. If [[G′1]] = ∅, we set β1 to (<,∞) and proceed to calculate
β2. If not, we see that from Equation 9, for every v ∈ [[G′1]], [v]yx is given by
d(≤, vx − vy)e. Let (l1, w1) be the shortest path from x to y in the graph G′1.
Then, we have for all v ∈ [[G′1]], vy − vx l1 w1. If l1 is ≤, then the least value
of [v]yx would be (≤,−w1) and if l1 is <, one can see that the least value of
[v]yx is (<,−w1 + 1). This shows that β1 = d(l1,−w1)e. It now remains to
calculate (l1, w1).

Recall that G′1 has the same edges as in G except possibly different edges 0 −→
x and 0 −→ y. If the shortest path from x to y has changed in G′1, then clearly it
should be due to one of the above two edges. However note that the edge 0 −→ x
cannot belong to the shortest path from x to y since it would contain a cycle
x −→ . . . 0 −→ x −→ . . . y that can be removed to give shorter path. Therefore,
only the edge 0 −→ y can potentially yield a shorter path: x −→ . . . −→ 0 −→ y.
However, the shortest path from x to 0 in G′1 cannot change due to the added
edges since that would form a cycle with 0 and we know that all cycles in G′1
are positive. Therefore the shortest path from x to 0 is the direct edge x −→ 0,
and the shortest path from x to y is the minimum of the direct edge x −→ y and
the path x −→ 0 −→ y. We get: (l1, w1) = min{(lxy, cxy), (lx0, cx0) + (≤, Ly)}
which equals min{Zxy, Zx0 + (≤, Ly)}. Finally, from the argument in the above
two paragraphs, we get:

β1 =


(<,∞) if [[G′1]] = ∅
d−Zxye if [[G′1]] 6= ∅ and Zxy ≤ Zx0 + (≤, Ly)

d−Zx0e+ (≤,−Ly) if [[G′1]] 6= ∅ and Zxy > Zx0 + (≤, Ly)

(10)

We now proceed to compute β2 = min{[v]yx | v ∈ [[G′]] and vy > Ly}. Let
G′2 be the graph which is obtained from G′ by modifying the edge y −→ 0 to
min{Zy0, (<,−Ly)} and keeping the rest of the edges the same as in G′. Clearly
[[G′2]] = min{v ∈ [[G′]] | vy > Ly}.

Again, if [[G′2]] is empty, we set β2 to (<,∞). Otherwise, from Equation 9,
for each valuation v ∈ [[G′2]], the value of [v]yx is given by (<, dvxe − Ly). For
the minimum value, we need the least value of vx from v ∈ [[G′2]]. Let (l2, w2)
be the shortest path from x to 0 in G′2. Then, since −vx l2 w2, the least value
of dvxe would be −w2 if l2 is ≤ and equal to d−w2e if l2 =< and β2 would
respectively be (<,−w2−Ly) or (<,−w2 +1−Ly). It now remains to calculate
(l2, w2).

Recall that G′2 is G with 0 −→ x and y −→ 0 modified. The shortest path from
x to 0 cannot include the edge 0 −→ x since it would need to contain a cycle, for
the same reasons as in the β1 case. So we get (l2, w2) = min{Zx0, Zxy + (<
,−Ly)}. If Zx0 ≤ Zxy + (<,−Ly), then we take (l2, w2) as Zx0, otherwise we
take it to be Zxy + (<,−Ly). So, we get β2 as the following:

β2 =


(<,∞) if [[G′2]] = ∅
−Zxy + (<, 1) if [[G′2]] 6= ∅ and Zx0 ≥ Zxy + (<,−Ly)

d−Zx0e+ (<,−Ly) if [[G′2]] 6= ∅ and Zx0 < Zxy + (<,−Ly)

(11)
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However, we would like to write β2 in terms of the cases used for β1 in Equation
10 so that we can write β, which equals min{β1, β2}, conveniently.

Let ψ1 be the inequation: Zxy ≤ Zx0 + (≤, Ly). From Equation 10, note
that β1 has been classified according to ψ1 and ¬ψ1 when [[G′1]] is not empty.
Similarly, let ψ2 be the inequation: Zx0 ≥ Zxy + (<,−Ly). From Equation
11 we see that β2 has been classified in terms of ψ2 and ¬ψ2 when [[G′2]] is not
empty. Notice the subtle difference between ψ1 and ψ2 in the weight component
involving Ly: in the former the inequality associated with Ly is ≤ and in the
latter it is <. This necessitates a bit more of analysis before we can write β2 in
terms of ψ1 and ¬ψ1.

Suppose ψ1 is true. So we have (lxy, cxy) ≤ (lx0, cx0 + Ly). This implies:
cxy ≤ cx0 + Ly. Therefore, cx0 ≥ cxy − Ly. When cx0 > cxy − Ly, ψ2 is clearly
true. For the case when cx0 = cxy − Ly, note that in ψ2 the right hand side is
always of the form (<, cxy−Ly), irrespective of the inequality in Zxy and so yet
again, ψ2 is true. We have thus shown that ψ1 implies ψ2.

Suppose ¬ψ1 is true. We have (lxy, cxy) > (lx0, cx0+Ly). If cxy > cx0+Ly,
then clearly cx0 < cxy−Ly implying that ¬ψ2 holds. If cxy = cx0 +Ly, then we
need to have lxy equal to ≤ and lx0 equal to <. Although ¬ψ2 does not hold
now, we can safely take β2 to be d−Zx0e+ (<,−Ly) as its value is in fact equal
to −Zxy + (<, 1) in this case. Summarizing the above two paragraphs, we can
rewrite β2 as follows:

β2 =


(<,∞) if [[G′2]] = ∅
−Zxy + (<, 1) if [[G′2]] 6= ∅ and Zxy ≤ Zx0 + (≤, Ly)

d−Zx0e+ (<,−Ly) if [[G′2]] 6= ∅ and Zxy > Zx0 + (≤, Ly)

(12)

We are now in a position to determine β as min{β1, β2}. Recall that we
are in the case where Zx0 ≤ (≤,−Ux) and we have established that [[G′]] is
non-empty. Now since [[G′]] = [[G′1]]∪ [[G′2]] by construction, both of them cannot
be simultaneously empty. Hence from Equations 10 and 12, we get β, the
min{β1, β2} as:

β=

{
d−Zxye if Zxy ≤ Zx0 + (≤, Ly)

d−Zx0e+ (<,−Ly) if Zxy > Zx0 + (≤, Ly)
(13)

There remains one last reasoning. To prove the lemma, we need to show
that β = max{d−Zxye, d−Zx0e + (<,−Ly)}. For this it is enough to show the
following two implications:

Zxy ≤ Zx0 + (≤, Ly)⇒ d−Zxye ≥ d−Zx0e+ (<,−Ly)

Zxy > Zx0 + (≤, Ly)⇒ d−Zxye ≤ d−Zx0e+ (<,−Ly)

We prove only the first implication. The second follows in a similar fashion. Let
us consider the notation (lxy, cxy) and (lx0, cx0) for Zxy and Zx0 respectively.
So we have:
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(lxy, cxy) ≤ (lx0, cx0) + (≤, Ly)

⇒ (lxy, cxy) ≤ (lx0, cx0 + Ly)

If the constant cxy < cx0 + Ly, then −cxy > −cx0 − Ly and we clearly get that
d−Zxye ≥ d−Zx0e+ (<,−Ly). If the constant cxy = cx0 + Ly and if lx0 is ≤,
then the required inequation is trivially true; if lx0 is <, it implies that lxy is
< too and clearly d(<,−cxy)e equals d(<,−cx0)e+ (<,−Ly). �

We have a simple method that tells us when an LU-region 〈v〉LU does not
intersect a zone Z ′ (Proposition 28). We have also characterized the potential
valuation v from Z that could satisfy the non-intersection condition with Z ′

(Proposition 31). This gives the necessary tools to solve inclusion Z 6⊆ a4LU(Z ′).
The following theorem presents the efficient inclusion test.

Theorem 32 Let Z,Z ′ be non-empty zones. Then, Z 6⊆ a4LU(Z ′) iff there
exist two variables x, y such that:

Zx0 ≥ (≤,−Ux) and Z ′xy < Zxy and Z ′xy + (<,−Ly) < Zx0

Proof
From Proposition 21, we know that Z 6⊆ a4LU(Z ′) iff there exists a valuation
v ∈ Z such that 〈v〉LU does not intersect Z ′.

From Proposition 28, we know that 〈v〉LU ∩ Z ′ is empty iff there exists a
variable x such that vx ≤ Ux and a variable y such that:

Z ′xy + 〈v〉LU

yx < (≤, 0) (14)

This is possible for variables x, y iff the least value of 〈v〉LU
yx from among the

valuations in Z satisfies the inequation (14) with Z ′xy.
This is where we use Proposition 31. According to this proposition, for (14)

to be true for some valuation v ∈ Z, we would need Zx0 ≥ (≤,−Ux) and:

Z ′xy + d−Zxye < (≤, 0) and Z ′xy + d−Zx0e − (<,Ly) < (≤, 0) (15)

Consider the first inequality: Z ′xy + d−Zxye < (≤, 0). Let Zxy be (lxy, cxy).
If lxy is the weak inequality ≤, then d−Zxye is (≤,−cxy) and hence the
condition becomes: Z ′xy + (≤,−cxy) < (≤, 0). This is equivalent to saying
Z ′xy < (≤, cxy), that is, Z ′xy < Zxy. Now, if lxy is the strict inequality <,
then d−Zxye becomes (<,−cxy +1) and hence the condition becomes: Z ′xy +(<
,−cxy + 1) < (≤, 0). This is equivalent to saying Z ′xy < (<, cxy). In both cases,
the first inequality of Equation (15) becomes Z ′xy < Zxy.

By a similar reasoning, the second inequality of Equation (15) can be seen
to correspond to Z ′xy + (<,−Ly) < Zx0. This proves the theorem. �

The Z 6⊆ a4LU(Z ′) test involves a comparison of corresponding edges in the
distance graphs GZ and GZ′ , so it takes in the worst case a O(|X|2) number
of steps. Notice that in fact the test requires only two tests for every pair of
clocks.
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6. Conclusions

Traditional methods for timed automata reachability store abstractions of
zones for termination. Therefore, only convex abstractions have been used in
implementations. We have proposed to store zones and use abstractions indi-
rectly by means of inclusion tests Z ⊆ a(Z ′). This allows us to use non-convex
abstractions while still working with zones. The coarser the abstraction a, the
higher is the possibility of inclusion, and hence smaller would be the reachability
tree that is explored. For this construction to work efficiently, one also needs
an efficient inclusion test.

In this paper, we have given a complete solution to using the a4LU abstrac-
tion for the reachability algorithm. Firstly, we have given an O(|X|2) test for
Z ⊆ a4LU(Z ′) inclusion. This is the cornerstone of our approach since this test
is used in the inner loop of the algorithm. Our test has the same complexity as
Z ⊆ Z ′ test used in the traditional algorithm. We have also shown that the a4LU

abstraction is the coarsest abstraction that is sound and complete with respect
to reachability for all automata with the same LU -bounds. The result showing
that a4LU abstraction is the coarsest possible is quite unexpected. It works
thanks to the observation that when doing forward exploration it is enough
to consider only time-elapsed zones. This result explains why after Extra+

LU

from [4] there have been no new abstraction operators [9]. Indeed it is not that
easy to find a better zone inside a4LU abstraction than that given by Extra+

LU

abstraction.
The maximality result for a4LU shows that to improve reachability testing

even further we will need to look at new structural properties of timed automata,
or to consider more refined algorithms than forward exploration. A work in this
direction is [16].
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